
Scientific Computing, Utrecht, March 24, 2014

Fourier Transforms

Wavelets

Theory and Applications

Gerard Sleijpen Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/



Computing Fourier Transforms
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Fourier coefficients

Let f : R→ C be T -periodic and sufficiently smooth.

γk(f) =
1

T

∫ T

0
f(t) e−2πit k

T dt, f(t) =
∑

k∈Z
γk(f) e2πit k

T

Suppose f is sampled at tn with tn ≡ n∆t and ∆t ≡ T
N .

• 1/∆t is the sample frequency,

• fn ≡ f(tn) are the sampled function values.

We approximate γk with a Riemann integral using the sam-

pled fucntion values.
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Fourier coefficients

Let f : R→ C be T -periodic and sufficiently smooth.

γk(f) =
1

T

∫ T

0
f(t) e−2πit k

T dt, f(t) =
∑

k∈Z
γk(f) e2πit k

T

Suppose f is sampled at tn with tn ≡ n∆t and ∆t ≡ T
N .

γ̃k ≡
∆t

T

N−1∑

n=0

f(tn) e−2πitn
k
T =

1

N

N−1∑

n=0

fne−2πink
N

Note. The harmonic oscillations

t Ã e2πit k
T and t Ã e2πitk+N

T

coincide at the sample points tn.

The second oscillation is an alias of the first.

This phenomenon of aliasing has many consequences in

discretised Fourier series.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



Fourier coefficients
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γ̃k = γ̃k+jN (k, j ∈ Z).



Fourier coefficients

Let f : R→ C be T -periodic and sufficiently smooth.

γk(f) =
1

T

∫ T

0
f(t) e−2πit k

T dt, f(t) =
∑

k∈Z
γk(f) e2πit k

T

Suppose f is sampled at tn with tn ≡ n∆t and ∆t ≡ T
N .

γ̃k ≡
∆t

T

N−1∑

n=0

f(tn) e−2πitn
k
T =

1

N

N−1∑

n=0

fne−2πink
N

γ̃k = γ̃k+jN (k, j ∈ Z).

fn =
∑

k∈Z
µk e2πink

N , where µk ≡
∑

j∈Z
γk+jN(f).



Fourier coefficients

Let f : R→ C be T -periodic and sufficiently smooth.

γk(f) =
1

T

∫ T

0
f(t) e−2πit k

T dt, f(t) =
∑

k∈Z
γk(f) e2πit k

T

Suppose f is sampled at tn with tn ≡ n∆t and ∆t ≡ T
N .

γ̃k ≡
∆t

T

N−1∑

n=0

f(tn) e−2πitn
k
T =

1

N

N−1∑

n=0

fne−2πink
N

γ̃k = γ̃k+jN (k, j ∈ Z).

fn =
∑

k∈Z
µk e2πink

N , where µk ≡
∑

j∈Z
γk+jN(f).

Theorem. γ̃k = µk = γk(f) +
∑

j 6=0

γk+jN(f).

Proof. Apply next theorem.
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Discrete Fourier Transform

Theorem. Let (f0, f1, . . . , fN−1) be a sequence of complex

numbers. Define the sequence (γ̃0, . . . , γ̃N−1) by

γ̃k ≡
1

N

N−1∑

n=0

fn e−2πink
N (k = 0, . . . , N − 1).

Then fn =
N−1∑

k=0

γ̃k e2πikn
N (n = 0, . . . , N − 1).



Discrete Fourier Transform

Theorem. Let (f0, f1, . . . , fN−1) be a sequence of complex

numbers. Define the sequence (γ̃0, . . . , γ̃N−1) by

γ̃k ≡
1

N

N−1∑

n=0

fn e−2πink
N (k = 0, . . . , N − 1).

Then fn =
N−1∑

k=0

γ̃k e2πikn
N (n = 0, . . . , N − 1).

Note. Except for the minus-sign in the exponential and

the scaling 1
N in the definition of the γ̃k, the formulae are

the same. Some text books scale both formulae with 1√
N

.

The sequence (γ̃k) is the Discrete Fourier Transform of

the sequence (fn). The theorem gives the inverse DFT.



Discrete Fourier Transform

Theorem. γ̃k ≡
1

N
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fn e−2πink
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Proof. Let `(N) be the space of sequences f ≡ (f0, . . . , fN−1)

of N complex numbers with inner product

<f,g>≡ 1

N

N−1∑

n=0

fn gn (f,g ∈ `(N)).

For each k = 0, . . . , N − 1, consider

φk(n) ≡ e2πikn
N (n = 0, . . . , N − 1).

The collection of φk forms an orthonormal basis of `(N).
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Note −N < k −m < N . Hence, if k −m 6= 0, then ζ 6= 1.
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Discrete Fourier Transform

Theorem. γ̃k ≡
1

N

N−1∑
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Proof. Let `(N) be the space of sequences f ≡ (f0, . . . , fN−1)
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This proves orthonormality of the φk, i.p., linear independence.

