Scientific Computing, Utrecht, February 24, 2014

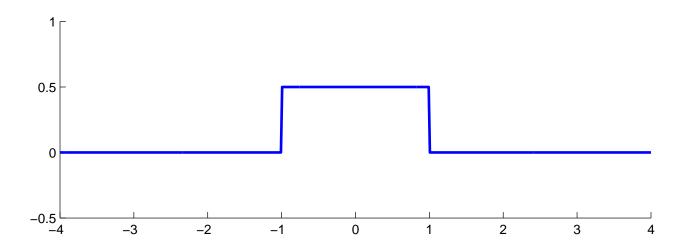
Fourier Transforms Wavelets Theory and Applications

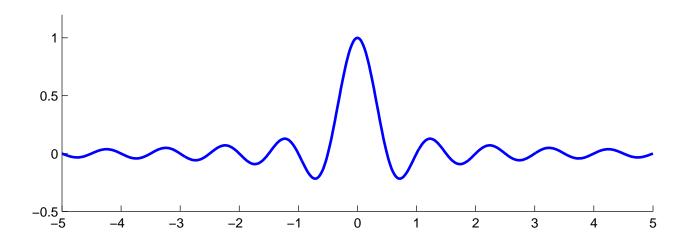
Gerard Sleijpen

Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/

Fourier Integrals





Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| dt = \int_{-\infty}^{+\infty} |f(t)| dt < \infty$.

To ease notation, we often drop the integration bounds, when the bounds are clear from the context:

$$\int f \equiv \int f(t) dt \equiv \int_{-\infty}^{+\infty} f(t) dt.$$

 $L^1(\mathbb{R})$ is the space of all functions $f: \mathbb{R} \to \mathbb{C}$ for which $||f||_1 < \infty$.

Similarly, $L^p(\mathbb{R}) \equiv \{f : \mathbb{R} \to \mathbb{C} \mid ||f||_p < \infty\}$ (with [in this lecture] integration form $-\infty$ to $+\infty$).

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| dt = \int_{-\infty}^{+\infty} |f(t)| dt < \infty$.

With
$$\gamma_k^T \equiv \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-2\pi i t \frac{k}{T}} dt \qquad (k \in \mathbb{Z}),$$

and
$$f \in C^{(1)}(\mathbb{R})$$
, $f(t) = \sum_{k \in \mathbb{Z}} \gamma_k^T e^{2\pi i t \frac{k}{T}}$ $(|t| < T/2)$

(restrict f to [-T/2, T/2], extend T-periodic, use Th. 2.4.b)

What happens if $T \to \infty$?

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| dt = \int_{-\infty}^{+\infty} |f(t)| dt < \infty$.

With
$$\gamma_k^T \equiv \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-2\pi i t \frac{k}{T}} dt \qquad (k \in \mathbb{Z}),$$

and
$$f \in C^{(1)}(\mathbb{R})$$
, $f(t) = \sum_{k \in \mathbb{Z}} \gamma_k^T e^{2\pi i t \frac{k}{T}}$ $(|t| < T/2)$

(restrict f to [-T/2, T/2], extend T-periodic, use Th. 2.4.b)

With
$$\widehat{f}(\omega) \equiv \int f(t)e^{-2\pi it\omega} dt$$

we have that $T\gamma_k^T \approx \widehat{f}(\frac{k}{T})$. Hence, (Riemann sum)

$$f(t) pprox \sum_{k \in \mathbb{Z}} \frac{1}{T} \widehat{f}(\frac{k}{T}) e^{2\pi i t \frac{k}{T}} pprox \int \widehat{f}(\omega) e^{2\pi i t \omega} d\omega$$

Conjecture. $f(t) = \widehat{\widehat{f}}(-t)$.

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

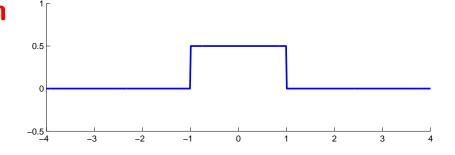
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

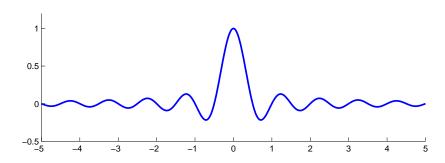
Example. For
$$T > 0$$
, $f(t) \equiv \Pi_T(t) \equiv \begin{cases} 1 \text{ if } |t| \leq T, \\ 0 \text{ if } |t| > T. \end{cases}$

Then $\widehat{\Pi}_T(\omega) = 2T \operatorname{sinc}(2T\omega)$, where $\operatorname{sinc}(t) \equiv \frac{\sin(\pi t)}{\pi t}$.

