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Convolution products
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f̃ ≡ f + n/δ. In picture: s = 0,

reflected signal is scaled.
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f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ L1(R), h ∈ L∞(R)

f ∈ L2(R), h ∈ L2(R) (apply Cauchy-Schwartz)



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ L1(R), h ∈ L∞(R)

f ∈ L2(R), h ∈ L2(R) (apply Cauchy-Schwartz)

Intermezzo.

f ∈ Lp(R), h ∈ Lq(R), where p, q ∈ [1,∞] s.t. 1
p + 1

q = 1

Here,

‖f‖p ≡
(∫

|f(t)|p dt

)1
p

Then

|(f, g)| ≤ ‖f‖q ‖g‖q,

‖f‖p = sup{|(f, g)| | q s.t ‖g‖q ≤ 1}
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f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Proof. Suppose p < ∞.

Consider (fn) in Lp(R)

each fn is continuous, bounded and of bounded support

such that ‖fn − f‖p → 0 if n →∞.

Then fn∗h is continuous and ‖fn∗h−f ∗h‖∞ → 0 if n →∞.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Convolution products tend to make functions smoother.

This is exploited in many applications.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Application. Narrow Gaussians,

h(x, y) =
1

δ
e
−π 1

δ2
(x2+y2)

,

are used to smooth (‘denoise’) pictures:

fdenoised = (f + n) ∗ h

(using the 2d-variant of the convolution product).

The idea here is the n ∗ h ≈ 0 if n is noise.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Application. The solution of the heat equation on a

bounded spatial domain can be expressed as the convo-

lution of a Gaussian and the initial conditions.

In 1-d, on R with constant diffusion coefficient γ: [Ex.6.14]

u(x, t) = φ ∗ ht,

where u(·,0) = φ ∈ L2(R) and

ht(x) ≡
1

2
√

γt
e
−π( x

2
√

γt
)



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Discussion. The smoothing (‘melting’) effect of spread-

ing heat (modelled by the heat equation) is exploited in

techniques to denoise pictures. The denoised picture is

obtained by solving the heat equation at time t0:

fdenoised = u(·, t0) with u(·,0) = φ = f + n

To avoid ‘blurring’ (i.e., to maintain sharp lines), the head

equation is extended with advection type of terms.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Application. With B0(x) ≡ 1 if x ∈ [0,1], B0(x) ≡ 0

elsewhere, define

Bk ≡ B0 ∗Bk−1 (k ∈ N)

[Ex.6.5]Theorem. For all k ∈ N:

• Bk ∈ C(k−1)(R)

• On [j, j + 1], Bk is a polynomial of degree k (j ∈ Z).
• Bk(x) > 0 for all x ∈ (0, k + 1)

• Bk(x) = 0 for all x 6∈ (0, k + 1).

The Bk are basis splines or Box splines of degree k.



f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Application. With B0(x) ≡ 1 if x ∈ [0,1], B0(x) ≡ 0

elsewhere, define

Bk ≡ B0 ∗Bk−1 (k ∈ N)

Shifted version Bk(· − j) (j ∈ Z) form a basis of the space

of all splines of degree ≤ k, i.e., functions f ∈ C(k−1)(R)

that are polynomials on each interval [j, j + 1].
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Notation. fs(t) ≡ f(t− s); s is a delay. fT(t) = f(−t).

Prop. f ∗ h(t) = (h, fT
t ), ‖f‖p = ‖f‖p = ‖ft‖p = ‖fT‖p.

(f ∗ h, g) = (h, fT ∗ g).
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f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Notation. fs(t) ≡ f(t− s); s is a delay. fT(t) = f(−t).

Prop. f ∗ h(t) = (h, fT
t ), ‖f‖p = ‖f‖p = ‖ft‖p = ‖fT‖p.

(f ∗ h, g) = (h, fT ∗ g).

f ∈Lp, h∈L1. Taking the sup over all g∈Lq, ‖g‖q ≤ 1,

‖f ∗ h‖p = sup |(f ∗ h, g)| = sup |(h, fT ∗ g)|
≤ sup ‖h‖1 ‖fT ∗ g‖∞
≤ sup ‖h‖1 ‖fT‖p ‖g‖q = ‖h‖1 ‖f‖p
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Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Notation. fs(t) ≡ f(t− s); s is a delay. fT(t) = f(−t).

Prop. f ∗ h(t) = (h, fT
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f ∗ h(t) =
∫ +∞
−∞

f(t− s)h(s) ds

Well-defined if f ∈ Lp(R), h ∈ Lq(R) (p, q ∈ [1,∞], 1
p + 1

q = 1)

Then ‖f ∗h‖∞ ≤ ‖f‖p ‖h‖q and f ∗h is uniformly continuous.

