Scientific Computing, Utrecht, February 24, 2014

Fourier Transforms
Wavelets
T heory and Applications

AW

7 NS S Universiteit Utrecht
Gerard Sleijpen ’/‘{/AA\\c Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/




Fourier Integrals

0.5

0.5

_05 | | | | | | |



Program

Heuristic

Fourier transform for L! functions
Derivatives

Fourier transform for L2 functions
Extensions

Duality observations



Program

Heuristic

Fourier transform for L! functions
Derivatives

Fourier transform for L2 functions
Extensions

Duality observations



—+ o0
FR—C st |fli=[If®ldt= [ " If®]dt < .

To ease notation, we often drop the integration bounds,
when the bounds are clear from the context:

/fz/f(t) dtz/__;oof(t) dt.

L1(R) is the space of
all functions f: R — C for which |[|f]1 < oc.

Similarly, LP(R)={f: R —>C|||fllp < oo}
(with [in this lecture] integration form —oco to +00).



—+ o0
FR—C st |fli=[If®ldt= [ " If®]dt < .

1 [T/2 Lk
With Vi = 7)o F(t)e 2THT gt (k € 7),

and f e CDR), ft) = 3 AFe2™ T (jt| < T/2)
ke,

What happens if T' — oo?



—+ o0
FR—C st |fli=[If®ldt= [ " If®]dt < .

1 [T/2 Lk
With Vi = 7)o F(t)e 2THT gt (k € 7),

and f e CDR), ft) = 3 AFe2™ T (jt| < T/2)
ke,

With Flw) = / F(t)e™2mitw g
we have that Tv} =~ f(£). Hence, (Riemann sum)

1k - - :
f(t) ~ Z ?f(E)GQTFZtﬁ ~ /f(w)GQﬂ‘ztw dow
kel

Conjecture. f(t) = ]A?(—t).



e Fourier transform for L1 functions



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)




“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

if [t <
Example. For T >0, f(t) =Np(t) = { é :: Ii{ > ?

Then Mp(w) = 2Tsinc(2Tw), where sinc(t) = SNt

7t
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“+ o0
FiR=C st |fli= [IF@lde= [ "|f®)ldt < oo

f@ = [r@®e ™™ at (weR)

Example. f is the Gaussian f(t) = e~ Then
flw) = e W (w € R).

Proof.

J?(w) = /e_ﬂ(t2+2itw) dt = e ™ / e m(tFW)® q¢.

Complex function theory:
[-e ™" d¢ = 0 for each closed curved I in C.
Take I the boundary curve of [-T,T] x [0,iw]. Then T — oo implies

/e”(t"'i‘”)2 dt = /e7T7§2 dt = 1.



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Example. f is the Gaussian f(t) = e~ Then

flw) = e_m”2 (w e R).

Fourier transform
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“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Example. f is the Gaussian f(t) = e~ Then

fw) = /Lea™®  (weR).

«
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“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo

e [ is bounded: ||fllco < |f|l1.

Proof.

[F@)| = | [ f(t) exp(—2mitw) dt| < [ |£(#)| | exp(—2mitw)| dt = [|f(¢)| dt



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

e [ is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

AN

e f is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

Proof.

Fw48) = @) = | [ f(t)[e2rmittrd) _ o=2mite] gy
| [ £(t)e Titutd) [o-mitd _ mitd] gy
[1f@)|]2sin(nts)| dt

SR 1 F@®]12sin(xts)| dt 4 3¢ < e

Here T'> 0 is selected st [, . [f(t)| dt < 3¢, and subsequently,

§ > 0 is selected st 2|sin(wtd)| <e/(2||fll1) all te [-T,T].

IA IA



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

e [ is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

e f vanishes at co: f(w) — 0 if |w| — oo.



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

AN

e f is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

e f vanishes at co: f(w) — 0 if |w| — oo.

Proof. Select an € > 0. Is there an 2 > 0 st |f(w)| <eall |w| > Q7
[F)] < (f = @)+ [gw)] < [If —glli + [g(w)] (g € L*(R)).

Select g € LY (R) N C(R) st ||f — g|]1 < %s and g(t) =0 if [t| > T.