Fourier transform of a tophat



is a sinc.



$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

Example. f is the Gaussian $f(t) = e^{-\pi t^2}$. Then

$$\widehat{f}(\omega) = e^{-\pi\omega^2} \qquad (\omega \in \mathbb{R}).$$

Proof.

$$\widehat{f}(\omega) = \int e^{-\pi(t^2 + 2it\omega)} dt = e^{-\pi\omega^2} \int e^{-\pi(t + i\omega)^2} dt.$$

Complex function theory:

 $\int_{\Gamma} e^{-\pi\zeta^2} \,\mathrm{d}\zeta = 0$ for each closed curved Γ in \mathbb{C} .

Take Γ the boundary curve of $[-T,T]\times [0,i\omega]$. Then $T\to\infty$ implies

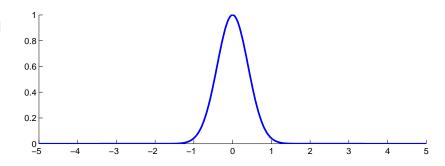
$$\int e^{-\pi(t+i\omega)^2} \, \mathrm{d}t = \int e^{-\pi t^2} \, \mathrm{d}t = 1.$$

$$f: \mathbb{R} \to \mathbb{C} \quad \text{st} \quad ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

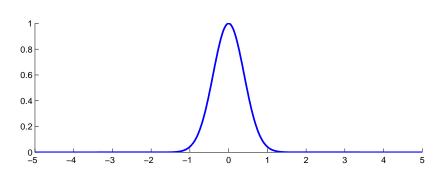
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

Example. f is the Gaussian $f(t)=e^{-\pi t^2}$. Then $\widehat{f}(\omega)=e^{-\pi\omega^2}$ $(\omega\in\mathbb{R}).$

Fourier transform of a Gaussian



is a Gaussian.



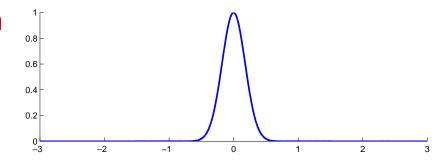
$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| dt = \int_{-\infty}^{+\infty} |f(t)| dt < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t)e^{-2\pi it\omega} dt \quad (\omega \in \mathbb{R})$$

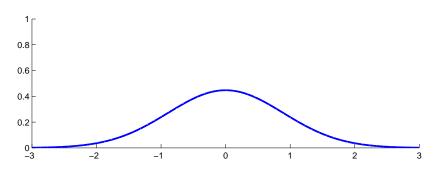
Example. f is the Gaussian $f(t) = e^{-\alpha \pi t^2}$. Then

$$\widehat{f}(\omega) = \sqrt{\frac{1}{\alpha}} e^{-\frac{1}{\alpha}\pi\omega^2}$$
 $(\omega \in \mathbb{R}).$

Fourier transform of a Gaussian



is a Gaussian.



$$f: \mathbb{R} \to \mathbb{C} \quad \text{st} \quad ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

• \widehat{f} is **bounded**: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.

$$f: \mathbb{R} \to \mathbb{C} \quad \text{st} \quad ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

• \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.

Proof.

$$|\widehat{f}(\omega)| = |\int f(t) \exp(-2\pi i t\omega) dt| \le \int |f(t)| |\exp(-2\pi i t\omega)| dt = \int |f(t)| dt$$

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is **bounded**: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

Proof.

$$\begin{split} \widehat{f}(\omega+\delta) - \widehat{f}(\omega)| &= |\int f(t)[e^{-2\pi i t(\omega+\delta)} - e^{-2\pi i t\omega}] \, \mathrm{d}t| \\ &= |\int f(t)e^{-\pi i t(2\omega+\delta)}[e^{-\pi i t\delta} - e^{\pi i t\delta}] \, \mathrm{d}t \\ &\leq \int |f(t)| \, |2\sin(\pi t\delta)| \, \mathrm{d}t \\ &\leq \int_{-T}^{T} |f(t)| \, |2\sin(\pi t\delta)| \, \mathrm{d}t + \frac{1}{2}\varepsilon \leq \varepsilon \end{split}$$

Here T>0 is selected st $\int_{|t|>T} |f(t)| \, \mathrm{d}t < \frac{1}{2}\varepsilon$, and subsequently, $\delta>0$ is selected st $2|\sin(\pi t\delta)| \leq \varepsilon/(2\|f\|_1)$ all $t\in[-T,T]$.

