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Filters

Let H € L*°(R).

The map f ~ g with g s.t. § = f H is the ideal H-filter.
Here, f is a signal, i.e., a function in L2(R).

Example.

1 |lw| —[92]] < e
0] else

H(w) :{

Note that H =lNq4 . —lo_..
We will mainly focus on the ideal lNo-filter.



Filters

Let H € L*°(R).

The map f ~» g with g s.t. g = fH is the ideal H-filter.
Here, f is a signal, i.e., a function in L2(R).

H is the transfer f. or (frequency) response function,
f is the input, g is the output of the filter.

Write H(w) = |H(w)| e ).

|H(w)| is the gain at frequency w.



Filters and delays

H(w) = |H(w)| e ),

What is the effect of the ‘complex part’ of the filter?

e Suppose H(w) = e ¥, j.e., ¢(w) = cw.
Then, g(t) = (F H)(~1) = J f(w)e2m 0% do = (1 — £

Conclusion. The phase shift leads to a time delay.



Filters and delays

H(w) = |H(w)| e ),

What is the effect of the ‘complex part’ of the filter?

e Suppose H(w) = e ¥, j.e., ¢(w) = cw.
Then, g(t) = (F H)(~1) = J f(w)e2m 0% do = (1 — £

Conclusion. The phase shift leads to a time delay.

What if@ IS not constant?



Filters and delays

H(w) = |H(w)| e ),

What is the effect of the ‘complex part’ of the filter?

e Suppose H(w) = e ¥, j.e., ¢(w) = cw.
Then, g(t) = (FH)Y (—t) = [ f(w)e?™ @~ dw = f(t — 5=):
Conclusion. The phase shift leads to a time delay.
e Ex. f(t) = fo(t)e2™2 with fu concentrated in [—¢, +<].

f is a wave packet, fg is the envelop.
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Filters and delays

H(w) = |H(w)| e ),

What is the effect of the ‘complex part’ of the filter?

e Suppose H(w) = e ¥, j.e., ¢(w) = cw.
Then, g(t) = (f H)(-t) = [ f(w)e?Titw—icwdy = f(t — £):
Conclusion. The phase shift leads to a time delay.

e Ex. f(t) = fo(t)e2™ 2 with fy concentrated in [—e, +<].
H(w) ~ |H(w)|e ¢+ ((w=-2)  for waQ

g(t) = (FH)Y(—t) = [ f(w)|H ()| !¢ @D-¢ () g2mitw—id/(Qw g,
|H ()| el @@= (D) (¢ — @)

?(2)
5a)

[H(Q)| fo(t — £52) e2mi2(=%



Filters and delays

H(w) = |H(w)| e ),

What is the effect of the ‘complex part’ of the filter?

e Suppose H(w) = e ¥, j.e., ¢(w) = cw.
Then, g(t) = (FH)Y (—t) = [ f(w)e?™ @~ dw = f(t — 5=):
Conclusion. The phase shift leads to a time delay.
e Ex. f(t) = fo(t)e2™ 2 with fy concentrated in [—e, +<].

H(w) ~ |H(w)|e ¢+ ((w=-2)  for waQ

915'(9)) 2mi(t—45Y)

o) = | o (1 755

%7?) is the group delay and % the time delay
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Filters

A Bode magnitude plot of the Butterworth filter of order n=2
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A gain plot (|H(w)| against w) is called a Bode plot of
the filter. deciBel scale (20l0og1g|H(w)]|) is used on the

vertical axis.
This the Bode plot of the Butterworth filter of degree 2 (see later).



Filters

A Bode phase plot of the Butterworth filter of order n=2
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The Bode phase plot is the plot of ¢(w) versus w.
Here ¢ is such that H(w) = |H(w)|e W),
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The curve w ~ H(w) (imaginary part versus real part) in
the complex plane is the Nyquist plot.



If H e L?(R), then

(fH)A(—t) = fxh, where h=H.

Filtering in frequency domain
~» convolution in time domain.
Convolution can be viewed as weighted averaging.

h is the (im)pulse response function.

h is the representation of the filter in time domain,
H is the representation in frequency domain.:

With f5 = 55Ms we have fs+h — h
fs is a pulse. Its response to the filter H approximates h.



If H e L?(R), then

(fH)A(—t) = fxh, where h=H.

Filtering in frequency domain

~~ convolution in time domain.
Convolution can be viewed as weighted averaging.

h is the (im)pulse response function.

h is the representation of the filter in time domain,
H is the representation in frequency domain..

Example. H =Tlg. Then
sin(27t2)

7t

No(t) =

= 2Qsinc(2t2).



Filters in time domain

Recall Foh(t) = /f(s)h(t — s)ds.

It is not practical if ‘future’ function values f(s), i.e., for
s > t, are required for the computation of f x h.

If h is causal, i.e., h(t) = 0 for all t < 0, then

f*h(t) = /_toof(s)h(t — s)ds

and only ‘old’ function values f(s) with s <t are required.

Note. If A(t) = O for all t < —s for some s > 0, and
h(—s) # 0, then h is not causal. However, hg is causal and

(fs)*h = fx*(hs) = (f*xh)s

We call h causal if, for some s, h(t) = 0 for all ¢t < —s.



Filters in time domain

Recall Foh(t) = /f(s)h(t — s)ds.

It is not practical if ‘future’ function values f(s), i.e., for
s > t, are required for the computation of f x h.

If h is causal, i.e., h(t) = 0 for all t < 0, then

f*h(t) = /_toof(s)h(t — s)ds

and only ‘old’ function values f(s) with s <t are required.