A dimension argument (dim(`(N)) = N) shows that the φk form a
basis.



Discrete Fourier Transform

Theorem. γ̃k ≡
1

N

N−1∑

n=0

fn e−2πink
N ⇒ fn =

N−1∑

k=0

γ̃k e2πikn
N .

Proof. Let `(N) be the space of sequences f ≡ (f0, . . . , fN−1)

of N complex numbers with inner product

<f,g>≡ 1

N

N−1∑

n=0

fn gn (f,g ∈ `(N)).

For each k = 0, . . . , N − 1, consider

φk(n) ≡ e2πikn
N (n = 0, . . . , N − 1).

The collection of φk forms an orthonormal basis of `(N).

In particular, f =
N−1∑

k=0

<f, φk > φk

The def. of the inner product reveals that γ̃k =<f, φk >.



Discrete Fourier Transform

Theorem. γ̃k ≡
1

N

N−1∑

n=0

fn e−2πink
N ⇒ fn =

N−1∑

k=0

γ̃k e2πikn
N .

Exercise. For γ̃ ≡ (γ̃0, . . . , γ̃N−1) ∈ `(N), put

F(γ̃)n ≡ FN(γ̃)n ≡ fn ≡
N−1∑

k=0

γ̃k e2πink
N (k ∈ Z).

With f ≡ (f0, . . . , fN−1), prove that

γ̃k = 1
N F(f)N−k (k = 0, . . . , N − 1).

Note that the DFT FN produces N-periodic sequences.

Conclusion. The inverse DFT can easily be obtained

from the DFT and visa versa.
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Discrete Cosine Transform

The DFT requires complex arithmetic.

Moreover, as we know form Fourier series, the series con-

verge slowly if the periodic function is discontinuous.

Any function f on a bounded interval, say, [0, T ] can be

extended to a T -periodic function. The obvious extension

f(t) ≡ f(t− jT ) (t ∈ R, j ∈ Z),
may lead to a discontinuous function on R (if f(0) 6= f(T ))

with slowly decreasing Fourier coefficients γk(f).

With the even extension first

f(t) ≡ f(−t), f(t) ≡ f(t− 2jT ) (t ∈ R, j ∈ Z)
we have an even 2T -periodic function that is continuous

whenever f is. In particular, γk of this function are real.



Discrete Cosine Transform

Similarly, if f ∈ `(N), then complex arithmetic is avoided

and at the same time faster decreasing discrete Fourier

coefficients γ̃k are obtained by extending f first to an even

function before extending to a periodic function.

For ease of notation, we put γk instead of γ̃k.



Discrete Cosine Transform

Example. Suppose f = (f0, . . . , fN) ∈ `(N + 1).

Extend f to an function that is even (around n = N):

g ≡ (f0,f1,. . . ,fN−1,fN ,fN−1, . . . , f2, f1)

= (g0,g1,. . . ,gN−1,gN ,gN+1,. . . , g2N−2,g2N−1)

Note that the extension to a 2N-periodic function is even

also around n = 0.

The extended sequence is (. . . ,g,g,g, . . .), to which we also

shall refer to as g.



Discrete Cosine Transform

Example. Suppose f = (f0, . . . , fN) ∈ `(N + 1).

Extend f to an function that is even (around n = N):

g ≡ (f0,f1,. . . ,fN−1,fN ,fN−1, . . . , f2, f1)

= (g0,g1,. . . ,gN−1,gN ,gN+1,. . . , g2N−2,g2N−1)

The DFT of g is

γk =
1

2N

2N−1∑

n=0

gn e−2πi kn
2N

=
1

2N
[f0 + (−1)kfN ] +

1

N

N−1∑

n=1

fn cos(2πkn
N )



Discrete Cosine Transform

Example. Suppose f = (f0, . . . , fN) ∈ `(N + 1).

Extend f to an function that is even (around n = N):

g ≡ (f0,f1,. . . ,fN−1,fN ,fN−1, . . . , f2, f1)

= (g0,g1,. . . ,gN−1,gN ,gN+1,. . . , g2N−2,g2N−1)

The DFT of g is

γk =
1

2N
[f0 + (−1)kfN ] +

1

N

N−1∑

n=1

fn cos(2πkn
N )

Note that, as g, (γk) is even around k = 0 and k = N .

In particular, γk has to be computed for k = 0, . . . , N only.



Discrete Cosine Transform

Example. Suppose f = (f0, . . . , fN) ∈ `(N + 1).