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \widehat{f} vanishes at ∞ : $\widehat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

$$f: \mathbb{R} \to \mathbb{C} \quad \text{st} \quad ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \widehat{f} vanishes at ∞ : $\widehat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

Proof. Select an $\varepsilon > 0$. Is there an $\Omega > 0$ st $|\widehat{f}(\omega)| \le \varepsilon$ all $|\omega| \ge \Omega$?

$$|\widehat{f}(\omega)| \le |\widehat{(f-g)}(\omega)| + |\widehat{g}(\omega)| \le ||f-g||_1 + |\widehat{g}(\omega)| \quad (g \in L^1(\mathbb{R})).$$

Select $g \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ st $||f - g||_1 \leq \frac{1}{2}\varepsilon$ and g(t) = 0 if $|t| \geq T$.

If the claim is correct for g, then $\exists \Omega > 0$ st $|\widehat{g}(\omega)| \leq \frac{1}{2}\varepsilon$ if $|\omega| \geq \Omega$ and $|\widehat{f}(\omega)| \leq \varepsilon$ if $|\omega| \geq \Omega$, which completes the proof.

Therefore, to prove claim, assume $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$, f(t) = 0 if $|t| \geq T$.

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \widehat{f} vanishes at ∞ : $\widehat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

Proof. $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ st f(t) = 0 if $|t| \geq T$.

$$\widehat{f}(\omega) = -\int f(t + \frac{1}{2\omega})e^{-2\pi it\omega} \, \mathrm{d}t \qquad (t \to t + \frac{1}{2\omega}, \quad e^{-\pi i} = -1)$$

$$\widehat{f}(\omega) = \frac{1}{2}[\widehat{f}(\omega) + \widehat{f}(\omega)] = \int \frac{1}{2} \left[f(t) - f(t + \frac{1}{2\omega}) \right] e^{-2\pi it\omega} \, \mathrm{d}t$$

$$|\widehat{f}(\omega)| \le \frac{1}{2} \int \left| f(t) - f(t + \frac{1}{2\omega}) \right| \, \mathrm{d}t$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$
$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \widehat{f} vanishes at ∞ : $\widehat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

Proof.
$$f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$$
 st $f(t) = 0$ if $|t| \geq T$. For $|\omega| > 1$,

$$|\widehat{f}(\omega)| \le \frac{1}{2} \int \left| f(t) - f(t + \frac{1}{2\omega}) \right| dt = \frac{1}{2} \int_{-T-1}^{T+1} \left| f(t) - f(t + \frac{1}{2\omega}) \right| dt$$

Since f is uniformly continuous, $\exists \Omega > 0$ st $\forall |\omega| \geq \Omega$,

$$\sup_{|t| \le T+1} \left| f(t) - f(t + \frac{1}{2\omega}) \right| \le \frac{\varepsilon}{2T+2}.$$

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

- \widehat{f} is bounded: $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- \widehat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \widehat{f} vanishes at ∞ : $\widehat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

$$L^1(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C} \mid ||f||_1 < \infty \}, \text{ norm } ||\cdot||_1$$

 $C_\infty(\mathbb{R}) = \{ g \in C(\mathbb{R}) \mid g \text{ vanishes at } \infty \}, \text{ norm } ||\cdot||_\infty.$

$$f \in L^1(\mathbb{R}) \ \Rightarrow \widehat{f} \in C_\infty(\mathbb{R}) \quad \text{ and } \quad \|\widehat{f}\|_\infty \leq \|f\|_1$$

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

$$\widehat{f}'(\omega) = 2\pi i \omega \widehat{f}(\omega) \qquad (\omega \in \mathbb{R})$$

Proof. Integrate by parts.

$$\widehat{f}'(\omega) = 2\pi i \omega \widehat{f}(\omega) \qquad (\omega \in \mathbb{R})$$

Theorem. If $f, tf \in L^1(\mathbb{R})$ then $\widehat{f} \in C^{(1)}(\mathbb{R})$ and

$$\widehat{f}^{(1)}(\omega) = -2\pi i \widehat{(tf)}(\omega) \qquad (\omega \in \mathbb{R})$$

Proof. If $tf \in L^1(\mathbb{R})$ then

$$\frac{\mathrm{d}}{\mathrm{d}\omega}\widehat{f}(\omega) = \frac{\mathrm{d}}{\mathrm{d}\omega} \int f(t) \, e^{-2\pi i t \omega} \, \mathrm{d}t = \int f(t) \, \frac{\partial}{\partial\omega} e^{-2\pi i t \omega} \, \mathrm{d}t.$$

$$\widehat{f}'(\omega) = 2\pi i \omega \widehat{f}(\omega) \qquad (\omega \in \mathbb{R})$$

Theorem. If $f, tf \in L^1(\mathbb{R})$ then $\widehat{f} \in C^{(1)}(\mathbb{R})$ and $\widehat{f}^{(1)}(\omega) = -2\pi i (\widehat{tf})(\omega)$ $(\omega \in \mathbb{R})$

support f is **bounded** by T if f(t) = 0 all |t| > T.