Note. If A(t) = O for all t < —s for some s > 0, and
h(—s) # 0, then h is not causal. However, hg is causal and

(fs)*h = fx*(hs) = (f*xh)s

We call h causal if, for some s, h(t) = 0 for all ¢t < —s.

Example. Mg is not causal.
Take T > 0 large. Mo My is not causal (except for a delay).



e Finite Impulse Response Filters



A Finite Impulse Response filter is a causal filter that,
in time domain, has a bounded support, i.e.,

there is a T'> 0 such that h(t) =0 ift > T:

for short, h has a “bounded’” or “finite’” time domain.

The desired filter H (in frequency domain), can be approx-
imated by the filter H % [ which is bounded time domain.

How large is the approximation error?



The Gibbs’ phenomenon

How close is (Mg M) =MNax My to MNo?



The Gibbs’ phenomenon

Graph of the Fourier transform g of FI[—5 5 and of f

Re(f)




The Gibbs’ phenomenon




The Gibbs’ phenomenon

- w+2
Ar(w - p)dp= | _Ar(p) dp

. Q
Mo * MNp(w) = /_Q

dp = Up(w + ) — Up(w — ),

B /w+fz sin(27Tp)

w—<2 TP
where

w sin(2xTp)

Ur(w) = / dp
—00 TP
Twsin(2

= / n(277) do = U1(Tw)

—00 o

Conclusion. T rescales the w-axis.
It does not affect the height of the ripples.



The Gibbs’ phenomenon

W - 2*T*sinc(2*T*w) with T=1
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. . in(onrT .
The Sinc function p ~» S'”(Wg P) = 2Tsinc(2xT)p).

In the picture here: T'= 1.



The Gibbs’ phenomenon

w - [© 2*T*sinc(2*T*0) do with T=1
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And its primitive Up, i.e., UL(p) = 2T sinc(2nTp).
Note that
/QTSinC(QﬂTp) dp = /QTsinc(szp)eQWiOP dp = Np(0) = 1.




The Gibbs’ phenomenon

w - [© 2*T*sinc(2*T*0) do with T=1
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w along the horizontal axis

And its primitive Up, i.e., UL(p) = 2T sinc(2nTp).

Note that
Ur(w) =1—-Up(—w) (w > 0).
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25 7 25r

15}

wavepacket - N env(ilop é ;1
f(t) = 2 fo(t) cos?(2nvt) (in the left picture) with
fo(t) = 3.5/aexp(—ma?t?) (in the right picture)

and a=0.1, v=5
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With Q = 9, we have that f Mg = fo.

The pictures show the error fo — fo with fo = f % (MaMy)
and T'= 4 (the right picture in dB-scale).



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

How to make this sounds audible?



Bat detectors
Bats use infra sound acoustic waves for navigation (radar).

T hese waves can be described by

f(#) = fo(t) cos(2mvt) (t € R),

where v is high (ultra sound) and the frequencies of fy are
concentrated around wq in the low frequency range, i.e.,

wp > 0 is low and there is a (small) 6 >0

| fo(w)]

negligible if ||w|— |wol]| > 9.
| fo(wo)

such that




Bat detectors
Bats use infra sound acoustic waves for navigation (radar).

T hese waves can be described by

f(#) = fo(t) cos(2mvt) (t € R),

where v is high (ultra sound) and the frequencies of fy are
concentrated around wq in the low frequency range, i.e.,

wp > 0 is low and there is a (small) 6 >0

| fo(w)]

negligible if ||w|— |wol]| > 9.
| fo(wo)

such that

Note.
The frequencies of f are concentrated around v—+wqg in the

ultra sound frequency range.



Bat detectors
Bats use infra sound acoustic waves for navigation (radar).

T hese waves can be described by

f(#) = fo(t) cos(2mvt) (t € R),

where v is high (ultra sound) and the frequencies of fy are
concentrated around wg in the low frequency range.

Property.

fo(t) cos(2nvt) cos(2mvt) = L fo(t) [cos(4nvt) + 1]

Our ear will filter out the high frequencies 2v:
we will hear 1 fg



Bat detectors
Bats use infra sound acoustic waves for navigation (radar).

T hese waves can be described by

f(#) = fo(t) cos(2mvt) (t € R),

where v is high (ultra sound) and the frequencies of fy are
concentrated around wg in the low frequency range.

Property.

fo(t) cos(2nvt) cos(2mvt) = L fo(t) [cos(4nvt) + 1]

Since
cos(2nvt) cos(2nvt) = L [cos(2n(v + v)t) + cos(2n (v — v)t)]
multiplication with a wave with frequency =~ the frequency

v of the carrier wave cos(2nvt) also makes the bat waves
audible.
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The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. If H € L2(R), then H M is continuous (Why?).



The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. If H € L2(R), then H M is continuous (Why?).

It is impossible to form a step function with a filter A that
has a bounded time domain:
hM7 has bounded domain = H x ﬁT IS analytic.
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The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. If H € L2(R), then H N is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs' phe-
nomenon in the stop band: take a continuous approxima-
tion of H (rather than H, as H = lNg, itself):

-+ better stop properties in the stop band

-+ less leakage in the pass band

— wider transition band



The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. If H € L2(R), then H N is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs' phe-
nomenon in the stop band: take a continuous approxima-
tion of H (rather than H, as H = lNg, itself):

-+ better stop properties in the stop band

-+ less leakage in the pass band

— wider transition band

H smooth(er) = h = H decreases more rapidly at oo
= hllp is @ more accurate approx. of H
(than MMy of MNg)

= H x[lp is more accurate
(uniform convergence for T' — o)



The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. If H € L2(R), then H N is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs' phe-
nomenon in the stop band: take a continuous approxima-
tion of H (rather than H, as H = lNg, itself):

-+ better stop properties in the stop band

-+ less leakage in the pass band

— wider transition band

(Smooth) approximations of Ng are also called windows
(in frequency domain).



