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Applications: CT
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Electronic circuits

Example.
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Larger examples in computer chips, with up to 5108 elec-

tronic components (2011: Intel’s dual-core i5).



Definition. A directed graph is a collection of vertices
(vi) (points) and edges (ej) (lines) with a direction.

An electronic network can be described by a directed graph,
where each edge contains exactly one electronic compo-
nent, as a resistor, capacitor, inductor, etc.. At vertex vi

we have Voltage Vi, in edge ej is an electrical current ij,
with ij positive if the current is in line with the direction
of edge ej and negative if it is in opposite direction.

One way of describing a directed graph is by an
Definition. Incidence matrix G:
• the ith row of G corresponds to the ith vertex vi;
• the jth column of G corresponds to the jth edge ej;
• if edge ij connects vk and v` with vk first, then G has
value +1 at entry (k, j) and −1 at (`, j), while all other
entries in the jth column have value 0.

We collect the voltages in a vector V, and the currents in

a vector i, with vector indices corresponding to the index

of the vertices and edges, respectively.



Definition. A directed graph is a collection of vertices
(vi) (points) and edges (ej) (lines) with a direction.

An electronic network can be described by a directed graph,
where each edge contains exactly one electronic compo-
nent, as a resistor, capacitor, inductor, etc.. At vertex vi

we have Voltage Vi, in edge ej is an electrical current ij,
with ij positive if the current is in line with the direction
of edge ej and negative if it is in opposite direction.

One way of describing a directed graph is by an
Definition. Incidence matrix G:
• the ith row of G corresponds to the ith vertex vi;
• the jth column of G corresponds to the jth edge ej;
• if edge ij connects vk and v` with vk first, then G has
value +1 at entry (k, j) and −1 at (`, j), while all other
entries in the jth column have value 0.

The Voltages V = V(t) and the currents i = i(t) change in

time (are time dependent). The laws of electricity describe

how they are related.
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G =




1 0 0 0 0 −1
−1 1 1 1 0 0
0 −1 −1 −1 1 0
0 0 0 0 −1 1


 , V =




V1
V2
V3
V4


 , I =




i1
i2
i3
i4
i5
i6




The size of the incidence matrix is k × n, where k is the

number of vertices and n the number of edges, that is, of

electronic components. k = 4 and n = 6 in the present

example. n ≈ 5108 in Intels dual-core i5.



Kirchhoff’s laws

Gi = 0 expresses Kirchhoff’s law of currents stating that
the inflow of the currents at a vertex equals the outflow
at that vertex.
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Gi =




i1 − i6
−i1 + i2 + i3 + i4
−i2 − i3 − i4 + i5

−i5 + i6


 =




0
0
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
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Kirchhoff’s laws

Gi = 0 expresses Kirchhoff’s law of currents stating that

the inflow of the currents at a vertex equals the outflow

at that vertex.

Kirchhoff’s law of voltages is automatically fulfilled.

This law states that in any closed loop (sub-circuit) the

sum of the voltage differences is 0.

Example.
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(V1 − V2) + (V2 − V3) + (V3 − V4) + (V4 − V1) = 0,

(V2 − V3) + (V3 − V2) = 0, . . .



Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GTV =




1 −1 0 0
0 1 −1 0
0 1 −1 0
0 1 −1 0
0 0 1 −1

−1 0 0 1







V1
V2
V3
V4


 =




V1 − V2
V2 − V3
V2 − V3
V2 − V3
V3 − V4
V4 − V1




.



Note that GTV is the vector of Voltage differences across

the edges.
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GTV =




1 −1 0 0
0 1 −1 0
0 1 −1 0
0 1 −1 0
0 0 1 −1

−1 0 0 1







V1
V2
V3
V4


 =




V1 − V2
V2 − V3
V2 − V3
V2 − V3
V3 − V4
V4 − V1




.

Note. G is not of full rank: rank(G) = k−1. This follows

from the fact that GT1 = 0: The value of GTV does not

change by adding the same constant to all Vi.



Note that GTV is the vector of Voltage differences across

the edges.

Example.
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According to Ohm’s law, we have, for instance,

V1 − V2 = R1i1.

We will give the value of the electronic component at edge

ej (with current ij) the same index as the edge: R1 is the

resistance of the resistor in edge e1, R5 is the resistance

of the resistor in edge e5, C3 is the capacitance of the

capacitor at edge e3, etc..