Corollary. $f \in L^1(\mathbb{R})$ with support bounded by T, then

$$\hat{f} \in C^{(\infty)}(\mathbb{R}), \quad \|\hat{f}^{(n)}\|_{\infty} \le (2\pi T)^n \|f\|_1 \quad (n \in \mathbb{N}_0)$$

$$\widehat{f}'(\omega) = 2\pi i \omega \widehat{f}(\omega) \qquad (\omega \in \mathbb{R})$$

Theorem. If $f, tf \in L^1(\mathbb{R})$ then $\widehat{f} \in C^{(1)}(\mathbb{R})$ and $\widehat{f}^{(1)}(\omega) = -2\pi i \widehat{(tf)}(\omega)$ $(\omega \in \mathbb{R})$

support f is **bounded** by T if f(t) = 0 all |t| > T.

Corollary. $f \in L^1(\mathbb{R})$ with support bounded by T, then

$$\hat{f} \in C^{(\infty)}(\mathbb{R}), \quad \|\hat{f}^{(n)}\|_{\infty} \le (2\pi T)^n \|f\|_1 \quad (n \in \mathbb{N}_0)$$

Proof. $t^n f \in L^1(\mathbb{R})$. Apply the last theorem inductively.

Corollary. $f \in L^1(\mathbb{R})$ with support bounded by T, then \widehat{f} is analytic on \mathbb{R} , i.e., $\widehat{f} \in C^{(\infty)}(\mathbb{R})$ and

$$\widehat{f}(\omega) = \sum_{k=0}^{\infty} \frac{\omega^k}{k!} \widehat{f}^{(k)}(0) \quad (\omega \in \mathbb{R}).$$

To be precise, with (Taylor's theorem on Taylor series)

$$\widehat{f}(\omega) = \sum_{k=0}^{n-1} \frac{\omega^k}{k!} \widehat{f}^{(k)}(0) + \frac{\omega^n}{n!} \widehat{f}^{(n)}(\xi)$$

for some ξ in between 0 and ω , we have that

$$\left|\frac{\omega^n}{n!}\widehat{f}^{(n)}(\xi)\right| \leq \frac{(2\pi T\omega)^n}{n!} \|f\|_1 \to 0 \quad \text{if } n \to \infty.$$

Applications

- Differential equations.
- ullet Insight Smoothness f relates to decrease \widehat{f} at ∞
- New concept of derivative.

Differential equations.

See exercises.

Insight

First note that

$$f, tf, t^2f, \dots, t^nf \in L^1(\mathbb{R}) \quad \Leftrightarrow \quad (1+|t|)^nf \in L^1(\mathbb{R}).$$

Therefore,

$$(1+|t|)^n f \in L^1(\mathbb{R})$$
, then $\widehat{f} \in C^{(k)}(\mathbb{R})$ for $k=0,\ldots,n$. $f,f',\ldots,f^{(n)}\in L^1(\mathbb{R})$, then $(1+|\omega|)^n \widehat{f}$ bounded.

- 'Size' of f at ∞ determines smoothness of \hat{f} .
- Smoothness of f determines 'size' of \widehat{f} at ∞ .
- $\widehat{\cdot}$ identifies $L^2(\mathbb{R})$ with $L^2(\mathbb{R})$ (see later): 'size' of f at ∞ corresponds to smoothness of \widehat{f} .

Insight

First note that

$$f, tf, t^2f, \dots, t^nf \in L^1(\mathbb{R}) \quad \Leftrightarrow \quad (1+|t|)^nf \in L^1(\mathbb{R}).$$

Therefore,

$$(1+|t|)^n f \in L^1(\mathbb{R})$$
, then $\widehat{f} \in C^{(k)}(\mathbb{R})$ for $k=0,\ldots,n$. $f,f',\ldots,f^{(n)}\in L^1(\mathbb{R})$, then $(1+|\omega|)^n \widehat{f}$ bounded.