Notation. fs(t) ≡ f(t− s); s is a delay. fT(t) = f(−t).

Prop. f ∗ h(t) = (h, fT
t ), ‖f‖p = ‖f‖p = ‖ft‖p = ‖fT‖p.

(f ∗ h, g) = (h, fT ∗ g).

f ∈Lp, h∈L1. Then ‖f ∗ h‖p ≤ ‖h‖1 ‖f‖p.
Proof. Correct if f ∈ Lp(R) ∩ L∞(R).

If f ∈ Lp, define fn(t) ≡ f(t) if |f(t)| < n and |t| < n and

fn(t) ≡ 0 elsewhere.

Then, ‖fn − f‖p → 0, fn ∈ Lp(R) ∩ L∞(R), and ‖fn ∗ h− fm ∗ h‖p → 0.

Hence, limit exist in Lp(R): f ∗ h ≡ limn→∞ fn ∗ h.



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ

Proof. (sketch)

̂f ∗ h(ω) =
∫

f ∗ h(t) e−2πiωt dt

=
∫ ∫

f(t− s)h(s) e−2πitω dtds

=
∫ ∫

f(t− s)h(s) e−2πi(t−s)ω e−2πisω dtds

=
∫ (∫

f(t− s) e−2πi(t−s)ω dt
)

h(s) e−2πisω ds

=
∫

f̂(ω)h(s) e−2πisω ds

= f̂(ω) ĥ(ω)



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ

Application. In some applications a known (learning) sig-

nal f is transmitted, the signal f ∗h with unknown ‘blurring’

function h is received.

In other applications, the blurring function h is known and

f ∗ h is received with f some unknown signal.

In both examples, a signal, say f has to be reconstructed

from a received (known) signal f ∗ h with h known.



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ

Application. h and f ∗ h are known. Construct f .

Solution. In principle

f̂ =
̂f ∗ h

ĥ
.

Discussion. The received signal f ∗ h (and h?) will be

affected by noise: received f ∗ h + n. On average, the

noise n will have (equally large) components in all frequen-

cies, while h will be concentrated in a frequency interval J

around a certain frequency ω0: J ≡ {ω | | |ω| − |ω0| | < δ}.
If ω 6∈ J, then ĥ(ω) = 0. Therefore, the above approach is

unstable.



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ

Application. h and f ∗ h are known. Construct f .

Solution. In principle

f̂ =
̂f ∗ h

ĥ
.

Discussion. The received signal f ∗ h (and h?) will be

affected by noise: received f ∗ h + n.

Remedy. Use a filter (see next lecture) to remove fre-

quencies in f ∗ h + n outside J



Theorem. f, h ∈ L1(R) ∪ L2(R). Then

(̂f ∗ h) = f̂ · ĥ

Application. h and f ∗ h are known. Construct f .

Solution. In principle

f̂ =
̂f ∗ h

ĥ
.

Discussion. The received signal f ∗ h (and h?) will be

affected by noise: received f ∗ h + n.

Remedy. (Tikhonov) Regularise: for some appropriate

regularisation parameter τ (which one?)

f r ≡ arming

(
‖g ∗ h− [f ∗ h + n] ‖22 + τ‖g‖22

)

(and combine with filtering).



Program

• Convolution products

• Correlation

• Radar



Application.

(h, ft) =
∫

f(s− t)h(s) ds = fT ∗ h(t)

The map f ¯ h(t) ≡ (h, ft)

is called the correlation product of f and h:

it tests how much h is correlated to a shifted variant of f .

Note that the correlation product is the adjoint of the

convolution product:

(f ∗ g, h) = (g, fT ∗ h).



Application.

(h, ft) =
∫

f(s− t)h(s) ds = fT ∗ h(t)

The map f ¯ h(t) ≡ (h, ft)

is called the correlation product of f and h:

it tests how much h is correlated to a shifted variant of f .

Note that the correlation product is the adjoint of the

convolution product:

(f ∗ g, h) = (g, fT ∗ h).

Wiener-Khintchini Theorem.

(f ¯ h)̂ = ĥ f̂ , (f ¯ f)̂ = |f̂ |2.
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Auto correlation function t Ã (f, ft) for f .
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Application: Radar



Radar
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The radar signal f is a short sine pulse.



Radar
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δfs + n: the reflected signal arrives with delay s.

Radar: find s.
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δfs + n: the reflected signal is weakened by δ.

the reflected signal is polluted by noise n.
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f̃ ≡ f + n/δ. In picture: s = 0,

reflected signal is scaled.
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Auto correlation function t Ã (f, ft) for f .
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Polluted signal tested against the pure signal: t Ã (f̃ , ft)



Radar
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Radar signal f is a chirp.



Radar
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f̃ ≡ f + n/δ



Radar
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t Ã (f̃ , ft)