Note that GTV is the vector of Voltage differences across

the edges.
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V1 − V2 = R1 i1,

V2 − V3 = L2 i′2,
V ′2 − V ′3 = 1

C3
i3,

V2 − V3 = R4 i4,

V3 − V4 = R5 i5,

V4 − V1 = R6 i6 + Vin.

Here R6 is the internal resistance of the input device.



Note that GTV is the vector of Voltage differences across

the edges.

Example.
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V ′1 − V ′2 = R1 i′1
V ′2 − V ′3 = L2 i′′2
V ′2 − V ′3 = 1

C3
i3

V ′2 − V ′3 = R4 i′4
V ′3 − V ′4 = R5 i′5
V ′4 − V ′1 = R6 i′6 + V ′in



Note that GTV is the vector of Voltage differences across

the edges.
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GTV′ =




V ′1 − V ′2
V ′2 − V ′3
V ′2 − V ′3
V ′2 − V ′3
V ′3 − V ′4
V ′4 − V ′1




=




R1 i′1
L2 i′′2
1

C3
i3

R4 i′4
R5 i′5
R6 i′6




+




0

0

0

0

0

V ′in






Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GT V′ = RI′ + C̃ I + L I′′ + eu, where

R ≡




R1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 R4 0 0
0 0 0 0 R5 0
0 0 0 0 0 R6



, C̃ ≡




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

C3
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, L = . . .



Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GT V′ = RI′ + C̃ I + L I′′ + eu, where

L ≡




0 0 0 0 0 0
0 L2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, e ≡




0
0
0
0
0
1



, u(t) ≡ V ′

in(t)



The currents and the voltages in the electronic network

satisfy the relations




Gi = 0

GT V′ = Ri′ + C̃ i + L i′′ + eu

or, with J ≡ i′, we can turn the second order differential

equation into two coupled first order differential equations:




Gi′ = 0

GT V′ −Ri′ − LJ′ = C̃ i + eu

i′ = J

Combine these three relations into one first order diff.eq.


0 G 0
GT −R −L
0 I 0






V
i
J



′
=



0 0 0

0 C̃ 0
0 0 I






V
i
J


 +



0
e
0


 u

Here, a 0 in the block matrices represent a matrix of zeros

of matching size, a 0 in the block vector is a vector of

appropriate size, I is the n× n identity matrix.



The currents and the voltages in the electronic network

satisfy the relation


0 G 0
GT −R −L
0 I 0






V
i
J



′
=



0 0 0

0 C̃ 0
0 0 I






V
i
J


 +



0
e
0


 u

Uniqueness. If we have a solution, then adding a constant

to the Voltages at all vertices (the same constant) is also

a solution. We therefore, fix one of the Voltages to 0 (i.e.,

connect that vertex to the earth).
We incorporate this scaling into the model by replacing the

k× k left upper block of 0 in the matrix at the left by E, a

k × k matrix of zeros except at the diagonal position (`, `)

where E has entry 1. This means that we fix V` to 0.
Note that this does not affect the values of the ij: because,

since G does not have full rank, the other rows (other than

the `th) determine the values of the ij.



The currents and the voltages in the electronic network

satisfy the relation


0 G 0
GT −R −L
0 I 0






V
i
J



′
=



0 0 0

0 C̃ 0
0 0 I






V
i
J


 +



0
e
0


 u

Uniqueness. If we have a solution, then adding a constant

to the Voltages at all vertices (the same constant) is also

a solution. We therefore, fix one of the Voltages to 0 (i.e.,

connect that vertex to the earth).
As an alternative, this scaling can be incorporated by re-

ducing the matrix G to a (k − 1) × n matrix by deleting

the `th rows of G. Deleting the `th column of GT means

elimination of V` (of which the value is 0). As before, elim-

inating, the `th row of G does not affect the values of the

vector i.



The currents and the voltages in the electronic network

satisfy the relation Bx′ = Ax + bu, where

B ≡


E G 0
GT −R −L
0 I 0


 , A ≡



0 0 0

0 C̃ 0
0 0 I


 , x ≡



V
i
J


 , b ≡



0
e
0


 .

B and A are square matrices of dimension k + 2n,

b is a (k + 2n)-vector,

x is a (k + 2n)-vector valued function of t,

u is a scalar-valued function of t.



The currents and the voltages in the electronic network

satisfy the relation Bx′ = Ax + bu, where

B ≡


E G 0
GT −R −L
0 I 0


 , A ≡



0 0 0

0 C̃ 0
0 0 I


 , x ≡



V
i
J


 , b ≡



0
e
0


 .