- ullet 'Size' of f at ∞ determines smoothness of \widehat{f} .
- Smoothness of f determines 'size' of \widehat{f} at ∞ .
- $\widehat{\cdot}$ identifies $L^2(\mathbb{R})$ with $L^2(\mathbb{R})$ (see later): 'size' of \widehat{f} at ∞ corresponds to smoothness of f.

New concept of derivative.

For the moment (see later), assume that $\hat{}$ identifies $L^2(\mathbb{R})$ with $L^2(\mathbb{R})$.

If $(1+|\omega|)^n \widehat{f} \in L^2(\mathbb{R})$ then, $\forall k=0,\ldots,n,\ \omega^k \widehat{f} \in L^2(\mathbb{R})$ and $\exists g \in L^2(\mathbb{R})$ st $\widehat{g}=(2\pi i\omega)^k \widehat{f}$. Denote $f^{(k)}\equiv g$. Consistent. If $f,\ldots,f^{(k)}\in L^1(\mathbb{R})$, then $g=f^{(k)}$.

Let $\gamma > 0$. Suppose $(1 + |\omega|)^{\gamma} \widehat{f} \in L^{2}(\mathbb{R})$. Then, $\exists g \in L^{2}(\mathbb{R})$ st $\widehat{g} = (2\pi i \omega)^{\gamma} \widehat{f}$. Denote $f^{(\gamma)} \equiv g$. $f^{(\gamma)}$ is a pseudo (or fractional) derivative of f.

$$H^{(\gamma)} \equiv \{ f \mid (1 + |\omega|)^{\gamma} \widehat{f} \in L^{2}(\mathbb{R}) \}$$

is the **Sobolev space** of order γ .

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
.

$$f:\mathbb{R}\to\mathbb{C}$$
 st $\|f\|_2\equiv\sqrt{\int |f(t)|^2\,\mathrm{d}t}<\infty$: $f\in L^2(\mathbb{R})$.

Note that $f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$.

Proof. For L > 2n, consider the restriction of f_n to [-L/2, L/2], and its L-periodic extension.

$$L\gamma_k(f_n) = \int_{-L/2}^{L/2} f_n(t) e^{-2\pi i t \frac{k}{L}} dt = \int f_n(t) e^{-2\pi i t \frac{k}{L}} dt = \widehat{f_n}(\frac{k}{L}).$$

Apply Parceval to see that

$$||f_n||_2^2 = L \frac{1}{L} \int_{-L/2}^{L/2} |f_n(t)|^2 dt = L \sum_{k=-\infty}^{\infty} \frac{1}{L^2} \left| \widehat{f_n}(\frac{k}{L}) \right|^2.$$

The limit for $L \to \infty$ exists and equals $||f_n||_2^2$.

Since \widehat{f}_n is uniformly continuous, we also have that

$$\sum_{k=-\infty}^{\infty} \frac{1}{L} \left| \widehat{f}_n(\frac{k}{L}) \right|^2 \to \int |\widehat{f}_n(\omega)|^2 d\omega = \|\widehat{f}_n\|_2^2 \quad (L \to \infty).$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that $f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$.

Along the same line (using Th.2.4.a) we have

$$f_n(t) = \int \widehat{f_n}(\omega) e^{+2\pi i t \omega} d\omega$$

in some L^2 -sense.

$$f:\mathbb{R} \to \mathbb{C} \ \ \mathrm{st} \ \ \|f\|_2 \equiv \sqrt{\int |f(t)|^2 \, \mathrm{d}t} < \infty \colon \ f \in L^2(\mathbb{R}).$$

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

Proof.

$$\|\widehat{f}_n - \widehat{f}_m\|_2 = \|f_n - f_m\|_2 \to 0 \quad (n > m \to \infty).$$

$$f: \mathbb{R} \to \mathbb{C} \text{ st } ||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty: f \in L^2(\mathbb{R}).$$

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Proof.
$$\|\widehat{f}_n - \widehat{f}\|_{\infty} \le \|f_n - f\|_1 \to 0$$
 if $n \to \infty$ implies $\|g - \widehat{f}\|_2 = 0$.

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that $f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$ & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition. $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$.