Smooth Windows

Graph of the Fourier transform g of FI[—5 5 and of f
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Barlett window: H(w) = (1 — $)MNo(w) [Q=1,T = 5]
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Smooth Windows
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Barlett window: H(w) = (1 — &)MNq(w), on dB scale



Smooth Windows
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Hann window: H(w) = 0.5(cos(r&)+1)MNg(w) on dB scale



Smooth Windows
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Blackman window: Hann 4+ 0.08(cos(27g) — 1)Mq(w)



Smooth Windows

Graph of f="(abs(t)<1).*((cos(pi*t)+1)*0.5+(cos(2*pi*t)-1)*0.08)’

-0.2 | | | | | | | | | J

Blackman window: Hann + 0.08(cos(27&) — 1)MNg(w)
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wavepacket - N env(ilop é ;1
f(t) = 2 fo(t) cos?(2nvt) (in the left picture) with
fo(t) = 3.5/aexp(—ma?t?) (in the right picture)

and a=0.1, v=5
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With Q = 9, we have that f Mg = fo.

The pictures show the error fo — fo with fo = f % (MaMy)
and T'= 4 (the right picture in dB-scale).
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With Q = 9, we have that f Mg = fo.

The pictures show the error fo — fo with fo = f x (HMp)
H Barlett's window (in the right picture at dB scale).
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With Q = 9, we have that f Mg = fo.

The pictures show the error fo — fo with fo = f x (HMp)
H Blackman's window (in the right picture at dB scale).



The approach with the transformation H ~» H % ﬁT to make
the filter causal (& finite) is called a window method.

Note. The filters that we considered so far are real and
symmetric (both in time as well as in frequency domain)
and the windowing approach did not change this. In par-
ticular, these filters will not lead to group or time delays.
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B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

D restricts to the bounded time domain [-T,4+T] and
B filters to the bounded frequency domain [—£2,Q2].

There are no functions f for which BDf = f (Why not?).



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

D restricts to the bounded time domain [-T,4+T] and
B filters to the bounded frequency domain [—£2,Q2].

There are no functions f for which BDf = f (Why not?).

Find the functions ¢ for which BDvy = \i:

Y is an eigenfunctions of BD with eigenvalue .



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

D restricts to the bounded time domain [-T,4+T] and
B filters to the bounded frequency domain [—£2,Q2].

There are no functions f for which BDf = f (Why not?).

Find the functions ¢ for which BDvy = \i:

Y is an eigenfunctions of BD with eigenvalue .

Note. By = ¢ € B. Hence,
A|9l13 = (BDy, %) = (D, ) = | D13 > 0.
By restricting a signal in B to [-T,T], energy gets lost:

| Dy|2
1] —— <=1 —)\.
[]12



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

D restricts to the bounded time domain [-T,4+T] and
B filters to the bounded frequency domain [—£2,Q2].

There are no functions f for which BDf = f (Why not?).

Find the functions ¢ for which BDvy = \i:

Y is an eigenfunctions of BD with eigenvalue .

Or, equivalently, (= D) for which DBy = \i).



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Except for a scaling of the ¢, the eigenfunctions depend on
QT only (not on the individual values of T or 2)



Eigenvalues
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Eigenfunctions
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Eigenfunctions

4QT=14,
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Eigenfunctions

4QT=14,
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graph of y, scaled to [-1,1]: T=1.
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Eigenfunctions

4QT=14,
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graph of Y scaled to [-1,1]: T=1.
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Eigenfunctions

4QT=14, graph of lIJG scaled to [-1,1]: T=1.
25

-25 | 1 1 1 | J

-15 -1 -0.5 0 0.5 1 15
A4=1.00e+000, 1-A =2.00e-009

40T = 14, ¢¢
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-2.5

Eigenfunctions

4QT=14, graph of lIJ7 scaled to [-1,1]: T=1.

1 1 1 | J

-15

40T = 14,

-0.5 0 0.5 1 15
)\7=l.OOe+OOO, 1—)\7=4.55e—008



Eigenfunctions

4QT=14, graph of qJ8 scaled to [-1,1]: T=1.
25

_25 1 1 1 1 1 J

-15 -1 -0.5 0 0.5 1 15
A¢=1.00e+000, 1-A,=8.38e-007

AQT = 14, g
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-2.5

Eigenfunctions

4QT=14, graph of ng scaled to [-1,1]: T=1.

1 1 1 | J

-15

40T = 14,

-0.5 0 0.5 1 15
)\9=l.OOe+OOO, 1—)\9=1.27e—005



Eigenfunctions

4QT=14, graph of |.|J10 scaled to [-1,1]: T=1.
25F

-2.5 | 1 1 1 | J

-15 -1 -0.5 0 0.5 1 15
A,,=1.00e+000, 1-) =158e-004
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-2.5

Eigenfunctions

4QT=14, graph of |.|J11 scaled to [-1,1]: T=1.

1 1 1 | J

-15

4QT = 14,

-0.5 0 0.5 1 15
A11=9.98e—001, 1—)\1121.626—003



Eigenfunctions

4QT=14, graph of |.|J12 scaled to [-1,1]: T=1.
25F

-2.5 | 1 1 1 | J

-15 -1 -0.5 0 0.5 1 15
A,,=9.87e-001, 1-\ ,=1.33e-002



Eigenfunctions

4QT=14, graph of |.|J13 scaled to [-1,1]: T=1.