Extend f to an function that is even (around n = N):

g ≡ (f0,f1,. . . ,fN−1,fN ,fN−1, . . . , f2, f1)

= (g0,g1,. . . ,gN−1,gN ,gN+1,. . . , g2N−2,g2N−1)

The DFT of g is

γk =
1

2N
[f0 + (−1)kfN ] +

1

N

N−1∑

n=1

fn cos(2πkn
N )

Note that, as g, (γk) is even around k = 0 and k = N .

Therefore, the inverse DFT, for n = 0, . . . , N , is

gn = fn = [γ0 + (−1)nγN ] + 2
N−1∑

k=1

γk cos(2πkn
N )



Discrete Cosine Transform

There are a number of ways to extend a finite sequence to

a sequence of length 2N that is even.

Example. Suppose f = (f0, . . . , fN−1) ∈ `(N).

Then the extension

g ≡ (f, fT) with fT ≡ (fN−1, fN−2, . . . , f1, f0)

leads to an 2N-periodic function g that is even around

n = −1
2 and n = N − 1

2.

This leads to the so-called DCT-II transform:

DCT-II. With φn,k ≡ cos
(
π(n + 1

2)
k
N

)
,

γk = 1
N

N−1∑

n=0

fn φn,k, fn = γ0 + 2
N−1∑

k=1

γk φn,k



Discrete Cosine Transform

There are a number of ways to extend a finite sequence to
a sequence of length 2N that is even. The first extension
that we considered (even around 0 and N) is called DCT-
I, the second (even around −1

2, N − 1
2) is DCT-II. The

DCT-II seems to be the most popular one in practice and
is often simple called the DCT.

Odd extensions lead to sines rather than cosines. However,
sinus are cosines up to some phase shift and with some sim-
ple manipulation, odd extensions also lead to transforms
involving cosines only, to the so called DCT-III and DCT-
IV. DCT-IV is the standard DCT in Matlab:

DCT-IV. With φn,k ≡ cos
(

π
N (n + 1

2)(k + 1
2)

)
,

γk = 1
N

N−1∑

n=0

fn φn,k, fn = 2
N−1∑

k=0

γk φn,k.



Discrete Cosine Transform

There are a number of ways to extend a finite sequence to

a sequence of length 2N that is even. The first extension

that we considered (even around 0 and N) is called DCT-

I, the second (even around −1
2, N − 1

2) is DCT-II. The

DCT-II seems to be the most popular one in practice and

is often simple called the DCT.

In the above DCTs, we extended to an even sequence g

of length 2N . Extension to an even sequence g of length

2N − 1 leads to DCTs of type V, VI, VII and VIII. These

DCT seem to be rarely used in practice.



Applications of DCT

• Image compression.

Goal. Compression.

2-dimensional (and 3-d) DCT-II is used with N low.

JPEG, MJPEG, MPEG use DCT-II on 8× 8 blocks

• Audio compression.

Goal. Compression and spectral information: the tech-

niques in audio compression exploit psygological facts on

how we hear combinations of harmonic oscillations, that

is, compression depends on the distribution of frequencies.

A related transform, Modified DCT, is used in

AAC, Vorbis, MP3.

• Partial Differential Equations. DCTs are used for

solving PDEs, where the variants of DCT correspond to

(slightly) different boundary conditions.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Then it is not feasible to compute

the FT. As an alternative a part (f0, . . . , fN−1) is consid-

ered. However DFT implicitly extends periodically. This

will (probably) introduce ‘jumps’ in the function, implying

slowly decreasing DFT coefficients.

Formally this argument does not apply to a discrete func-

tion, which, in some sense, has ‘jumps’ in all points tn.

But the argument does apply to a (T -periodic) function

on R And discretization carries over the properties, in some

approximate sense, to the discretized version.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Then it is not feasible to compute

the FT. As an alternative a part (f0, . . . , fN−1) is consid-

ered. However DFT implicitly extends periodically. This

will (probably) introduce ‘jumps’ in the function, implying

slowly decreasing DFT coefficients.

• The DFT coefficients may form bad approximations of

the Fourier coefficients of interest,

• The compressibility properties may seriously deteriorate.

The even extension first, as is incorporated in DCT, weak-

ens this effect. But, since the even extension, still intro-

duces ‘jumps’ in the ‘derivative’, the effect is still noticable.

The odd extension (as in DCT-IV) may need special at-

tention.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values.

‘Discontinuities’ at the ends are ‘softened’ by multiplying

with a smooth function that is zero at the ends. For in-

stance, with

S ≡ (s0, . . . , s2N−1) with sj ≡ sin2
(

π
2N (j + 1

2)
)

,

apply the DCT to

(s0f0, s1f1, . . . , s2N−1f2N−1), (s0f2N , . . . , s2N−1, f4N−1), . . . .
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Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values.