If the claim is correct for g, then 3Q > 0 st [g(w)| < 2¢ if |w| > Q and

|f(w)| <e if |w| > 2, which completes the proof.
Therefore, to prove claim, assume f € LY(R)NC(R), f(t) =0 if |t| > T.



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

e [ is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

e f vanishes at co: f(w) — 0 if |w| — oo.

Proof.
fw)=—[flt+E)e?™dt  (t—t+k emi=-1)
) =30FW) + F)] = [ 3 [F(O) — FCt+ 3] e it dt
@I <31 = Ft455)| dt



“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e [ is bounded: ||fllco < |f|l1.

AN

e f is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

e f vanishes at co: f(w) — 0 if |w| — oo.

Proof. For |w| > 1,

£ T+1

F(w) = LT r@) - (4 L)) dt
Since f is uniformly continuous, 32 > 0 st V|w| > €2,

SuD|t|§T—|—1 }f(t) o f(t —I_ i)‘ S 2T€—|-2'




“+ o0
fiR—C st |fli=[If®ldt= [ " |f®]dt < oo

f@ = [r@®e ™™ at (weR)

Theorem. ||f||1 < oo
e fis bounded: ||flloo < ||fl1;

e [ is uniformly continuous:
supy, |f(w4+68) — f(w)| — 0 if § — 0.

e f vanishes at co: f(w) — 0 if |w| — oo.

L*(R) = {f :R—C[|/fll1 < oo}, norm |- |I1
Coo(R) = {g € C(R) | g vanishes at oo}, norm || - ||co-

fe Ll(R) — ]?E C’OO(]R) and ||f||oo < ||f||1
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Theorem. If f, f/ € LY(R) then

f(w) = 2miw f(w) (w € R)

Proof. Integrate by parts.



Theorem. If f, f/ € LY(R) then

f(w) = 2miw f(w) (w € R)

Theorem. If f,tf € LY(R) then f € C(1(R) and
fPW) = —2rmitf)(w)  (wEeR)
Proof. If tf € L*(R) then

d -~ d —2mitw - 0 —2mitw
af(w)za/f(t)e 2mit dt—/f(t)a—we 2mitw g,



Theorem. If f, f/ € LY(R) then

f(w) = 2miw f(w) (w € R)

Theorem. If f,tf € LY(R) then f € C(1(R) and

fP(w) = —2mi(tf)w)  (weR)

support f is bounded by T if f(t) =0 all |t| > T.
Corollary. f € Ll(IR{) with support bounded by 7', then

Fec®@®), IF Mo < @rD)™|fl1  (n € No)



Theorem. If f, f/ € LY(R) then

f(w) = 2miw f(w) (w € R)

Theorem. If f,tf € LY(R) then f € C(1(R) and

fP(w) = —2mi(tf)w)  (weR)

support f is bounded by T if f(t) =0 all |t| > T.
Corollary. f € Ll(IR{) with support bounded by 7', then

Fec®@®), IF Mo < @rD)™|fl1  (n € No)

Proof. t"f € L*(R). Apply the last theorem inductively.



Corollary. f € L1(R) with support bounded by T,
then f is analytic on R, i.e., f € C(®)(R) and

fwy=3 - f<’f><o> (w € R).

k=0 K
To be precise,
with (Taylor's theorem on Taylor series)

n— 1

f<w>=z f(’“)(O)Jr f<”><5>

k=0 k¥
for some £ in between 0 and w,
we have that

N 2nTw)"™
L FOe) < 2T

[flli =0 ifn— oo



Applications

e Differential equations.
e Insight Smoothness f relates to decrease f at oo

e New concept of derivative.



Differential equations.

See exercises.



Insight

First note that
ftft2f, .t f e LYR) < (1 +[th)"f € L*(R).

Therefore,

(14 tD"f € LY(R), then fe CK®)(R) for k=0,...

f7 fla RN f(n) S Ll(R)a then (1 _I_ |W|)n]? bounded.
o ‘Size’ of f at oo determines smoothness of f

e Smoothness of f determines ‘size’ off at oo.