-2.5 L L | | | |
-1.5 -1 -0.5 0 0.5 1 15

)\1329.186—001, l—)\13=8.17e—002

4QT — 14, ¢13



Eigenfunctions

4QT=14, graph of |.|J14 scaled to [-1,1]: T=1.

25

-2.5 L L | | | |
-1.5 -1 -0.5 0 0.5 1 15

)\1426.836—001, l—)\14=3.17e—001




Eigenfunctions

4QT=14, graph of |.|J15 scaled to [-1,1]: T=1.

-2.5 L L | | | |
-1.5 -1 -0.5 0 0.5 1 15

)\1523.166—001, l—)\15=6.84e—001

40T =14, ¢85



Eigenfunctions

4QT=14, graph of |.|J16 scaled to [-1,1]: T=1.

-25 ‘ ‘ ‘ w
‘15 -1 -05 0 05 1 15

)\1628.20e—002, 1—)\1629.18e—001

4QT =14,  ¢16



Eigenfunctions

4QT=14, graph of |.|J17 scaled to [-1,1]: T=1.
25r-

-25 ‘ ‘ ‘ w
‘15 -1 -05 0 05 1 15

)\1721.38e—002, 1—)\1729.866—001




Eigenfunctions

4QT=14, graph of |.|J18 scaled to [-1,1]: T=1.
25r-

-25 ‘ ‘ ‘ w
‘15 -1 -05 0 05 1 15

)\1821.77e—003, 1—)\1829.986—001
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-2.5

Eigenfunctions

4QT=14, graph of |.|J19 scaled to [-1,1]: T=1.

-15

A4QT = 14,

1
-0.5 0 0.5 1 15
)\1921.90e—004, 1—)\1921.OOe+000



Eigenfunctions

4QT=14, graph of L|J20 scaled to [-1,1]: T=1.
25F

151+

0.5

-2.5 L L | | | |
-1.5 -1 -0.5 0 0.5 1 15

)\20=1.77e—005, 1—)\20=1.00e+000

4QT — 14, qbzo



B=Bg={fecL?®)| fMg=f}.
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Property. \p, =1 ifn<4QT — In(QT),
Mo~ 0 if n>4QT + In(QT).

Discussion. ‘427 different signals from B can be packed
on [-T,T]’': The dimension of the ‘space’ of signals in B
that are concentrated in time in [-T,4T] is =~ 4QT.

Space as span{y | 1 — A\ < e}



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)
e [ sincle(y — ) 6(x) dw = A6(y)

Property. \p, =1 ifn<4QT — In(QT),
Mo~ 0 if n>4QT + In(QT).

Discussion. Results are mainly of theoretical interest. It

is hard (unstable) to compute the ;. for large values of
47T,



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Let BDvY, = A\, S.T. >‘i+1 < A\; and ||¢kH2 = 1.
Theorem. e (1) forms an orthonormal basis of B,

e (——¢My) forms an orthonormal basis of {fMy | f € BY.

Vo




B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)
e [ sincle(y — ) 6(x) dw = A6(y)

Let BDvY, = A\, S.T. >‘i+1 < A\; and ||¢kH2 = 1.

T heorem.

F=Y Ty with 8= [ f@u@ma (€ B)
; >‘j k 7 = 7 k



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Let BDvY, = A\, S.T. >‘i+1 < A\; and ||¢kH2 = 1.

T heorem.

F=Y Ty with 8= [ f@u@ma (€ B)
; >‘j k 7 = 7 k

Proof. Use Hilbert theory: BDB is a compact Hermitian
operator on the Hilbert space B (close subspace LQ(]R)).



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Let BDvY, = A\, S.T. >‘i+1 < A\; and ||¢kH2 = 1.

T heorem.

F=Y Ty with 8= [ f@u@ma (€ B)
; >‘j k 7 = 7 k

Discussion. f can be reconstructed from fllp if f € B.
IIl conditioned (for A\p ~ 0).

Remedy. Restrict to A\ =~ 1.



B=Bg={feL?®R)| fMq=Ff}
Df =D7p(f) = fNy, Bf = Ba(f) = f*Nq (f € L?(R))

BD(t) = 2 /_TT Sinc(2Q(t — s)) ¥(s) ds = Aib(t)

Put ¢ = 20T and ¢(x) =y (Tx). Then (with s = Tx)

e [ sincle(y — ) 6(x) dw = A6(y)

Let BDvY, = A\, S.T. >‘i+1 < A\; and ||¢kH2 = 1.

T heorem.

F=Y Ty with 8= [ f@u@ma (€ B)
; >‘j k 7 = 7 k

Discussion. f can be reconstructed from fllp if f € B.
IIl conditioned (for A\p ~ 0).

Remedy. Solve f"= argmin,cz(|lg — 73+ 7lgll3)
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e Infinite Impulse Response Filters



Infinite Impulse Response filters?

Part of the problems with the FIR filters come from the
fact that the filters have a bounded (finite) time domain.

The techniqgue of windowing in time domain is still usefull
iIf (long) delays are allowed.

For instance, in Imaging (where, in the above discussion we
should read ‘space’ for ‘time’), where we have the complete
(blurred, noicy) image (signal f) available. The technique
might not be useful in case the signal that has to be pro-
cessed ‘comes in’ in time: then the signal is only partially
available or we have to ‘wait’ too long.



Infinite Impulse Response filters?

Part of the problems with the FIR filters come from the
fact that the filters have a bounded (finite) time domain.

Can we create filters with unbounded domain (IIR) that
nevertheless forms the output from ‘local’ information?

Note that this may not be impossible since a signal of
bounded bandwidth is completely determined by its values
at any (non empty) time interval.