‘Discontinuities’ at the ends are ‘softened’ by multiplying

with a smooth function that is zero at the ends. For in-

stance, with

S ≡ (s0, . . . , s2N−1) with sj ≡ sin2
(

π
2N (j + 1

2)
)

,

apply the DCT to

(s0f0, s1f1, . . . , s2N−1f2N−1), (s0f2N , . . . , s2N−1, f4N−1), . . . .

To avoid loss of information, apply the DCT also to the

middle parts, to

(s0fN , s1fN+1, . . . , s2N−1f3N−1), (s0f3N , . . . , s2N−1, f5N−1), . . . .



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values.

‘Discontinuities’ at the ends are ‘softened’ by multiplying

with a smooth function that is zero at the ends. For in-

stance, with

S ≡ (s0, . . . , s2N−1) with sj ≡ sin2
(

π
2N (j + 1

2)
)

,

apply the DCT to

(s0f0, s1f1, . . . , s2N−1f2N−1), (s0f2N , . . . , s2N−1, f4N−1), . . . .

To avoid loss of information, apply the DCT also to the

middle parts, to

(s0fN , s1fN+1, . . . , s2N−1f3N−1), (s0f3N , . . . , s2N−1, f5N−1), . . . .

Note that the two sequences (when the parts are grouped
in a long sequences ) add to the original sequence: MDCT

sin2 φ + cos2 φ = 1.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values.

‘Discontinuities’ at the ends are ‘softened’ by multiplying

with a smooth function that is zero at the ends. For in-

stance, with

S ≡ (s0, . . . , s2N−1) with sj ≡ sin2
(

π
2N (j + 1

2)
)

,

apply the DCT to

(s0f0, s1f1, . . . , s2N−1f2N−1), (s0f2N , . . . , s2N−1, f4N−1), . . . .

To avoid loss of information, apply the DCT also to the

middle parts, to

(s0fN , s1fN+1, . . . , s2N−1f3N−1), (s0f3N , . . . , s2N−1, f5N−1), . . . .

Note that the two sequences (when the parts are grouped
in a long sequences ) add to the original sequence: MDCT
is designed to deal with this overlapping type of grouping.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Using sequences of length N , we summerize this as

(F1, F2) Ã Γ1, Γ1 Ã (F̃1, G̃2).

Theorem. (F̃1, G̃2) = (F1 − FT
1 , F2 + FT

2 ).

Proof. MDCT is a form of DCT-IV.



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Using sequences of length N , we summerize this as

(F1, F2) Ã Γ1, Γ1 Ã (F̃1, G̃2).

Theorem. (F̃1, G̃2) = (F1 − FT
1 , F2 + FT

2 ).

Modified DCT applies this to long sequences as

(F1, F2, F3, F4 . . . , Fk) Ã (Γ1,Γ2,Γ3, . . . ,Γk−1)

Ã (F̃1, G̃2 + F̃2, G̃3 + F̃3, G̃4 + F̃4, . . . , G̃k−1 + F̃k−1, G̃k)



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Using sequences of length N , we summerize this as

(F1, F2) Ã Γ1, Γ1 Ã (F̃1, G̃2).

Theorem. (F̃1, G̃2) = (F1 − FT
1 , F2 + FT

2 ).

Modified DCT applies this to long sequences as

(F1, F2, F3, F4 . . . , Fk) Ã (Γ1,Γ2,Γ3, . . . ,Γk−1)

Ã (F̃1, G̃2 + F̃2, G̃3 + F̃3, G̃4 + F̃4, . . . , G̃k−1 + F̃k−1, G̃k)



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Using sequences of length N , we summerize this as

(F1, F2) Ã Γ1, Γ1 Ã (F̃1, G̃2).

Theorem. (F̃1, G̃2) = (F1 − FT
1 , F2 + FT

2 ).

Modified DCT applies this to long sequences as

(F1, F2, F3, F4 . . . , Fk) Ã (Γ1,Γ2,Γ3, . . . ,Γk−1)

Ã (F̃1, G̃2 + F̃2, G̃3 + F̃3, G̃4 + F̃4, . . . , G̃k−1 + F̃k−1, G̃k)



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Using sequences of length N , we summerize this as

(F1, F2) Ã Γ1, Γ1 Ã (F̃1, G̃2).

Theorem. (F̃1, G̃2) = (F1 − FT
1 , F2 + FT

2 ).

Modified DCT applies this to long sequences as

(F1, F2, F3, F4 . . . , Fk) Ã (Γ1,Γ2,Γ3, . . . ,Γk−1)

Ã (F̃1, G̃2 + F̃2, G̃3 + F̃3, G̃4 + F̃4, . . . , G̃k−1 + F̃k−1, G̃k)

Note that we have exact reconstruction except for the first

and last block (usual choice: F1 = 0, Fk = 0).



Modifed DCT

Let (. . . , f1, f0, . . . , fN−1, fN , . . .) be a long sequence of (sam-

pled) function values. Assume M ≡ N/2 is an integer.