The output

We are interested in the voltage difference at two vertices.

We can express this as an inner product cTx of x and some

(k + 2n)-vector c.



The currents and the voltages in the electronic network

satisfy the relation Bx′ = Ax + bu, where

B ≡


E G 0
GT −R −L
0 I 0


 , A ≡



0 0 0

0 C̃ 0
0 0 I


 , x ≡



V
i
J


 , b ≡



0
e
0


 .

The output

Example.
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With cT ≡ (0,1,−1,0,0T,0T)T we have that

cTx = V2 − V3

Here 0 is the n-vector of zeros.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

k + 2n is the number of states or order of the system,

t Ã x(t) is the state of the system,

b is the input or control vector, c is the output vector,

t Ã u(t) is the control function,

t Ã y(t) is the output of the system.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Suppose the control function u(t) = e2πiωt is an harmonic

oscillation. We try to find a state function x of the form

x(t) = x0 e2πiωt

for some k + 2n vector x0. Substitution leads to

x′(t) = Bx0(2πiω)(e2πiωt) = Ax0(e
2πiωt) + b(e2πiωt).

Hence, x0 = (A− 2πiωB)−1b and

y(t) = H(ω)e2πiωt, with H(ω) ≡ cT(A− 2πiωB)−1b



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u(t) = e2πiωt, then y(t) = H(ω)e2πiωt

with H(ω) ≡ cT(A− 2πiωB)−1b



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u(t) = e2πiωt, then y(t) = H(ω)e2πiωt

with H(ω) ≡ cT(A− 2πiωB)−1b

If u ∈ L2(R), then u(t) =
∫

û(ω)e2πiωt dt and

y(t) =
∫

H(ω) û(ω)e2πiωt dω

Here we used that fact that our system is linear.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function. It describes the

response of the system to an harmonic oscillation (at the

input). The amplitude (at the output) of such an oscil-

lation with frequency ω is amplified with |H(ω)| and the

phase is shifted by φ(ω) with φ(ω) ∈ [0,2π) such that

H(ω) = |H(ω)| eiφ(ω).



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function.

The transfer function reveals how the system works as a

filter: some frequencies are damped, others are amplified.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function.

If all input is real, (all entries of A, B, b and c are real),

then H is even: H(ω) = H(−ω).



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function.

The graph of ω Ã |H(ω)| (ω ∈ [0,∞) along the horizontal

axis, |H(ω)| along the vertical axis on Decibel scale (Db),

i.e., 20 log10-scale) is called the Bode plot of the transfer

function.

The Bode plot shows what frequencies (in the input) are

‘amplified’, and what frequencies are damped.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function.

The graph of ω Ã |H(ω)| (ω ∈ [0,∞) along the horizontal

axis, |H(ω)| along the vertical axis on Decibel scale (Db),

i.e., 20 log10-scale) is called the Bode plot of the transfer

function.

The curve in the complex plain described by ω Ã H(ω) also

gives useful information. Note that a point on this curve

does not reveal the corresponding value of ω: it relates

|H(ω)| to φ(ω).



Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ,v) of the matrix pair (A,B):

Av = λBv.

λ is an eigenvalue with eigenvector v.



Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ,v) of the matrix pair (A,B):

Av = λBv.

Suppose that at time t0 the solution x is perturbed by εv,

i.e., x̃ satisfies




Bx̃′(t) = Ax̃(t) + bu(t),

x̃(t) = x for t < t0,

x̃(t0) = x(t0) + εv.

Then, the error e ≡ x̃− x satisfies

Be′ = Ae and e(t0) = εv

Hence, e(t) = εeλtv for t ≥ t0.



Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ,v) of the matrix pair (A,B):

Av = λBv.

The system is unstable if some small perturbation has a

large effect.



Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ,v) of the matrix pair (A,B):

Av = λBv.

The system is stable if all eigenvalues of (A,B) are in

C− ≡ {λ ∈ C | Re(λ) < 0}, the left half of the complex

plane.

Then, all singularities of λ Ã cT(A− λB)−1b are in C−.



Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

Here we used that fact that our system is linear and we as-

sumed that H is bounded, or, equivalently, the pair (A,B)

does not have an eigenvalue on the imaginary axis.



The transfer function

The transfer function of the dynamical system
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

is given by H(ω) ≡ cT(A− 2πiωB)−1b (ω ∈ R).