This suggests to exploit the smoothness of the input signal
(of bounded bandwidth).



e Analog filters (hardware)



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

The higher order derivatives in g represent feedback to
the system. They give infinite impulse response.

Systems of this form can be realised in electronic circuits.
Coupled second order differential equations can be formed
into higher dimensional coupled first order systems. Also,
by elimination, coupled second order differential equations
can formed into one dimensional higher order systems.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

FT of (x) leadsto

p(27iw) §(w) = q(2miw) f(w),
where, for ¢ € C,

p(¢) = agtaiC+...+ac® and  ¢(¢) = bo+bi¢+. . Abml™

Let a; be such that p(¢) 7 0 for all { € {27iw | w € R}.
qg(2miw)

Then, H(w) = (i)

c C*°(R) and bounded if m <k.

H e L?(R) if m < k. Then H = h for some h € L2(R).



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

FT of (x) leadsto

p(2miw) §(w) = q(2miw) f(w),

where, for ¢ € C,

p(¢) = agtaiC+...+ac® and  ¢(¢) = bo+bi¢+. . Abml™

Let a; be such that p(¢) 7 0 for all { € {27iw | w € R}.
qg(2miw)

Then, H(w) = (i)

c C*°(R) and bounded if m <k.

H e L?(R) if m < k. Then H = h for some h € L2(R).

Does h belong to L1(R) (to guarantee that g is L? if f is)?



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

FT of (x) leadsto

p(2miw) §(w) = q(2miw) f(w),

where, for ¢ € C,

p(¢) = agtaiC+...+ac® and  ¢(¢) = bo+bi¢+. . Abml™

Let a; be such that p(¢) 7 0 for all { € {27iw | w € R}.
qg(2miw)

Then, H(w) = (i)

c C*°(R) and bounded if m <k.

H e L?(R) if m < k. Then H = h for some h € L2(R).

Note. H(w) = c*(A — 27miwB)~1b is of the above form.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Proof. Factorise p to see that for some ~1,...,7, € C

a(© _ ¥ V)
p(¢Q) j§1 (¢ = AprG)

Here, Aq,..., )\ are the zeros of p counted according to
multiplicity, — u(j) = #{i |1 < j, A\ = A}

The zeros of p are the poles of the filter,
the zeros of ¢ are the zeros of the filter.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
fel?(R) = §=fH & g=Ff+helL?R).
Proof. It suffices to show that, for 5 € N, the function

1
(2miw — \)J
is the FT of an A in L2(R) N LI(R) if A € C, X € iR.
Clearly, H € L?(R). Hence, h € L%(R).

H(w) = (w € R)



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
fel?(R) = §=fH & g=Ff+helL?R).
Proof. It suffices to show that, for 5 € N, the function

1
(2miw — \)J
is the FT of an A in L2(R) N LI(R) if A € C, X € iR.
Clearly, H € L?(R). Hence, h € L%(R).

H(w) = (w € R)

If Re(\) < 0, then h is a scalar multiple of

ti=leAt  for ¢t >0
0 fort <O (h is causall)



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
fel?(R) = §=fH & g=Ff+helL?R).
Proof. It suffices to show that, for 5 € N, the function

1
(2miw — \)J
is the FT of an A in L2(R) N LI(R) if A € C, X € iR.
Clearly, H € L?(R). Hence, h € L%(R).

H(w) = (w € R)

If Re(\) > 0, then h is a scalar multiple of

ti—leAt for t <O
0 fort >0



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
fel?(R) = §=fH & g=Ff+helL?R).
Proof. It suffices to show that, for 5 € N, the function

1
(2miw — \)J
is the FT of an A in L2(R) N LI(R) if A € C, X € iR.
Clearly, H € L?(R). Hence, h € L%(R).

H(w) = (w € R)

In all cases h € L2(R) N L1(R). ]



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.

Proof. See the proof of the preceding theorem. []



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.

The filter needs a start.
Suppose f(t) =0 for all t < 0. Then

g(0)=4¢'(0)=...=¢ 1 =0

seems a reasonable choice.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.

The filter needs a start.
Suppose f(t) =0 for all t < 0. Then

g(0)=4¢'(0)=...=¢ 1 =0

holds for g = f xh < the filter is causal.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.

Property. h is real if the coefficients a; and bj are real.

Proof. f =~ real pulse = g real = h = g real.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Theorem. Let m < k. Then h € L2(R) N L1(R):
feL?2(R) = g=fH & g=fxhelL%(R).

Theorem. Let m < k.
The filter is causal <« the poles are in C.

Poles are the zeros of p. C~ = {\A € C| Re(\) < 0} is the
left half of the complex plane.

Property. h is real if the coefficients a; and bj are real.

h real and causal = H is even (H(—w) = H(w)), not-real



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog+a1g + ...+ arg™ = bof +b1f + .. 4 b

Example 1. g+ 53549 = f.

Then, p({)=14+:5¢ q(¢) =1, H(w>:1—l}i

1

with gain  |H(w)| =
ViHgP




Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Example 3. g+ (ﬁ)kg(k) = f.
Then,  p(O)=1+GRO%N e =1 HW =ey

1

with gain  |H(w)| = .
Vsl

Note that for large(r) k:
if lw] < Q, then [&[?* ~ 0 and |H(w)| =~ 1
it |w| > €2, then |%|2k ~ 0 and |H(w)|~0




Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog+a1g + ...+ arg™ = bof +b1f + .. 4 b

Example 1. g+ ;159 = f.
Then, p(()=14+¢ q)=1, Hw)= 1—|}z'

with gain  |H(w)| = ———
V1G]
Example 2. g —1-¢' = f.
Then, p(Q)=1-,¢ =1, HWw) =%

with gain |H(w)| = 1 -~
1+l




Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Examples. (1) g+ 5559 = f. (2) g—559" = F.
Same gain.