Proof. $\|\widehat{f}_n - \widehat{f}\|_{\infty} \le \|f_n - f\|_1 \to 0$ if $n \to \infty$ implies $\|g - \widehat{f}\|_2 = 0$:

to be more precise, with $\|h\|_{2,T} \equiv \sqrt{\int_{-T}^T |h(\omega)|^2 \,\mathrm{d}\omega}$,

$$||g - \widehat{f}||_{2,T} \leq ||g - \widehat{f}_n||_{2,T} + ||\widehat{f}_n - \widehat{f}||_{2,T}$$

$$\leq ||g - \widehat{f}_n||_2 + \sqrt{2T} ||\widehat{f}_n - \widehat{f}||_{\infty}$$

$$\leq ||g - \widehat{f}_n||_2 + \sqrt{2T} ||f_n - f||_1.$$

For $n \to \infty$, this shows that $\|g - \widehat{f}\|_{2,T} = 0$ for all T > 0. Therefore,

$$||g - \widehat{f}||_2 = \lim_{T \to \infty} ||g - \widehat{f}||_{2,T} = 0.$$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Definition.
$$\widehat{f} \equiv g$$
. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Definition.
$$\widehat{f} \equiv g$$
. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

Proof.
$$\|\widehat{f}\|_2 = \|g\|_2 = \lim \|\widehat{f}_n\|_2 = \lim \|f_n\|_2 = \|f\|_2$$
.

$$f:\mathbb{R}\to\mathbb{C}$$
 st $\|f\|_2\equiv\sqrt{\int |f(t)|^2\,\mathrm{d}t}<\infty$: $f\in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Definition.
$$\widehat{f} \equiv g$$
. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

Corollary.
$$(f,g)=(\widehat{f},\widehat{g})$$
 $(f,g\in L^2(\mathbb{R})).$

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$ & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition. $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$.

Definition. $\widehat{f} \equiv g$. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

Note. If (f_n) in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ converges to f in $L^2(\mathbb{R})$, then $(\widehat{f_n})$ converges to g in $L^2(\mathbb{R})$: in other words, definition \widehat{f} independent of selected approx. in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that $f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$ & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition. $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$.

Definition. $\widehat{f} \equiv g$. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

Note. Usually

$$\widehat{f}(\omega) = \lim_{\Omega \to \infty} \int_{-\Omega}^{\Omega} f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad \text{ for almost all } \omega \in \mathbb{R}.$$

Therefore,

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Definition.
$$\widehat{f} \equiv g$$
. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

For $f \in L^2(\mathbb{R})$, we also put $\widehat{f}(\omega) = \int f(t)e^{-2\pi it\omega} d\omega$ (for ease of notation).

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that
$$f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$
 $(n \in \mathbb{N})$.

Lemma.
$$||f_n||_2 = ||\widehat{f_n}||_2$$
 & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition.
$$f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow g = \hat{f}$$
.

Definition.
$$\widehat{f} \equiv g$$
. **Plancherel.** $\|\widehat{f}\|_2 = \|f\|_2$.

For
$$f \in L^2(\mathbb{R})$$
, we also put $\widehat{f}(\omega) = \int f(t)e^{-2\pi it\omega} d\omega$.

Theorem.
$$f \in L^2(\mathbb{R})$$
 then $\|\widehat{f}\|_2 = \|f\|_2$, and

$$\widehat{f}(\omega) = \int f(t)e^{-2\pi it\omega} d\omega, \quad f(t) = \int \widehat{f}(\omega) e^{+2\pi it\omega} d\omega.$$

Interpretation. $f(t) = \int \hat{f}(\omega) e^{2\pi i t \omega} d\omega$:

f is a superposition of harmonic oscillations:

$$\widehat{f}(\omega) = |\widehat{f}(\omega)| e^{2\pi i \phi(\omega)}$$
,

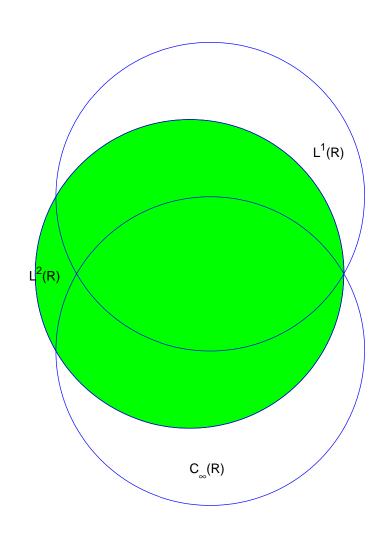
 $|\widehat{f}(\omega)|$ is the **amplitude** of the oscillation with **frequency** ω ,

 $\phi(\omega)$ is the **phase**.