With φn,k ≡ cos
(

π
N (k + 1

2)(n + M + 1
2)

)
, we have

γk = 1
N

2N−1∑
n=0

fn φn,k (k = 0, . . . , N − 1), f̃n =
N−1∑

k=0

γk φn,k (n = 0, . . . ,2N − 1)

Including windows, with C = ST, S = (S, C),

(F1, F2) Ã (SF1, CF2) Ã Γ̃1 Ã (F̃1, G̃2) Ã (SF̃1, CG̃2).

Theorem.

(SF̃1, CG̃2) = (S2F1 − SCFT
1 , C2F2 + SCFT

2 ).

With S2 + C2 = 1, application to long sequences leads to

exact reconstruction.



Program

• Computing Fourier Coefficients

• Discrete Fourier Transform

• Discrete Cosine Transform

• Fast Fourier Transform

• Computing Fourier Integrals



Fast Fourier Transform

Suppose the sequence γ ≡ (γ0, . . . , γN−1) ∈ `(N) is avail-

able. The naive way of computing the DFT

F(γ)n ≡ fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

requires more than 2N2 floating point operations (addi-

tions, multiplications): for each of the N ns, 2N flop.

In practice N is huge.

N of the order of 106 ∼ 108 is not exceptional.

Gauss [first half of the 19th century], Runge [1903] and

Cooley & Tukey [1965] in the most cited mathematical

paper ever, proposed a computational scheme, FFT, that

reduces the computational costs to 2N log2(N) flop.
For, e.g., n = 220 ≈ 106, this makes a difference with 2N2

of 1 sec versus 3:30 hours.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

We split the sum into one with even indices and one with

odd indices.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

fn =


 ∑

2k<N

γ2k e2πikn
M


 +


 ∑

2k+1<N

γ2k+1 e2πikn
M


 e2π n

N .

or

fn = fe,n + fo,n e2π n
N with fe,n ≡

∑

2k<N

γ2k e2πikn
M

and fo,n defined similarly:

fe,n ≡
∑

2k+1<N

γ2k+1 e2πikn
M .



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

fn = fe,n + fo,n e2πi n
N with fe,n ≡

∑

2k<N

γ2k e2πikn
M

Note that fe,n = fe,n+M . Similarly, fo,n = fo,n+M .

Moreover, exp(πin+M
M ) = − exp(πi n

M ). Therefore,

fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

fn = fe,n + fo,n e2πi n
N with fe,n ≡

∑

2k<N

γ2k e2πikn
M

Note that fe,n = fe,n+M . Similarly, fo,n = fo,n+M .

Moreover, exp(πin+M
M ) = − exp(πi n

M ). Therefore,

fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

To compute fn for all n = 0, . . . , N − 1, we need to com-

pute two Fourier transforms fe,n and fo,n for sequences of

coefficients of half of the length and for only half of the

number of ns (n = 0, . . . , M − 1).



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Let κ` be the number of flop required to compute the

DFT of length M = 2`. Then, the above implies that

κ` = 2κ`−1 + 1.5N.

We need N additions (subtractions), M multiplications;

For now, we neglected the costs for computing eπi n
M .



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Let κ` be the number of flop required to compute the

DFT of length M = 2`. Then, the above implies that

κ` = 2κ`−1 + 1.5N.

We need N additions (subtractions), M multiplications;

For now, we neglected the costs for computing eπi n
M .

We can repeat the partitioning trick to fe,n and fo,n.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Let κ` be the number of flop required to compute the

DFT of length M = 2`. Then, the above implies that

κ` = 2κ`−1 + 1.5N = 2(2κ`−2 + 1.5M) + 1.5N.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Let κ` be the number of flop required to compute the

DFT of length M = 2`. Then, the above implies that

κ` = 2κ`−1 + 1.5N = 4κ`−2 + 21.5N.

Repeating, the partitioning trick to fe,n and fo,n, etc., and

using the fact that κ0 = 0, shows that

κ` = 2κ`−1 + 1.5N = 1.5 `N.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Repeating this partitioning trick recursively down to level

` = 0 is Fast Fourier Transform.

Theorem. FFT requires (1.5 ` + 0.5)N flop.



Fast Fourier Transform

Suppose N = 2` for some ` ∈ N. Put M = 2`−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Repeating this partitioning trick recursively down to level

` = 0 is Fast Fourier Transform.

Theorem. FFT requires (1.5 ` + 0.5)N flop.

Proof. The 0.5N comes from the computation of eπi n
M ,

which can be computed as ζn = ζn−1ζ with ζ = eπi 1
M .

Note that, eπin2−`+j
= eπi(2jn)2−`

.



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

We will represent the DFT and FFT with respect to col-

umn vectors here: .T is the transpose for vectors.

Note that, for consistency of notation, we selected the first

index of the vectors to be 0 rather than 1.