Properties.

• k + 2n is huge

• A and B are sparse (only a few non-zeros in all rows).

• A and B are general matrices (not symmetric, . . . ).

• The differences in the coefficients Ri, Ci and Li can be

many order of magnitudes.



The transfer function

The transfer function of the dynamical system
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

is given by H(ω) ≡ cT(A− 2πiωB)−1b (ω ∈ R).

Computational challenges • N ≡ k+2n is huge (≈ 109).
• H(ω) has to be computed for a large range of ω.
• The transfer function has to be computed for several

(related) matrices (A,B) (in the design stage).
• Practical systems contain not only passive elements, like

resistors, capacitors, and inductors, but also many active

components (doides), which turn the problem into a non-

linear one.
• Practical system do not have only one Single Input vector

and a Single Output vector (SISO system), but they have

multiple inputs and multiple outputs (MIMO):
b is N × `, c is N × `′.



The transfer function

The transfer function of the dynamical system
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

is given by H(ω) ≡ cT(A− 2πiωB)−1b (ω ∈ R).

Dynamical systems show up in many other applications.

For instance,

• the stability of buildings (in response to an earthquake),

• aeroplanes and bridges (to eddies in the flow of the air),

• electrical power networks,

• music instruments,

• tidal waves in bays,

• . . .
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Diffraction, the stage
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Diffraction, the actors

Light is a composition of electromagnetic waves.

An electromagnetic wave is combination of oscillating elec-

tric and magnetic fields in perpencdicular orientation to

each other moving through space. The direction of the os-

cillations is perpendicular to the wave’s direction of travel.

We assume a light source at location −∞ on the z-axis

emitting a mono-chromatic light, i.e.,

the electric field E at z = 0 (the location of a screen S)

has the same magnitude and a contant phase at all points

of the transparant part (slit) of S.

E is a plane wave for z < 0.



The electric field E is a plane wave if it is of the form

~E0 exp(2πi[(~k, ~x)− ωt]),

where, with ~k ≡ (k1, k2, k3) and ~x ≡ (x, y, z),

(~k, ~x) ≡ k1x + k2y + k3z.

E0 ≡ ‖ ~E0‖2 is the amplitude.

The wave travels in the direction of the wave vector ~k.

k ≡ ‖~k‖2, or actually 2πk, is the wave number,
λ ≡ 1/k is the wavelength,
with c the speed of light, ω = c

λ is the frequency.

The vector ~E0 is perpendicular to ~k = (k1, k2, k3): elec-

tromagnetic waves travel transverse, in contrast to, for

instance, sound waves. They are longitudinal: ~E0 is a

multiple of ~k.

Here, we restrict ourselves to the (x, z) plane (we omit y),

and we assume that the wave travels along the z-axis, i.e.,
~k = (0, k3). We write k instead of k3 and we write E0

instead of ~E0, thus omitting the direction of E0.



Diffraction, the director

Huygens’ principle. Every point on a wavefront which

comes from asource can itself be regarded as a (secondary)

source.

Frauenhofer diffraction. The diffraction obstruction (screen

S with slit) is at many wavelength distance from the point

at which the wave is measured (the “projection screen”

X)



Diffraction, the stage
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The field E at time t and location (x, z) is given by

E = E0 exp(2πi(kz − ωt)) if z ≤ 0.

According to Huygens’ principle, the field at P = (X, Z)
induced from a strip of width dx at (x,0) will be

ΓA(x)E0 e2πiks dx,

where s is the distance from (x,0) to P , Γ is some propor-
tionality factor that depends on the wavelength and Z, and
A(x) is the aperture function, which describes the trans-
parent and opaque parts of the screen S.

Examples.
A is the top-hat function with width a in case of one slit.
If two slits: A is the sum of two shifted top-hat functions.

Huygens’ principle is applicable if both X and the width a

of the aperture are small relative to Z and that is what we
will assume here.



r ≡ distance((0,0), P ),

θ ≡ ∠(line[(0,0), P ], z-axis.

Then P ≡ (X, Z) = (r sin θ, r cos θ) and s = r − x sin(θ).

Note sin θ ≈ X/Z. Hence, |x| ¿ r ⇒ field at P equals

ΓE0 e2πikr
∫

A(x) e−2πikx sin(θ) dx = ΓE0 e2πikr Â(k sin(θ)) :

the reduction of the ‘strength’ of the original field is ∼ Â.