Pole (1) in C—, pole (2) in CT: (1) causal, (2) not causal.

Note. All filters are essentially of the above form: see the
proof of the “Ll-theorem’.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Examples. (1) g+ 5559 = f. (2) g—559" = F.

Let g be the L2(R) solution.

Suppose g is perturbed at time tg, that is,
e g satisfies the ODE,
e g(t) = ¢g(t) for t < to,
e g(tg) = g(to) t+¢.

Here we assumed that we obtained the output g(t) at timet
by solving the ODE (following the increasing time t): this
was the purpose of this type of filters.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Examples. (1) g+ 5559 = f. (2) g—559" = F.

Let g be the L2(R) solution.
Suppose g is perturbed at time tg, that is,

e g satisfies the ODE,
o g(t) = g(t) for t < tg,
e g(to) = g(to) +e.

Then (G — g)(t) = eer(t=t0) for ¢ > ¢,.

Here A1 is the zero of p.

(1) =M1 =—-355<0and |[(g—g)(t) — 0 for t — oc.
(2) = N\ = +515 < 0 and (g — g)(t)| — oo for t — .



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Conclusion. Let m < k.
The filter is stable (perturbations do not have a lasting
effect) if and only if the poles are in C™.

To avoid discussions on what effects are acceptable (how
long, how large?), a formal definition of stability is intro-
duced.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Definition. Let m < k.
The filter is stable if and only if all poles are in C™
(thatis, A eC& p(A) =0 = Re(N)<O0.)

T heorem. Let m < k.
The filter is stable <« the filter is causal.



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1d + ...+ apgd® =bof +b1f + ... Fbmf™ (%)

With p() =ag+...4+a¢f and ¢(¢&) =bg+ ...+ bl™,

put  H(w) = |H(w)| e #0() = L2722},

Summary. Polynomials p and ¢ should be such that
1) For technical realisation: p and ¢ are real (real coeff.)

2) degr(p) > degr(q)

3) For caus. and stab.: XeC & p(A) =0 = Re(A) <O
4) For requested filtering: |H| ~ Mg

5) For acceptable group/time delay; ¢(w) =~ ...



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Example. g + (%)kg(k) = f.

Then, p(¢) =1+ (5¢)* with gain |H(w)| = 1

ViHg[*




Butterworth filter

0.8
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0.4r

0.2

! ! ! ! ! J
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|H(w)| = 1 (blue), k = 1. Here we took Q2 = 1.

VitHlgl™




Butterworth filter

0.8
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! ! ! ! ! J
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|H(w)| = 1 (blue), k= 5. Here we took 2 = 1.
k

Vitlsl®



Butterworth filter

T
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|H(w)| = 1 (blue), k = 10. Here we took = 1.
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Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Example. g + (%)kg(k) = f.
1

Then, p(¢) =14 (%)% with gain |H(w)| = .
ViHg*

The gain is fine, but
the filter is unstable and not causal for k > 2
(if £k = 2 then p has even zeros on iR).



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Example. g + (%)kg(k) = f.

Then, p(¢) =1+ (5¢)* with gain |H(w)| = 1

Vitisl®

Butterworth filters:

e stable, real coefficients
1 1

lp(27iw)] - \/1+ ‘%‘Qk

o g =1,




Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Butterworth filters:

e stable, real coefficients
1 1

Ip(27iw)] - \/1_|_ ‘%‘Qk

Example. g4 224 + (;1)2¢® = f.

e qg—=1,

= p(272) =1+ v2¢+¢?, gain |HWw)| = ———.
Vitisl®



Given ag,a1,...,a; and bg,...,by in R.

For a given input signal f, the output g is such that

aog +a1g + ...+ apgd® =bof +b1f 4+ ...+ bmf™ (%)

Butterworth filters:

e stable, real coefficients
1 1

Ip(27iw)] - \/1_|_ ‘%‘Qk

Example. g4 224 + (;1)2¢® = f.

e qg—=1,

= p(272) =1+ v2¢+¢?, gain |HWw)| = ———.
Vitisl®

p(2TQN) =0 = do = A1 & 2Re()\;) = A1 + Ao = —V2.



Chebyshev filters.
e stable, real coefficients
1 1

[p(2miw)| \/1 + 2272 (&)

o g—=1,

Here, T} is the kth degree Chebyshev polynomial.

Property.
e 73 is a real polynomial of degree k

o T (x)| <1 forall z€[-1,+41],
o |T.(x)| > |P(x)| for all z,|x| > 1 and
all polynomials P of degree < k
for which  sup{|P(z)| |z € [-1,1]} <1



Chebysheyv filters

Chebyshev polynomial T8

0.8}
0.6
0.4F

0.2

Cheb. pol. T} of degree £k =8



Chebysheyv filters

Chebyshev polynomial T8
20

181
16
14t
12f

101

A o~ o~ /

V NS, N N N

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Cheb. pol. T} of degree £k =8



Butterworth filter

0.8

0.6

0.4r

0.2

0

! ! ! !
-3 -2 -1 0 1

Gain Butterworth filter of degree £k = 10



Chebysheyv filters

0.8

0.6

0.4r

0.2

J L

0

! ! ! !
-3 -2 -1 0 1

Gain Chebyshev filter of degree kK = 8



Butterworth filter

20

_20 -

_60 -

_80 -

-100 : : :
-3 -2 -1 0 1 2

Gain Butterworth filter of degree £k = 10, dB scale



Chebysheyv filters

20

_20 -

_60 -

_80 -

-100 :
-3 -2 -1 0 1 2

Gain Chebyshev filter of degree k = 8, dB scale



windowing versus analogue filtering

windowing.