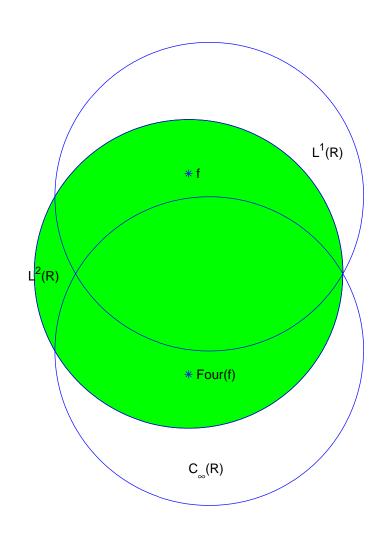
De Fourier transform \hat{f} is also denoted by $\mathcal{F}(f)$:

(Plancherel:) \mathcal{F} is a linear operator and a norm preserving bijection from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$.

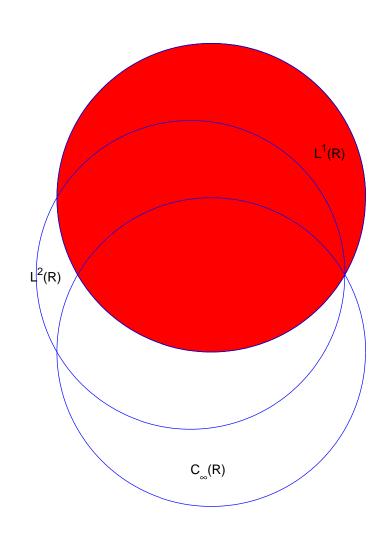
$$L^1(\mathbb{R}) \stackrel{\widehat{}}{ o} C_\infty(\mathbb{R}), \qquad \|\widehat{f}\|_\infty \leq \|f\|_1, \quad \text{not surjective}$$
 $L^2(\mathbb{R}) \stackrel{\widehat{}}{ o} L^2(\mathbb{R}), \qquad \|\widehat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$



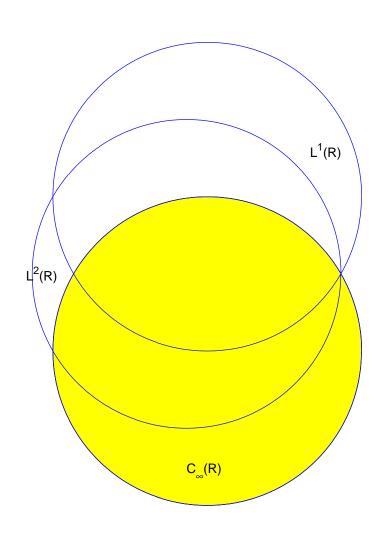
$$L^1(\mathbb{R}) \xrightarrow{\hat{}} C_{\infty}(\mathbb{R}), \quad \|\hat{f}\|_{\infty} \leq \|f\|_1, \quad \text{not surjective}$$
 $L^2(\mathbb{R}) \xrightarrow{\hat{}} L^2(\mathbb{R}), \quad \|\hat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$



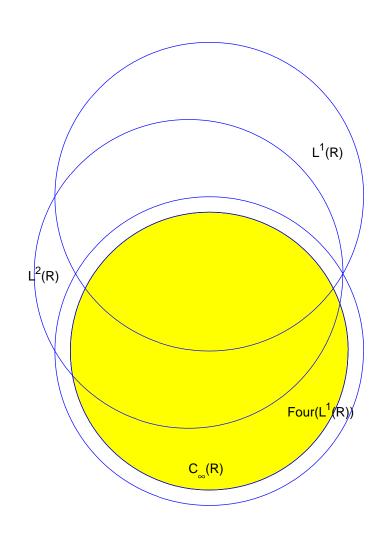
$$L^1(\mathbb{R}) \xrightarrow{\hat{}} C_{\infty}(\mathbb{R}), \quad \|\hat{f}\|_{\infty} \leq \|f\|_1, \quad \text{not surjective}$$
 $L^2(\mathbb{R}) \xrightarrow{\hat{}} L^2(\mathbb{R}), \quad \|\hat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$



$$L^1(\mathbb{R}) \xrightarrow{\hat{}} C_{\infty}(\mathbb{R}), \quad \|\hat{f}\|_{\infty} \leq \|f\|_1, \quad \text{not surjective}$$
 $L^2(\mathbb{R}) \xrightarrow{\hat{}} L^2(\mathbb{R}), \quad \|\hat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$



$$L^1(\mathbb{R}) \xrightarrow{\hat{}} C_{\infty}(\mathbb{R}), \quad \|\hat{f}\|_{\infty} \leq \|f\|_1, \quad \text{not surjective}$$
 $L^2(\mathbb{R}) \xrightarrow{\hat{}} L^2(\mathbb{R}), \quad \|\hat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$



Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

Interpretation.
$$f(t) = \int \widehat{f}(\omega) e^{2\pi i t \omega} d\omega$$
:

f is a superposition of harmonic oscillations:

with
$$\widehat{f}(\omega) = |\widehat{f}(\omega)| e^{2\pi i t \phi(\omega)}$$
,

 $|\widehat{f}(\omega)|$ is the **amplitude** of the oscillation with **frequency** ω , $\phi(\omega)$ is the **phase**.