The intensity I(P ) of the diffracted waves at P is the

square of the absolute value:

I(P ) = I0 (Â(k sin(θ))2, where I0 ≡ |ΓE0|2.

The intensity of the wave is what we measure/observe:

the absolute value of the Fourier transform can be mea-

sured. There is no information on the phase. This fact is

known as the missing phase problem in crystallography.



Example.

In case of a single slit, A is the top-hat function Πa/2 and

I(P ) = I0 a2sinc2(a ω), where ω ≡ sin θ

λ
.
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Computerised Tomography

X-rays are transmitted from a straight line (the red beam
in the picture) through an object, a slab of material (the
yellow and black figure). The material partly ‘absorbs’ the
x-rays. The intensity of the x-rays is measured at the de-
tector (the green line parallel to the red line).

The detector is constructed to measure the intensity of
those beams that pass straight through the object (scat-
tered beams will not be detected).

The absorption depends on the kind of material and on
the thickness of the slab of material.

If a x-ray with initial intensity I0 travels through d cm of
homogeneous material with absorption coefficient κ, then
the measured intensity I equals

I = I0 e−κd.



Computerised Tomography

Use Cartesian coordinates (x, y) to describe the scanner.

Suppose the absorption coefficient at point (x, y) of the

object to be scanned is f(x, y). The value of f at (x, y)

depends on the (concentration of the) material at (x, y) of

which the object is composed.

Consider an x-ray that travels along a line orthogonal to

the detector.
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Computerised Tomography

Use Cartesian coordinates (x, y) to describe the scanner.

Suppose the absorption coefficient at point (x, y) of the

object to be scanned is f(x, y). The value of f at (x, y)

depends on the (concentration of the) material at (x, y) of

which the object is composed.

Consider an x-ray that travels along a line orthogonal to

the detector: this is a line of points (x, y) with

x = x(η) = ξ cos(φ)−η sin(φ), y = y(η) = ξ sin(φ)+η cos(φ)

with ξ fixed and φ the angle of the detector with x-axis

(the dashed line in the picture).

Note. (ξ, η) is the point (x, y) in the plane with rotated

Cartesian coordinates, rotated over an angle φ.



Computerised Tomography

Use Cartesian coordinates (x, y) to describe the scanner.

Suppose the absorption coefficient at point (x, y) of the

object to be scanned is f(x, y). The value of f at (x, y)

depends on the (concentration of the) material at (x, y) of

which the object is composed.

Consider an x-ray that travels along a line orthogonal to

the detector: this is a line of points (x, y) with

x = x(η) = ξ cos(φ)−η sin(φ), y = y(η) = ξ sin(φ)+η cos(φ)

with ξ fixed and φ the angle of the detector with x-axis

(the dashed line in the picture).

At the detector at the end of this line the intensity is

I = I0 exp
(
−

∫
f(x(η), y(η)) dη

)
.



Computerised Tomography

Use Cartesian coordinates (x, y) to describe the scanner.

Suppose the absorption coefficient at point (x, y) of the

object to be scanned is f(x, y). The value of f at (x, y)

depends on the (concentration of the) material at (x, y) of

which the object is composed.

Consider an x-ray that travels along a line orthogonal to

the detector: this is a line of points (x, y) with

x = x(η) = ξ cos(φ)−η sin(φ), y = y(η) = ξ sin(φ)+η cos(φ)

with ξ fixed and φ the angle of the detector with x-axis

(the dashed line in the picture).

We therefore, can measure

pφ(ξ) ≡
∫

f(x(η), y(η)) dη.



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

pφ “is” the projection f onto the ξ-coordinate.



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

We measure the intensity for all values of ξ in an interval

(corresponding with the surface of the detector). η ranges

between transmission device and detector. For mathemat-

ical simplicity, we assume that both η and ξ (as well as x

and y) range between −∞ and +∞ (or, equivalently, if f

is defined on a bounded domain, then we assume f to be

extended to R2 with the value 0.



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

We are interested in computing (reconstructing) f from

our measurements, that is, from pφ.

Note that pφ does not determine f .
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Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

We are interested in computing (reconstructing) f from

our measurements, that is, from pφ.

Note that pφ does not determine f .

Rotating the scanner, i.e., measuring pφ for a range of φ

(taking pictures from a number of directions), gives more

information.

Note that pφ(ξ) = pπ+φ(−ξ).



