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Convolution products

Graph of f="sin(5*2*pi*t).*(abs(t)<1)’
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f=f+n/d. In picture: s=0,
reflected signal is scaled.
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e Convolution products



Fah(t) = /—;Oof(t — $)h(s)ds

Well-defined if f e L1(R),h € L®(R)
f e L?(R),h € L?(R) (apply Cauchy-Schwartz)
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Intermezzo.
f e LP(R),h € LY(R), where p,q € [1,00] s.t. %+ % =1

I171p= ([ 17 at)

1CF 9] < I fllq llgllq,

1fllp = sup{|(f,9)| | g s-t llgllg < 1}

Here,
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Fah(t) = /—::Of(t — s)h(s) ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Proof. Suppose p < oo.

Consider (fr) in LP(R)
each f, is continuous, bounded and of bounded support
such that ||fn — fllp — 0 if n — oo.

Then fypxh is continuous and ||fn*h— f*xh|lco — 0 if n — oo.



Fah(t) = /t:o £t — $)h(s) ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Convolution products tend to make functions smoother.
This is exploited in many applications.



Fah(t) = /__::Of(t _ $)h(s)ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Application. Narrow Gaussians,

1 _.~1¢.2,,2
h(zy) = e TR,
are used to smooth (‘denoise’) pictures:

fdenoised = (f + n) * h
(using the 2d-variant of the convolution product).

The idea here is the nx h ~ 0 if n is noise.



Fah(t) = /—;Oof(t — $)h(s)ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Application. The solution of the heat equation on a
bounded spatial domain can be expressed as the convo-
lution of a Gaussian and the initial conditions.

In 1-d, on R with constant diffusion coefficient ~:

’U,(.CU,t) — qb * hta
where u(-,0) = ¢ € L2(R) and
ht<:13) p— 1 e_W(QL\/%)

2/t



Fah(t) = /—::Of(t — s)h(s) ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Discussion. The smoothing (‘melting’) effect of spread-
ing heat (modelled by the heat equation) is exploited in
techniques to denoise pictures. The denoised picture is
obtained by solving the heat equation at time tg:

fdenoised — ’LL(',tO) with ’U,(', O) — ¢ — f _I_ n

To avoid ‘blurring’ (i.e., to maintain sharp lines), the head
equation is extended with advection type of terms.



£ h(t) = /—;Oof(t — $)h(s)ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Application. With Bg(z) = 1 if x € [0,1], Bg(x) = O
elsewhere, define

By, = Bo * B, (k € N)

Theorem. For all £ € N:

e B, € Ch—1)(R)

e On [j,7 + 1], By is a polynomial of degree k (j € Z).
e Bip(x) >0 forall z € (0,k+ 1)

e Bp.(x) =0 for all x € (0,k+ 1).

The B are basis splines or Box splines of degree k.



Fah(t) = /_::Of(t _ $)h(s)ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Application. With Bg(z) = 1 if x € [0,1], Bg(x) = O
elsewhere, define
By, = Bo * B, (k € N)

Shifted version Bi(- —j) (j € Z) form a basis of the space
of all splines of degree < k, i.e., functions f € C(k—1)(R)
that are polynomials on each interval [4,5 + 1].



Fah(t) = /_—::Of(t — s)h(s) ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Notation. fs(t) = f(t —s); sis a delay. fT(t) = f(—t).
Prop. f+h(t) = (h, f'),  Ifllp = Ifllp = fellp = 11F T lp.
(f xh,g) = (h, f xg).



+o0
5 h(t) =/OO F(t — s)h(s) ds
Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Notation. fs(t) = f(t —s); sis a delay. fT(t) = f(—t).
Prop. fxh(t) = (hf),  Ifllp=Ifllp = Ifellp =115 lp.

(f xh,g) = (h, f xg).
feLP heLl. Taking the sup over all ge L4,

1 * Rllp

gl < 1,

sup |[(f xh,g)| =sup|(h, fT *g)]
sup |[fl1 [1f " * glloo
sup [l [1f " lp llgllg = RN 1 fllp

IA N
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Fah(t) = /—::Of(t — s)h(s) ds

Well-defined if f € LP(R),h € LI(R) (p,q € [1, 0], %+% =1)

Then ||fxh|lco < ||fllpllkllg @and fxh is uniformly continuous.

Notation. fs(t) = f(t —s); sis a delay. fT(t) = f(—t).
Prop. fxh(t) = (hf),  Ifllp=Ifllp = Ifellp =115 lp.