Our matrices will also be indexed from 0 on: the left top

matrix element will be the (0,0)-entry.



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N ×N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

This represents the DFT (Discrete Fourier transform) as

a MV (matrix-vector multipliciation).

• Note that 1
N F∗F = I : except for the scaling N ,

the DFT matrix F is unitary. Here F∗ ≡ F
T .

• The inverse 1
NF∗ of F represents the inverse DFT.

• The DFT matrix F is full: non of its entries is zero.
This makes the MV expensive.



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N ×N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

FFT. Now suppose N = 2`. Put M ≡ 2`−1.

Let F` ≡ F be the DFT for level `, i.e., for N = 2`.

The first step in FFT can be written as

f =

[
f′
f′′

]
=

[
I`−1 +D`−1
I`−1 −D`−1

] [
fe
fo

]
.

Here, f′ ≡ (f0, . . . , fM−1)
T , f′′ ≡ (fM , . . . , fN−1)

T ,

I`−1 is the M ×M identity matrix,

D`−1 is the M ×M diagonal matrix with (n, n)-entry eπi n
M .

Note that the even diagonal entries of D`−1 form D`−2, . . .



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N ×N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

FFT. Now suppose N = 2`. Put M ≡ 2`−1.

Let F` ≡ F be the DFT for level `, i.e., for N = 2`.

The first step in FFT can be written as

f =

[
I`−1 +D`−1
I`−1 −D`−1

] [
fe
fo

]
=

[
I`−1 +D`−1
I`−1 −D`−1

] [
F`−1 0
0 F`−1

] [
γe

γo

]

where γe = (γ0, γ2, . . .)T , γo = (γ1, γ3, . . .)T .



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N ×N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

FFT. Now suppose N = 2`. Put M ≡ 2`−1.

Let F` ≡ F be the DFT for level `, i.e., for N = 2`.

The first step in FFT can be written as

f =

[
I`−1 +D`−1
I`−1 −D`−1

] [
F`−1 0
0 F`−1

]
γ(P )

where P is the permutation that puts the even indexed γk

first: following Matlab γ(P ) ≡ (γP (0), . . . , γP (N−1))
T .

P (k) ≡ 2k (k < M), P (k) ≡ 2(k −M) + 1 (k > M).



DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N ×N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

FFT. Now suppose N = 2`. Put M ≡ 2`−1.

Let F` ≡ F be the DFT for level `, i.e., for N = 2`.

The first step in FFT can be written as

f =

[
I`−1 +D`−1
I`−1 −D`−1

] [
F`−1 0
0 F`−1

]
γ(P )

This decomposes F as a product of a very sparse unitary

matrix (only 2 non-zeros per row), two DFTs of half size

and a permutation. Repeating this decomposition gives

FFT: F is a product of only ` very sparse unitary matrices

and a permutation.



FFT for sequences of any length?

Suppose N = q` for some q ∈ N, q > 2.

Then we can design a FFT algorithm similar to the one

for q = 2. For instance, if q = 3, and (γ0, . . . , γN−1) is a

sequence of length N , then we can group the coefficients

in three classes (γ3k), (γ3k+1) and (γ3k+2) instead of the

two as for q = 2 (the one with even indices and one with

odd indices) and we can decompose the fn accordingly.

q is the radix of the FFT.

The computational costs are in the order of N log3 N :

Comp. Costs ≈ Cq N log3 N for some Cq > 0.

Property. FFT with radix 4 allows the most efficient

implementation (i.e., 4 = argminq Cq N logq N).



FFT for sequences of any length?

If, say, N = 2`1 3`2, then we can form a FFT by

• applying the FFT with radix 2 `1-times

• followed by `2-times the FFT with radix 3.

More generally,



FFT for sequences of any length?

We can factorise any N ∈ N, that is, we can decompose

any N into a product of prime factors and we can design a

FFT for sequences of length N that is a mixture of FFTs

of radix pj with pj the primes that occur in the factors.

However, computationally, this approach is not attractive:

• we have to factorise N

• coding of such a FFT with a mixture of FFTs with

different radixes is messy

• if the primes are large (with the extremal situation where

N itself is prime), then the FFT is not faster.



FFT for sequences of any length?

If, for instance, we have to compute Fourier coefficients

of a T -periodic function f : R→ C, then we can select the

sample frequency 1/∆t as we like (with the only restriction

that it is sufficiently large), for instance,

∆t = T/N with N = 2`.

Conclusion.

Some application allow to select N to be a power of 2.



FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2` (with ` such
that 2`−1 < M ≤ 2`) by appending with zeros.

Example. The convolution product α?β of the sequence
α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ? β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2),

where we sum over all j ∈ Z for which αj and βk−j exists,
that is, j such that j, k − j ∈ {0, . . . , M − 1}.