Let $\nu \in \mathbb{R}$ be a frequency. Can the function ϕ_{ν} , with

$$\phi_{\nu}(t) \equiv e^{2\pi i t \nu} \qquad (t \in \mathbb{R})$$

be viewed as a superposition of harmonic oscilations?

The Dirac δ function

$$e^{2\pi it\nu} = \int \delta_{\nu}(\omega) \, e^{2\pi it\omega} \, d\omega \qquad (t \in \mathbb{R})$$

Here δ_{ν} is the **Dirac** δ **function** or **point measure** at ν defined by the following two properties:

$$\delta_{\nu}(\omega) = 0$$
 for all $\omega \neq \nu$ and
$$\int \delta_{\nu}(\omega) g(\omega) d\omega = g(\nu) \quad (g \in C(\mathbb{R})).$$

 δ_{ν} can be view as some **weak limit** of, e.g., $\frac{1}{2\varepsilon}\Pi_{\varepsilon}$ for $\varepsilon \to 0$. In some sense $\widehat{\phi_{\nu}} = \delta_{\nu}$ and $\phi_{\nu}(t) = \widehat{\delta_{\nu}}(-t)$.

Application of the Dirac δ **-function.**

Suppose f is $C^{(1)}$ on both $(-\infty, \tau)$ and (τ, ∞) and $f(\tau+)$ and $f(\tau-)$ exists. Then, with $\alpha \equiv f(\tau+) - f(\tau-)$,

$$f(t) = f(0) + \int_0^t \left(f'(s) + \alpha \delta_{\tau}(s) \right) ds \qquad (t \in \mathbb{R}).$$

The function $f' + \alpha \delta_{\tau}$ can be viewed as the derivative of f.

Exercise. Consider the approximate derivatives $\partial_{\Delta t} f$:

$$\partial_{\Delta t} f(t) \equiv \frac{f(t + \Delta t) - f(t - \Delta t)}{2\Delta t}.$$

Show that the behaviour for $(\partial_{\Delta t} f)$ for $\Delta t \to 0$ is consistent with the point of view that $f' + \alpha \delta_{\tau}$ is the derivative of f and the definition of δ_{τ} . Pay special attention to t's for which $\tau \in (t - \Delta t, t + \Delta t)$

Application of the Dirac δ -function.

Exercise. For $\lambda \in \mathbb{C}$, $\text{Re}(\lambda) \neq 0$,

consider the differential equation

$$f'(t) = \lambda f(t) \ (t \in \mathbb{R}, t \neq 0), \quad f(0-) = 0, f(0+) = 1$$

- Solve this eq. for an $f \in L^2(\mathbb{R})$ (if exist).
- Is the eq. equivalent to

$$f \in L^2(\mathbb{R})$$
 st $f' = \lambda f + \delta_0$

Use Fourier transform to show that

$$\widehat{f}(\omega) = \frac{1}{2\pi i\omega - \lambda} \quad (\omega \in \mathbb{R})$$

• Discuss the situation for $Re(\lambda) < 0$ and $Re(\lambda) > 0$.

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

$$f \in L^2(\mathbb{R})$$
.

Energy:

$$E \equiv \int |f(t)|^2 dt = \int |\widehat{f}(\omega)|^2 d\omega.$$

Energy center:

$$t_0 \equiv \frac{1}{E} \int t |f(t)|^2 dt, \qquad \omega_0 \equiv \frac{1}{E} \int \omega |\widehat{f}(\omega)|^2 d\omega.$$

Spread:

$$\sigma_t^2 \equiv \frac{1}{E} \int (t - t_0)^2 |f(t)|^2 dt$$
, $\sigma_\omega^2 \equiv \frac{1}{E} \int (\omega - \omega_0)^2 |\hat{f}(\omega)|^2 d\omega$.

Heisenberg uncertainty principle.

$$\sigma_t \sigma_\omega \ge \frac{1}{4\pi}.$$

$$\sigma_t \sigma_\omega = \frac{1}{4\pi} \iff f(t) = c e^{\gamma(t - t_0)^2} \ (t \in \mathbb{R})$$

Duality