(f*xh,g) = (h, f' *g).
feLP,heLl. Then | fxh|p<|hll1lflp

Proof. Correct if f e LP(R) N L*(R).
If f e LP, define f,(t) = f(¢t) if |f(t)| <n and |t| <n and
fn(t) = 0 elsewhere.
Then, ||fn— fllp — 0, fn€ LP(R)NL*®(R), and ||fn*h — fm * k||, — O.
Hence, limit exist in LP(R): f*xh =1imy_co fn * h.
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Theorem. f,h e L1(R) U L2(R). Then

(fxhy=F-h

Proof. (sketch)

faxh(w) = [fxh(t)e 2wt qy
[ f(t—3s)h(s) e~ 2Titw qt ds
[[f{t—s)h(s) e 2mi(t—5)w o—2misw q¢ (5
= | (f f(t—s) e—2mi(t—s)w dt) h(s) e 2msW dg
[ f(w) h(s) e 2misw dg
= f(w)h(w)



Theorem. f,h e L1(R) U L2(R). Then

(fxhy=F-h

Application. In some applications a known (learning) sig-
nal f is transmitted, the signal fxh with unknown ‘blurring’
function h is received.

In other applications, the blurring function h is known and
f * h is received with f some unknown signal.

In both examples, a signal, say f has to be reconstructed
from a received (known) signal f = h with h known.



Theorem. f,h e L1(R) U L2(R). Then

(fxhy=F-h

Application. h and f x h are known. Construct f.

Solution. In principle

—

F=lxh
h

Discussion. The received signal f xh (and h?) will be
affected by noise: received f x h + n. On average, the
noise n will have (equally large) components in all frequen-
cies, while h will be concentrated in a frequency interval J
around a certain frequency wqg: J = {w | ||w| — |wo|| < §}.
If w¢g J, then E(w) — 0. Therefore, the above approach is

unstable.




Theorem. f,h e L1(R) U L2(R). Then

(fxhy=F-h

Application. h and f x h are known. Construct f.

Solution. In principle

—

~  fxh
f="—=—.
h
Discussion. The received signal f xh (and h?) will be

affected by noise: received f x h 4+ n.

Remedy. Use a filter (see next lecture) to remove fre-
quencies in f x h 4+ n outside J



Theorem. f,h e L1(R) U L2(R). Then

(Fxh)y=Fh

Application. h and f x h are known. Construct f.

Solution. In principle

—

~  fxh
f="—=—.
h
Discussion. The received signal f xh (and h?) will be

affected by noise: received f x h 4+ n.

Remedy. (Tikhonov) Regularise: for some appropriate
regularisation parameter v (which one?)

fr=arming (g *h —[f *h+n] |13 + llgl3)

(and combine with filtering).



e Correlation



Application.

(hyf) = [ FGs=Dh(s)ds = [T +h(®)

The map f© h(t) = (h, fi)
is called the correlation product of f and h:

it tests how much h is correlated to a shifted variant of f.

Note that the correlation product is the adjoint of the
convolution product:

(fxg,h) = (g, f" *h).



Application.

(hyf) = [ FGs=Dh(s)ds = [T +h(®)

The map f© h(t) = (h, fi)
is called the correlation product of f and h:

it tests how much h is correlated to a shifted variant of f.

Note that the correlation product is the adjoint of the
convolution product:

(fxg,h) = (g, f" *h).

Wiener-Khintchini Theorem.

(fOhy =hF, (fo ) =If>
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Auto correlation function ¢ ~ (f, f¢) for f.



e Radar



Application: Radar



Radar

Graph of f="sin(5*2*pi*t).*(abs(t)<1)’
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The radar signal f is a short sine pulse.



Radar

Graph of f="sin(5*2*pi*t).*(abs(t)<1)’
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dfs + n: the reflected signal arrives with delay s.
Radar: find s.



Radar

Graph of f="sin(5*2*pi*t).*(abs(t)<1)’

-6 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

dfs + n: the reflected signal is weakened by 9.

the reflected signal is polluted by noise n.



Radar

Graph of f="sin(5*2*pi*t).*(abs(t)<1)’
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f=f+n/d. In picture: s=0,
reflected signal is scaled.



Radar
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Auto correlation function ¢t ~ (f, f;) for f.



Radar
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Polluted signal tested against the pure signal. t ~» (f, ft)



Radar

Graph of f="sin(5*pi*(1+5*abs(t)).*t).*(abs(t)<1)’
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Radar signal f is a chirp.
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Auto correlation function ¢t ~ (f, ft) of the chirp.
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