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

Assignment.

Given pφ(ξ) for all ξ ∈ R and all φ ∈ [0,2π), compute f .



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

Assignment.

Given pφ(ξ) for all ξ ∈ R and all φ ∈ [0,2π), compute f .

With p(ξ, φ) ≡ pφ(ξ),

the map f Ã p is the Radon transformation of f ,

the graph of p as a 2-d picture is the sinogram of f .



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

Assignment.

Given pφ(ξ) for all ξ ∈ R and all φ ∈ [0,2π), compute f .

Compute (reconstruct) f from its sinogram.



Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞
−∞

f(x(η), y(η)) dη (ξ ∈ R).

Assignment.

Given pφ(ξ) for all ξ ∈ R and all φ ∈ [0,2π), compute f .

Practical observations.

• In practice, the x-rays are directed in a series of thin

parallel beams homogeneously distributed: ξ is discretised.

• A 3-dimensional image can be obtained by piling the the

2-dimensional images of slices.



Back projection

If we express the point (x, y) is polar coordinates

(x, y) = (r cos(θ), r sin(θ)),

then the ξ coordinate of (x, y) (i.e., the coordinate in ro-

tated Cartesian coordinates) equals

ξ = r cos(θ − φ).

(see the picture on the next transparency).
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Back projection

If we express the point (x, y) is polar coordinates

(x, y) = (r cos(θ), r sin(θ)),

then the ξ coordinate of (x, y) (i.e., the coordinate in ro-

tated Cartesian coordinates) equals

ξ = r cos(θ − φ).

The transformation

f̃(r cos(θ), r sin(θ)) ≡
∫ π

0
pφ(r cos(θ − φ)) dφ

can be viewed as the back-projection (BP) of pφ.

Observation. The BP gives a blurred reconstruction of f .



To obtain a sharp reconstruction,
we use Fourier transforms.



f̂(ω1, ω2) =
∫∫

f(x, y) e−2πi(xω1+yω2) dxdy.

Rotate the coordinates in both (x, y)-plane as well as in
(ω1, ω2)-plane:





x = ξ cφ − η sφ, y = ξ sφ + η cφ

ω1 = ρ1cφ − ρ2sφ, ω2 = ρ1sφ + ρ2cφ.

Then

f̂(ρ1cφ − ρ2sφ, ρ1sφ + ρ2cφ)

=
∫∫

f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πi(ξρ1+ηρ2) dη dξ.

In particular, if ρ2 = 0 and putting ρ ≡ ρ1

f̂(ρcφ, ρsφ) =
∫ ∫

f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πiξρ dη dξ

=
∫ (∫

f(ξcφ − ηsφ, ξsφ + ηcφ) dη
)

e−2πiξρ dξ

=
∫

pφ(ξ) e−2πiξρ dξ = p̂φ(ρ).



Theorem. f̂(ρcφ, ρsφ) = p̂φ(ρ) (ρ ∈ R, φ ∈ [0, π)).

Note. The point (ρcφ, ρsφ) represents an arbitrary point in

(ω1, ω2)-plane in polar coordinates.

In particular, f̂ is known in all frequencies and the Fourier

back transform yields f .

In practice, we have to deal with discretised versions. Un-

fortunately, homogeneous discretization in polar coordi-

nates does not match well homogeneous discretization of

Cartesian coordinates (see picture next transparency).



Computerised Tomography



Theorem. f̂(ρcφ, ρsφ) = p̂φ(ρ) (ρ ∈ R, φ ∈ [0, π)).

Note. The point (ρcφ, ρsφ) represents an arbitrary point in

(ω1, ω2)-plane in polar coordinates.

We therefore express the Fourier back transform

f(x, y) =
∫∫

f̂(ω1, ω2) e2πi(xω1+yω2) dω1 dω2.

into polar coordinates:




(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

Then

xω1 + yω2 = rρ cos(θ − φ), dxdy = |ρ|dρdφ



Theorem. f̂(ρcφ, ρsφ) = p̂φ(ρ) (ρ ∈ R, φ ∈ [0, π)).

Note. The point (ρcφ, ρsφ) represents an arbitrary point in

(ω1, ω2)-plane in polar coordinates.