~ identifies L?(R) with L%(R) (see later):
‘size’ of f at oo corresponds to smoothness of f.



Insight

First note that
fotf, 2 f, " f e LYR) & (14 [t)"f € LY(R).
Therefore,
(14 [th"f € LY(R), then fe CcFI(R) for k=0,...,n.
£ f . ™ e LY(R), then (14 |w|)™f bounded.
o ‘Size’ of f at oo determines smoothness of f
e Smoothness of f determines ‘size’ of f at oc.

~ identifies L?(R) with L%(R) (see later):
‘size’ of f at oo corresponds to smoothness of f.



New concept of derivative.

For the moment (see later), assume that
~ identifies L2(R) with L2(R).

If (1+ |w)™f e L2(R) then, Vk=0,...,n, w*f e L?2(R)
and Jg e L2(R) st g = (2miw)kf. Denote fk) =g4.

Let v > 0. Suppose (14 |w|)7f€ L2(R).
Then, 3g € L2(R) st § = (2miw)7f. Denote (1) =g.
£(7) is a pseudo (or fractional) derivative of f.

HY = {f | (14 |w])7f € L2(R)}
is the Sobolev space of order ~.



e Fourier transform for L2 functions



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. | fall2 = I|fnll2



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N LI(R) (n e N).

Lemma. | fall2 = I|fall2

Proof. For L > 2n, consider the restriction of f, to [-L/2,L/2],

and its L-periodic extension.
L/2

Ly (fn) = /

—L/2

fa(t)e 2T dt = / fa(t)e 2" dt = ﬁ(%y

Apply Parceval to see that

mE=rt [ P v L
L)y L2

k=—00

2

~ k

The limit for L — oo exists and equals || f.]|5.

Since f, is uniformly continuous, we also have that

>~ 1
2.1

k=—00

~ k|? . .
A = 1P =I5B @)




fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. |[[fnll2 = [|fnll2.

Along the same line (using Th.2.4.a) we have

fn(t) = /ﬁb(w) o H2mitw 4

in some L2-sense.



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).
Lemma. |fallo = |fnllz & (fn) is Cauchy in L2(R).



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).
Lemma. |fallo = |fnllz & (fn) is Cauchy in L2(R).

Proof.
||fn_fm||2: ||fn—fm||2—>0 (n>m—>oo)



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).
Lemma. |fallo = |fnllz & (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Proof. ||fa = flles < lfa = fllx — 0 if n — oo implies |lg — f]l> = 0.



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).
Lemma. ||fulla = |frllz & (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Proof. H]?n_]?”m <||fn— fll1 = 0 if n — co implies ||g — ]?||2 = 0:

to be more precise, with ||hlj2r = \/f_TT|h(w)|2dw,

lg — Fallzz + | Fn = Fll2r
lg — Fullz + V2T )| Fr — Flloo
lg = fullz + V2T fn — £l

For n — oo, this shows that ||g — f||2,T =0 for all T > 0.
Therefore,

lg — fllo,r

IA A IA

lg — fll2 = lim ||g — fll2r = 0.
T—)OO



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Definition. f=g. Plancherel. |fll2 = ||f|l2.



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

s

Definition. f=g. Plancherel. |fll2 = ||f|l2.

Proof. |Ifll2 = llgll2 = lim |[fall2 = lim || full2 = [[f]]2.



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Definition. f=g. Plancherel. |fll2 = ||f|l2.

Corollary. (f,g9) = (f,§) (f,g€ L?(R)).



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).
Lemma. ||fulla = |frllz & (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Definition. f=g. Plancherel. |fll2 = ||f|l2.
Note. If (f.) in LY(R) N L?(R) converges to f in L?(R),

then (fn) converges to g in L2(R): in other words, defini-
tion f independent of selected approx. in L1(R) N L2(R).



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).

Proposition. fe L2(R)NLI(R) = g= 7.
Definition. f=g. Plancherel. |fll2 = ||f|l2.

Note. Usually
. - Q o
f(w) = lim Qf(t)e T dt  for almost all w € R.

Q—ooJ—

T herefore,



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Definition. f=g. Plancherel. |fll2 = ||f|l2.