+ Real frequency response function

— Long filter (long impulse response function)
(requiring information from “past” as well as “future”)

Analogue filtering.

-+ “Short"” filters

+ No “future” information needed

— Non-real frequency response function
— Stability issues



e Digital filters (software)



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)

The values f, can be obtained by sampling a function F
on R:

fn = F(nAt) with sampling frequency Ait = 20
where 2 the bandwidth of the signal F'.



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)

We wish to construct Infinite Impulse Response (IIR) filters
that rely on “local information” .



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)

Recall
1 .

i fn e—27riwn PN fn — /O f(w) 627rz'wn dew

n——oo

f(w)

If f is from sampling F', then the formula

1 Q. .
fn — ﬁ /_Q f(w) 627mwnAt dw

IS more appropriate.

To simplify notation, we (took and) take Q = 1.

2

This corresponds to scaling of
the w-axis by 2Q and the t-axis by At = 5&:
G(t)=F(At) & Gw) = f(2Qw).

G has bandwidth % (G is to be sampled at t = n.



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)
Recall

- s : 1 :
f(w) — Z fn e—27mwn PN fn — /O f(w) 627rzwn dew

N=——00
Given aq,...,ar and [o,...,08m IN R, ag# 0
the output g satisfies

aogn = (Bofn + ...+ Bmfn—m) — (@19n—1 + ... + 0}9pn_1)



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)

Recall
1 .

i fn e—27riwn PN fn — /O f(w) 627riwn dew

n——oo

With aE(an“aak)a /BE(HOw“aﬁm)a O‘O#Oa

the output g satisfies axg=03xf (%)

f(w)

The digital filter has

m feed-forward stages and
k feed-backward stages.
k is the order of the filter.

If £k = 0 then the filter is Finite Impulse Response (FIR).



We consider discrete signals f = (..., fo, f1, f2,...) € £2(Z)

Recall

AN

f(w)

o0 . 1 .
Z fn e—27mwn PN fn — /O f(w) 627rzwn dew

With OéE(OéO,...,Oék), /65(607“'76?71)7 O‘O#O7
the output g satisfies axg=03xf (%)
DFT of (x) leadsto
p(Dg(w) = q() f(w) with z=e™
p(Q)=ap+...+ap¢® and ¢(O) =Ho + ... + Bm(™ (¢ € C).

Let a be such that p(¢) #0 for all ¢ €C, (| = 1.
q(z)
p(z)

H is 1-periodic, continuous and bounded.

Then H(w) = for z=e?Tw,

H ¢ L3(R), whence H = h for some h € (2(Z)



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Proof. For some ~;,7; € C, u(j) € N, we have

q(€) _ &L v
p(C) ]ZO’VJC + Z (C N ),u(]) (¢ € C).

Here, Aj are the zeros of p. They are counted according
to multiplicity. The 1/>\j are the poles of the filter.

Suffices to consider A€ C, |A\|# 1, w €N and show

H(w) = = > hpz" (z = ™)
for some h e€¢1(Z). Then H(w) = h(w).

Note that now there are no restrictions on the degree of q
in relation to the degree of p.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Proof. Let A € C, |A|] # 1. We will show that

1 .
e — Z Ry 27 (z = 627r7,w)
T nez,
for some h = (hy) € ¢1(Z). (Exercise: similar proof if u > 1.)
1 1 1 1 1

A A1-Z/A z1-)/z

If |[A]>1, then |z/A|=1/|A\] <1, and

11 © 1 © 1
U AP D vr= L NP DR pyr=s

< Q.

Hence, hy, = ﬁ (n>0), hy =0 (n<0), he ().

Note that h is causal.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Proof. Let A € C, |A|] # 1. We will show that

1 .
e — Z Ry 27 (z = 627r7,w)
T nez,
for some h = (hy) € ¢1(Z). (Exercise: similar proof if u > 1.)
1 1 1 1 1

A A1-Z/A z1-)/z

If |\l <1, then |A/z]| = |\ <1, and

1 1 -1 1 -1 1

— = z™ and
z1-X\/z 2 17 2. A|n+1

nN——0oo nN——0oo

< 0.

Hence, h, = An—lﬂ (n<0), hn =0 (n>0), he ().

Note that h is not causal.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.

Here S={(eC]||{] <1}

Proof. See the proof of the preceding theorem.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.
Here S={(eC]||{] <1}
To start the filter, suppose fj = 0 for y < 0. Then

9—k+1=9-k42=...=g-1=0
holds for g = f *x h < the filter is causal.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.

Here S={(eC]||{] <1}

Let g € ¢2(Z) be the output for input f € ¢2(Z).
Suppose gng is perturbed, that is,

e g satisfies the recurrence relations for n # ng,
o gno — Jng + €.

Here we assume that we obtained g by recursively solving
the recurrence relations ().



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.
Here S={(eC]||{] <1}

Let g € ¢2(Z) be the output for input f € ¢2(Z).
Suppose gng is perturbed, that is,

e g satisfies the recurrence relations for n # ng,
o §no — Jng + €.

Then,
e g — g satisfies the recurrence for f =0, n # np,
® gn —gn = 0 for n < ng,
® gng — gng = €.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.
Here S={(eC]||{] <1}

Let g € ¢2(Z) be the output for input f € ¢2(Z).
Suppose gng is perturbed, that is,

e g satisfies the recurrence relations for n # ng,
o §no — Jng + €.