Application.
If p is the polynomial p(x) = α0 + α1x + . . . + αM−1x

M−1 and
q(x) = β0 + β1x + . . . + βM−1x

M−1, then (α ? β)k are the coefficients of
the product polynomial pq.



FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2` (with ` such
that 2`−1 < M ≤ 2`) by appending with zeros.

Example. The convolution product α?β of the sequence
α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ? β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Note that the value of α?β does not change if we extend α
and β by appending with zeros. Therefore, we may assume
that the length of α and β is M = 2`.



FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2` (with ` such
that 2`−1 < M ≤ 2`) by appending with zeros.

Example. The convolution product α?β of the sequence
α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ? β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Assume that the length of α and β is M = 2`. Append α
and β with zeros to sequences of length N ≡ 2`+1. Next,
extend α and β periodically (period N) and define ?N:

(α ?N β)k ≡
N−1∑

j=0

αj βk−j (k = 0, . . . , N − 1).

Note that the definitions of α ? β are consistent (lead to
the same values for k < N).



FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2` (with ` such
that 2`−1 < M ≤ 2`) by appending with zeros.

Example. The convolution product α?β of the sequence
α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ? β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Assume that the length of α and β is M = 2`. Append α
and β with zeros to sequences of length N ≡ 2`+1. Next,
extend α and β periodically (period N) and define ?N:

(α ?N β)k ≡
N−1∑

j=0

αj βk−j (k = 0, . . . , N − 1).

Note that the definitions of α ? β are consistent (lead to
the same values for k < N).



Discrete Convolution Products

Definition. For α, β ∈ `(N), let

(α ?N β)k ≡
N−1∑

j=0

αj βk−j (k = 0, . . . , N − 1),

where βk−j ≡ βN+k−j if k − j < 0 (periodic extension).

Theorem. FN(α ∗N β) = FN(α) · FN(β), where

the ·-product is coordinate wise (the Hadamard product).

Suppose 2`−1 < N < 2`. Put L ≡ 22`.

Form β̃ ≡ (β,0, β) to a sequence of length L.

Form α̃ ≡ (α,0,0) to a sequence of length L.

Property. (α ?N β)k = (α̃ ?L β̃)k for k = 0, . . . , N − 1.

Corollary. (α ∗N β)k = (F−1
L [FL(α̃) · FL(β̃)])k (k < N).

α ?L β can be computed with three DFT of radix 2 plus L

mult.. Costs: ≤ 24N(` + 2) flop rather than 0.5N2.



FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2` (with ` such
that 2`−1 < M ≤ 2`) by appending with zeros.

Example. The convolution product α?β of the sequence
α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ? β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Conclusion. In these applications the FFT is nothing more
than an efficient computational tool. The quantities to be
computed are in same domain as the inputs (time-domain
rather than in frequency domain).



Appending with zeros

Consider γ = (γ0, . . . , γM−1) ∈ `(M) with 2`−1 < M < N ≡ 2`.

Append γ with zeros to a sequence γ+ of length N :

γ+ ≡ (γ0, . . . , γM−1,0, . . . ,0).

Observe that FM(γ) 6= FN(γ+), because

M−1∑

k=0

γk e2πikn
M =

N−1∑

k=0

γ+
k e2πikn

M 6=
N−1∑

k=0

γ+
k e2πikn

N .

Heuristics. Appending with zeros introduces ‘discontinu-

ities’, thus quickly decreasing Fourier coefficients maybe

changed into slowly decreasing ones.



Appending with zeros

Consider γ = (γ0, . . . , γM−1) ∈ `(M) with 2`−1 < M < N ≡ 2`.

Append γ with zeros to a sequence γ+ of length N :

γ+ ≡ (γ0, . . . , γM−1,0, . . . ,0).

Observe that FM(γ) 6= FN(γ+), because

M−1∑

k=0

γk e2πikn
M =

N−1∑

k=0

γ+
k e2πikn

M 6=
N−1∑

k=0

γ+
k e2πikn

N .

Conclusion. If the quantities of interest are in the ‘dual’

domain (frequency rather than time, or time rather than

frequency), then appending zeros is not allowed.



FFT for sequences of any length?

Consider γ = (γ0, . . . , γM−1) ∈ `(M) with 2`−1 < M < N ≡ 2`.

Put

βk ≡ e−πik2
M (k = 0, . . . , M − 1).

Note that e2πikn
M = βk βn−k βn. Hence,

FM(γ)n =
M−1∑

k=0

γk e2πikn
M =




M−1∑

k=0

(γkβk)βn−k


 βn.

Apparently,

FM(γ) = ((γβ) ?M β)β.

Here the convolution product is defined for M-periodic se-

quences.



FFT for sequences of any length?

Consider γ = (γ0, . . . , γM−1) ∈ `(M) with 2`−1 < M < N ≡ 2`.