For f € L2(R), we also put f(w) = /f(t)e_%";tw dw
(for ease of notation).



fiR—C st |[fla=/[If®)2dt <oo: feL2(R).
Note that f, = fM, € L2(R) N L1(R) (n e N).

Lemma. ||fall2 =Ifall2 &  (fn) is Cauchy in L2(R).

Jg € L2(R) st ||[fa—glla— 0 (n — o0).
Proposition. fe L2(R)NLI(R) = g= 7.

Definition. f=g. Plancherel. |fll2 = ||f|l2.

For f € L2(R), we also put f(w) = /f(t)e_%";tw dw.
Theorem. f e L%(R) then ||f|l> = |/f|l2, and

f@) = [ Fe @ dw, (1) = [ fw) et a.



Interpretation. f(¢) = [ f(w) 2™ duw:
f is a superposition of harmonic oscilations:
with Fw) = |f(w)|e2mie(w),

|f(w)| is the amplitude of the oscilation
with frequency w,
o(w) is the phase.



AN

De Fourier transform f is also denoted by F(f):

(Plancherel:) F is a linear operator and a norm preserving
bijection from L2(R) onto L2(R).



LY(R) = Coo(®),  |Ifllee < Ifll1,  not surjective

L2(R) — L2(R), ||flla=|fll2, inversion exists.




LY(R) = Coo(®),  |Ifllee < Ifll1,  not surjective

L2(R) — L2(R), ||flla=|fll2, inversion exists.




LY(R) = Coo(®),  |Ifllee < Ifll1,  not surjective

L2(R) — L2(R), ||flla=|fll2, inversion exists.
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LY(R) = Coo(®),  |Ifllce < |Ifll1,  not surjective

L2(R) — L2(R), |Iflla = |Iflla, inversion exists.
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Let v € R be a frequency. Can the function ¢,, with

by (t) = 2™tV (t € R)

be viewed as a superposition of harmonic oscilations?



T he Dirac § function

eQﬂ"itl/ — /5u(w> 627m'tw dew (t c R)

Here 6, is the Dirac § function or point measure at v
defined by the following two properties:

o0p(w) =0 for all w v and
[ 0@ g(w)dw = g(») (g€ CR)).

0, can be view as some weak limit of, e.qg., isl‘l6 for e — 0.

In some sense ¢, =&, and ¢, (t) = d,(—1).



Application of the Dirac d-function.

Suppose f is C(1) on both (—oo,7) and (r,00) and
f(r+) and f(7—) exists. Then, with a = f(v4) — f(7—),

F@&) =)+ [ (f'(s) +asi()) ds  (tER).

The function '+ ad, can be viewed as the derivative of f.

Exercise. Consider the approximate derivatives oa:f

Op,f(t) = f(t+ At)QAtf(t At).
Show that the behaviour for (Oa;f) for At — 0 is consis-
tent with the point of view that f/ 4+ ad; is the derivative
of f and the definition of . Pay special attention to t's
for which 7 € (t — At,t 4+ At)




Application of the Dirac d-function.

Exercise. For A € C, Re(\) # 0,

consider the differential equation

ity =2f@®) (teR, t#0), f(0-)=0, f(0+)=1
Solve this eq. for an f € L2(R) (if exist).

Is the eq. equivalent to

feL?(R) st f'=Xf+d

Use Fourier transform to show that
~ 1
f(w) 2miw — A\ (w )

Discuss the situation for Re(\) < 0 and Re(\) > 0.




e Duality observations



f e L2(R).
Energy:
E=[[f(H)2dt = [|f(w)]?dw.
Energy center:
to =+ [t|f(£)]?dt, wo = + [w|f(w)|? dw.
Spread:

of = 5 [(t—t0)?IfWPdt, 0F = £ [(w —wo)?|f(w)]* dw.

Heisenberg uncertainty principle.

1
O10w > v

o100 =2 & f(t) = ce?t70)° (1 € R)



real

even

smooth

rapid decrease at oo
localized

Duality

=

even
real

rapid decrease at oo
smooth

spread out