Example. p({) = ag+ «1¢ and q(¢) = 1.
Then p(—()lo/Oé]_) = 0. With A\ = —Oé]_/OéO, we have
aoN" T 4+ a1 A" = N (apA + 1) =0;

~

gn — gn = eAX"0 for n > ng.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.
Here S={(eC]||{] <1}

Let g € ¢2(Z) be the output for input f € ¢2(Z).
Suppose gng is perturbed, that is,

e g satisfies the recurrence relations for n # ng,
o gno — Jng + €.

Then, for some 941,...,d,, we have that

k .
In—gn= 3 ot (nzmo—k+1),
']:

The error gn — gn vanishes for n — co < all A; in S.
Here, 1/>\j zero of p.



Theorem. h € ¢1(Z). Hence, g = fxh € 02(Z) if f € 02(Z).

Theorem. The filter is causal <« the poles are in S.
Here S={(eC]||{] <1}

Definition. The filter is stable if all poles are in S,
that is, p(1/A) =0 = |A| < 1.

T heorem. The filter is stable <« it is causal.



ag+aign—1+ ...+ aggn—r = Bofn+ ...+ Bmfn-m
p(Q)=ag+ ...+l Q) =Bo+-..+ Bml™,

Put H(w)=|H(W)] e~ (W) = ggg with z = e27miw,

Summary. Polynomials p and g should be such that
1) For technical realisation: p and g are real (real coeff.)
2) For caus. and stab.: Ae C & p(A\) =0 = |A| >1
3) For requested filtering: |H| ~ Mg
4) For acceptable group/time delay; ¢(w) =~ ...

Note.
There is no restriction on the degree of the polynomial q.



ag+aign—1+ ...+ aggn—r = Bofn+ ...+ Bmfn-m
p(Q)=ag+ ...+l Q) =Bo+-..+ Bml™,

Put H(w)=|H(W)] e~ (W) = ggg with z = e27miw,

Discussion. The stability/causality restriction |A| > 1 on
the zeros of the polynomial p seems a bit odd: because, the
familiar stability condition for difference equation is || < 1.
This is explained from the fact that e 27" s ysed for the
Fourier transform: changing —n into +n (or, equivalently,
reversing time ¢ = n), leads to the usual stability condition.

The familiar looking condition can also be recovered by
changing the “order” of the pol. terms: with N = max(m, k),

put Q(¢) =¢Nq(1/¢) and P(Q) =¢Vp(1/¢) (C€0).

Then, e P and (@) are polynomials of degree N,
o H(w)= gg% with z = e2mw

e« PN =0 & p(1/\) = 0.



From analogue to digital

Analogue filters can easily be transformed into digital ones

using: ~ 1

(=~Z(z) with Z(z)= . (z € C)

Z is Cayley’s transform. It is a conformal (i.e., analatyic
with non-zero derivative) bijection, mapping

e C\{—1} onto C\{1},

o {zc€C||z|] <1} onto {¢ € C|Re(¢) <0} and
o {z€C||z|=1,z%# —1} onto iR

o —1 to .

We select v < 0 and use its size to scale the R axis.



Cayley’s transform

-1.5F

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

If we identify (the green dots) the complex plane with the unit sphere,

¢ 1-[CENT _
2¢ ~ (1+|<|2’ 1+ICI2) (0 = north-pole, oo - south-pole), then the Cayley

transform rotates the sphere by rotating the southern hemisphere to
the northern one.




Cayley’s transform

0.5

-1.5F

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

If we identify (the green dots) the complex plane with the unit sphere,

¢ 1-[CENT _
2¢ ~ (1+|<|2’ 1+ICI2) (0 = north-pole, oo - south-pole), then the Cayley

transform rotates the sphere by rotating the southern hemisphere to
the northern one.




Cayley’s transform
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If we identify (the green dots) the complex plane with the unit sphere,

¢ 1-[CENT _
2¢ ~ (1+|<|2’ 1+ICI2) (0 = north-pole, oo - south-pole), then the Cayley

transform rotates the sphere by rotating the southern hemisphere to
the northern one.




Cayley’s transform
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If we identify (the green dots) the complex plane with the unit sphere,
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transform rotates the sphere by rotating the southern hemisphere to
the northern one.
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Cayley’s transform
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Cayley’s transform
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Cayley’s transform

0.5

-1.5F

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

If we identify (the green dots) the complex plane with the unit sphere,

¢ 1-[CENT _
2¢ ~ (1+|<|2’ 1+ICI2) (0 = north-pole, oo - south-pole), then the Cayley

transform rotates the sphere by rotating the southern hemisphere to
the northern one.




From analogue to digital

Analogue filters can easily be transformed into digital ones

using: 51

(=~Z(z) with Z(z)= . (z € C)

Properties. Select v < 0. Put w= —5s-tan(wv) (v € R).
o 2= 2™ & (= —jytan(mv) = 2miw.

e Re(() <0 < |z|>1.

If, for V> 0, we are interested in approximating Iy (v),
then we can try to approximate Mg (w) for Q = —% tanrwV.

Nate that v = —tanQ(—jrv) might be an attractive scaling then.



From analogue to digital

Analogue filters can easily be transformed into digital ones
using: 51

C=~Z(z) with Z(z) = (z € C)
<
Consider a stable analogue filter A(¢{) = @:
p(¢)

with H(w) = A(2miw), we have
o [ Hw)|~MNolw), e A() = < Re(()<O.

With D(2) = A(¢) and H(v) = D(e27),
D is a stable digital filter:

_ 4(z)

p(2)

e D(e 2™) = A(2miw), |HW)|~ No(w) = MNy(v),
o D(z) =0 & A() = < |z|>1.

e D(2)

for some polynomials p and gq,