Property. With βk ≡ e−πik2
M , we have that

FM(γ) = µ β with µ ≡ (γ β) ?M β

As we saw before, the convolution product can be com-

puted with three DFT of radix 2 (and length L ≡ 2N), plus

L multiplications. The multiplications γβ and µβ require

an additional 2M multiplications.



Program

• Computing Fourier Coefficients

• Discrete Fourier Transform

• Discrete Cosine Transform

• Fast Fourier Transform

• Computing Fourier Integrals



Computing Fourier integrals

f sampled at tn = t0 + n∆t. 1/∆t sample frequency.

For ease of notation, take t0 = 0 (otherwise shift by t0).

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt ≈ ∆t

N−1∑

n=0

fn e−2πi n∆t ω

Here, T = N∆t and fn = f(tn).

Of interest for ω = k
T (k = 0, . . . , N − 1).

f̂(ω) to be computed by DFT.

Two ‘discretizations’ ! How accurate is this?



f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt

If f ∈ L1(R) then,

for each ε > 0, there is a t0 and a T > 0 such that
∫ t0

−∞
|f(t)|dt < ε and

∫ ∞
t0+T

|f(t)|dt < ε

However,

this observation is often only of theoretical interest.

In practice T can be large and huge values of N may be

required, or spectral information is requested before all

relevant function values f are available.



Windowing

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt

Actually, we are computing the Fourier transform of

fWt0, where W (t) = 1 if 1 ≤ t ≤ T , and
W (t) = 0 elsewhere

and Wt0(t) ≡ W (t− t0).

W is a time-window.

Of interest: the difference between f̂(ω) and ̂(fWt0)(ω).

Φ(t, ω) ≡ (̂fWt)(ω) is called a spectogram of f .



Effects of windowing



Computing Fourier integrals

f sampled at tn = t0 + n∆t. 1/∆t sample frequency.

For ease of notation, take t0 = 0 (otherwise shift by t0).

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt≈∆t

N−1∑

n=0

fn e−2πi n∆t ω

Two ‘discretizations’ ! How accurate is this?



Computing Fourier integrals

f sampled at tn = t0 + n∆t. 1/∆t sample frequency.

For ease of notation, take t0 = 0 (otherwise shift by t0).

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt≈∆t

N−1∑

n=0

fn e−2πi n∆t ω

Two ‘discretizations’ ! How accurate is this?

Analysis. Other order: first discretize, then window.



Discretization

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω

Relation f̂(ω) and F (ω)? Does this depend on ω?

Bf ≡ {ω ∈ R | |f̂(ω)| 6= 0} is the frequency band of f .

f is of bounded bandwidth if Bf ⊂ [−Ω,+Ω]

for some Ω > 0: smallest Ω is the bandwidth.

Suppose f is of bandwidth ≤ Ω.



f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒

f(t) =
∫ ∞
−∞

f̂(ω) e2πi t ω dω =
∫ Ω

−Ω
f̂(ω) e2πi t ω dω

In particular, fn = f(tn) =
∫ Ω

−Ω
f̂(ω) e2πi n ω

2Ω dω.



f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒
∫ Ω

−Ω
[f̂(ω)− F (ω)]e2πi n ω

2Ω dω = 0 ∀n ∈ Z.



f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒

f̂(ω) = ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ∀ω ∈ [−Ω,+Ω].

∆t = 1
2Ω is the Nyquist rate.



Theorem.

f of bandwidth ≤ Ω & sample frequency 1/∆t ≥ 2Ω ⇒

f̂(ω) = ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ∀ω ∈ [−Ω,+Ω]

The discretization is exact if the bandwidth ≤ Ω and the sample fre-

quency ≥ 2Ω (∆t ≤ 1/(2Ω)). Fourier transform of this result leads

to

The Shannon–Whittakker Theorem.

f of bandwidth ≤ Ω & sample frequency 1/∆t ≥ 2Ω ⇒

f(t) =
∞∑

n=−∞
fn sinc

(
t− tn

∆t

)
∀t ∈ R.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



Discussion. The Shannon–Whittakker theorem tells us

that f can be reconstructed from its sample values, if f is

of bounded bandwidth and the sample frequency is at least

twice the maximal frequency of f . However, reconstruction

requires values fn from the (far) future as well as from the

(far) past.

Application. Resampling (sampling at another sampling

rate) is possible.

If the new sample rate is p
q times the old sample rate ∆t,

then, in practice, resampling is achieved by

1) upsampling by p

2) filtering to get rid of frequencies > Ω

3) downsampling by q.

(Details later)



Conclusions

• Discretization is fine provided f is of bounded bandwidth

and the sample frequency is high enough.

• Perturbations by windowing can not be avoided. Effects

include smearing and leakage. Effects can be diminished

by a larger time-window. One effect can be diminished at

the cost of others (by other time-windows).