We therefore express the Fourier back transform

f(x, y) =
∫∫

f̂(ω1, ω2) e2πi(xω1+yω2) dω1 dω2.

into polar coordinates:




(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

Then

f(rcθ, rsθ) =
∫ π

0

∫ +∞
−∞

f̂(ρcφ, ρsφ) e2πiρ(rcθ−φ)|ρ|dρdφ

=
∫ π

0

∫ +∞
−∞

p̂φ(ρ) e2πiρ(rcθ−φ)|ρ|dρdφ



Theorem. f̂(ρcφ, ρsφ) = p̂φ(ρ) (ρ ∈ R, φ ∈ [0, π)).

Note. The point (ρcφ, ρsφ) represents an arbitrary point in

(ω1, ω2)-plane in polar coordinates.

We therefore express the Fourier back transform

f(x, y) =
∫∫

f̂(ω1, ω2) e2πi(xω1+yω2) dω1 dω2.

into polar coordinates:




(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ



With 



(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

we have

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Interpretation. The multiplication of p̂φ(ρ) by |ρ| act as

a filter, damping low frequency components (ρ ≈ 0) and

amplifying high frequency ones.

f is obtained as a filtered back-projection, i.e., the BP

of the filtered Fourier transform of the Radon transformed pφ.



With 



(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

we have

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Interpretation. The multiplication of p̂φ(ρ) by |ρ| act as

a filter, damping low frequency components (ρ ≈ 0) and

amplifying high frequency ones.

f is obtained as a filtered back-projection, i.e., the BP

of the filtered Fourier transform of the Radon transformed pφ.

Recall that the BP without filtering (i.e., BP of pφ, rather

than of p̃φ) leads to a blurred version of f . This can be

viewed as an over estimation of low frequency components.

The filtering by |ρ| seems to correct this.



With 



(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

we have

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Interpretation. The multiplication of p̂φ(ρ) by |ρ| act as

a filter, damping low frequency components (ρ ≈ 0) and

amplifying high frequency ones.

On the next picture, we see,
for f = 1 on the unit disk and 0 elswhere,

– pφ (denoted by f, the solid graph) and

– p̃φ (denoted by ft, the dotted graph)
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With 



(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

we have

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Interpretation. The multiplication of p̂φ(ρ) by |ρ| act as

a filter, damping low frequency components (ρ ≈ 0) and

amplifying high frequency ones.

Noise. The formulae indicate that p̂φ(ρ) decays ‘rapidly’ for |ρ|→∞.
On average, noise is equally large in all frequency components.
Therefore, the filter |ρ| amplifies (high frequent) noise.
In practice, a version of |ρ| that levels off for larger values of |ρ| is used.

Examples. For some κ > 0, min(|ρ|, κ), κarctan(|ρ|/κ), etc..



Pixels

If f is discretised, as a step function, then

f =
∑

i,j

fi,j χi,j

where fi,j is the average value of f on the (i, j)th pixel.

The (i, j)th pixel Sij is the square

Sij ≡ [xi − 1
2h, xi +

1
2h]× [yj − 1

2h, yj + 1
2h]

with xi = ih, yj = jh (i, j ∈ Z) and h the size of the pixels.

χij takes the value 1 at Sij and the value 0 elsewhere.

Since all operations are linear, it suffices to study the re-

sults of the Radon transformation on χ0,0 and the filtered

back-projection.



Computerised Tomography

(x
i
 , y

j
)

pixel area I
i , j

projected pixel

gφ
i,j

ξ′ ξ →ξ
l−1

ξ
l

ξ
l+1



Computerised Tomography

−3 −2 −1 0 1 2 3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Graph of f and of the Fourier transform ft of F.*g

Re(f)
Re(ft)
Im(f)
Im(ft)



CT and Fourier transforms

Theorem. With p̃φ(ξ) ≡
∫
|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Summary.

The statement in the theorem involves
1) a 1-dimensional Fourier transform (FT) (to make p̂φ),
2) a filter operation in frequency space,
3) a 1-d inverse FT and
4) BP.

The proof exploits 2-d FT, switching between
Cartesian coordinates,
rotated Cartesian coordinates, and
polar coordinates.



Practical issues

Computation requires discretization (the scanners emits

the x-rays in a series of thin parallel beams, each beam of

distance ∆ξ to the next beam, that is, ξ is discretised).

The discretization leads to artifacts, as the Gibb’s phe-

nomenon (wiggles).

The discretization of φ has to be related to the discretiza-

tion of ξ: a small ∆φ (as compared to ∆ξ) may be a waist

of scanning time, a large ∆φ may introduce additional non-

negligible errors.
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