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Filters

Let H ∈ L∞(R).

The map f Ã g with g s.t. ĝ = f̂ H is the ideal H-filter.

Here, f is a signal, i.e., a function in L2(R).

Example.

H(ω) =

{
1 | |ω| − |Ω| | < ε

0 else

Note that H = ΠΩ+ε −ΠΩ−ε.
We will mainly focus on the ideal ΠΩ-filter.



Filters

Let H ∈ L∞(R).

The map f Ã g with g s.t. ĝ = f̂ H is the ideal H-filter.

Here, f is a signal, i.e., a function in L2(R).

H is the transfer f. or (frequency) response function,

f is the input, g is the output of the filter.

Write H(ω) = |H(ω)| e−iφ(ω).

|H(ω)| is the gain at frequency ω.



Filters and delays

H(ω) = |H(ω)| e−iφ(ω).

What is the effect of the ‘complex part’ of the filter?

• Suppose H(ω) = e−icω, i.e., φ(ω) = cω.

Then, g(t) = (f̂ H)̂(−t) =
∫
f̂(ω)e2πitω−icω dω = f(t− c

2π):

Conclusion. The phase shift leads to a time delay.
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H(ω) = |H(ω)| e−iφ(ω).

What is the effect of the ‘complex part’ of the filter?

• Suppose H(ω) = e−icω, i.e., φ(ω) = cω.

Then, g(t) = (f̂ H)̂(−t) =
∫
f̂(ω)e2πitω−icω dω = f(t− c

2π):

Conclusion. The phase shift leads to a time delay.

What if φ(ω)
ω is not constant?



Filters and delays

H(ω) = |H(ω)| e−iφ(ω).

What is the effect of the ‘complex part’ of the filter?

• Suppose H(ω) = e−icω, i.e., φ(ω) = cω.

Then, g(t) = (f̂ H)̂(−t) =
∫
f̂(ω)e2πitω−icω dω = f(t− c

2π):

Conclusion. The phase shift leads to a time delay.

• Ex. f(t) = f0(t)e
2πitΩ with f̂0 concentrated in [−ε,+ε].

f is a wave packet, f0 is the envelop.
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Filters and delays

H(ω) = |H(ω)| e−iφ(ω).

What is the effect of the ‘complex part’ of the filter?

• Suppose H(ω) = e−icω, i.e., φ(ω) = cω.

Then, g(t) = (f̂ H)̂(−t) =
∫
f̂(ω)e2πitω−icω dω = f(t− c

2π):

Conclusion. The phase shift leads to a time delay.

• Ex. f(t) = f0(t)e
2πitΩ with f̂0 concentrated in [−ε,+ε].

H(ω) ≈ |H(ω)| e−i(φ(Ω)+φ′(Ω)(ω−Ω)) for ω ≈ Ω

g(t) = (f̂H )̂ (−t) ≈ ∫
f̂(ω) |H(Ω)| ei(φ(Ω)−φ′(Ω)Ω) e2πitω−iφ′(Ω)ω dω

= |H(Ω)| ei(φ(Ω)−φ′(Ω)Ω) f(t− φ′(Ω)
2π

)

= |H(Ω)| f0(t− φ′(Ω)
2π

) e2πiΩ(t−φ(Ω)

2πΩ
)



Filters and delays

H(ω) = |H(ω)| e−iφ(ω).

What is the effect of the ‘complex part’ of the filter?

• Suppose H(ω) = e−icω, i.e., φ(ω) = cω.

Then, g(t) = (f̂ H)̂(−t) =
∫
f̂(ω)e2πitω−icω dω = f(t− c

2π):

Conclusion. The phase shift leads to a time delay.

• Ex. f(t) = f0(t)e
2πitΩ with f̂0 concentrated in [−ε,+ε].

H(ω) ≈ |H(ω)| e−i(φ(Ω)+φ′(Ω)(ω−Ω)) for ω ≈ Ω

g(t) = |H(Ω)| f0
(
t− φ′(Ω)

2π

)
e2πiΩ(t−φ(Ω)

2πΩ )

φ′(Ω)
2π is the group delay and φ(Ω)

2πΩ the time delay
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A Bode magnitude plot of the Butterworth filter of order n=2

A gain plot (|H(ω)| against ω) is called a Bode plot of

the filter. deciBel scale (20 log10 |H(ω)|) is used on the

vertical axis.
This the Bode plot of the Butterworth filter of degree 2 (see later).
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A Bode phase plot of the Butterworth filter of order n=2

The Bode phase plot is the plot of φ(ω) versus ω.

Here φ is such that H(ω) = |H(ω)| e−iφ(ω).
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The curve ω Ã H(ω) (imaginary part versus real part) in

the complex plane is the Nyquist plot.



If H ∈ L2(R), then

(f̂ H)̂(−t) = f ∗ h, where ĥ = H.

Filtering in frequency domain

Ã convolution in time domain.

Convolution can be viewed as weighted averaging.

h is the (im)pulse response function.

h is the representation of the filter in time domain,

H is the representation in frequency domain.:

With fδ ≡ 1
2δΠδ we have fδ ∗ h→ h

fδ is a pulse. Its response to the filter H approximates h.



If H ∈ L2(R), then

(f̂ H)̂(−t) = f ∗ h, where ĥ = H.

Filtering in frequency domain

Ã convolution in time domain.

Convolution can be viewed as weighted averaging.

h is the (im)pulse response function.

h is the representation of the filter in time domain,

H is the representation in frequency domain..

Example. H = ΠΩ. Then

Π̂Ω(t) =
sin(2πtΩ)

πt
= 2Ωsinc(2tΩ).



Filters in time domain

Recall f ∗ h(t) =
∫
f(s)h(t− s) ds.

It is not practical if ‘future’ function values f(s), i.e., for
s > t, are required for the computation of f ∗ h.
If h is causal, i.e., h(t) = 0 for all t < 0, then

f ∗ h(t) =
∫ t

−∞
f(s)h(t− s) ds

and only ‘old’ function values f(s) with s ≤ t are required.

Note. If h(t) = 0 for all t < −s for some s > 0, and
h(−s) 6= 0, then h is not causal. However, hs is causal and

(fs) ∗ h = f ∗ (hs) = (f ∗ h)s

We call h causal if, for some s, h(t) = 0 for all t < −s.



Filters in time domain

Recall f ∗ h(t) =
∫
f(s)h(t− s) ds.

It is not practical if ‘future’ function values f(s), i.e., for
s > t, are required for the computation of f ∗ h.
If h is causal, i.e., h(t) = 0 for all t < 0, then

f ∗ h(t) =
∫ t

−∞
f(s)h(t− s) ds

and only ‘old’ function values f(s) with s ≤ t are required.

Note. If h(t) = 0 for all t < −s for some s > 0, and
h(−s) 6= 0, then h is not causal. However, hs is causal and

(fs) ∗ h = f ∗ (hs) = (f ∗ h)s

We call h causal if, for some s, h(t) = 0 for all t < −s.

Example. Π̂Ω is not causal.

Take T > 0 large. Π̂Ω ΠT is not causal (except for a delay).
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A Finite Impulse Response filter is a causal filter that,

in time domain, has a bounded support, i.e.,

there is a T > 0 such that h(t) = 0 if t > T :

for short, h has a “bounded” or “finite” time domain.

The desired filter H (in frequency domain), can be approx-

imated by the filter H ∗ Π̂T which is bounded time domain.

How large is the approximation error?



The Gibbs’ phenomenon

How close is (Π̂Ω ΠT )̂ = ΠΩ ∗ Π̂T to ΠΩ?



The Gibbs’ phenomenon
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H = ΠΩ [Ω = 1, T = 5]



The Gibbs’ phenomenon
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The Gibbs’ phenomenon

ΠΩ ∗ Π̂T (ω) =
∫ Ω

−Ω
Π̂T (ω − ρ) dρ =

∫ ω+Ω

ω−Ω
Π̂T (ρ) dρ

=
∫ ω+Ω

ω−Ω

sin(2πTρ)

πρ
dρ = UT (ω+ Ω)− UT (ω −Ω),

where

UT (ω) ≡
∫ ω

−∞
sin(2πTρ)

πρ
dρ

=
∫ Tω

−∞
sin(2πσ)

πσ
dσ = U1(Tω)

Conclusion. T rescales the ω-axis.

It does not affect the height of the ripples.



The Gibbs’ phenomenon
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The Sinc function ρ Ã sin(2πTρ)
πρ = 2T sinc(2πTρ).

In the picture here: T = 1.



The Gibbs’ phenomenon
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ω → ∫
−∞
ω   2*T*sinc(2*T*σ)  dσ   with   T = 1

ω along the horizontal axis

And its primitive UT , i.e., U ′T (ρ) = 2T sinc(2πTρ).

Note that∫
2T sinc(2πTρ) dρ =

∫
2T sinc(2πTρ)e2πi0ρ dρ = ΠT (0) = 1.



The Gibbs’ phenomenon
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ω → ∫
−∞
ω   2*T*sinc(2*T*σ)  dσ   with   T = 1

ω along the horizontal axis

And its primitive UT , i.e., U ′T (ρ) = 2T sinc(2πTρ).

Note that
UT (ω) = 1− UT (−ω) (ω > 0).
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f(t) = 2 f0(t) cos2(2πνt) (in the left picture) with

f0(t) = 3.5
√
α exp(−πα2t2) (in the right picture)

and α = 0.1, ν = 5
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With Ω = 9, we have that f ∗ Π̂Ω = f0.

The pictures show the error f0 − f̃0 with f̃0 ≡ f ∗ (Π̂ΩΠT )

and T = 4 (the right picture in dB-scale).



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

How to make this sounds audible?



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

These waves can be described by

f(t) = f0(t) cos(2πνt) (t ∈ R),

where ν is high (ultra sound) and the frequencies of f0 are

concentrated around ω0 in the low frequency range, i.e.,

ω0 > 0 is low and there is a (small) δ > 0

such that
|f0(ω)|
|f0(ω0)|

negligible if | |ω| − |ω0| | > δ.



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

These waves can be described by

f(t) = f0(t) cos(2πνt) (t ∈ R),

where ν is high (ultra sound) and the frequencies of f0 are

concentrated around ω0 in the low frequency range, i.e.,

ω0 > 0 is low and there is a (small) δ > 0

such that
|f0(ω)|
|f0(ω0)|

negligible if | |ω| − |ω0| | > δ.

Note.

The frequencies of f are concentrated around ν+ω0 in the

ultra sound frequency range.



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

These waves can be described by

f(t) = f0(t) cos(2πνt) (t ∈ R),

where ν is high (ultra sound) and the frequencies of f0 are

concentrated around ω0 in the low frequency range.

Property.

f0(t) cos(2πνt) cos(2πνt) = 1
2
f0(t) [cos(4πνt) + 1]

Our ear will filter out the high frequencies 2ν:

we will hear 1
2
f0



Bat detectors

Bats use infra sound acoustic waves for navigation (radar).

These waves can be described by

f(t) = f0(t) cos(2πνt) (t ∈ R),

where ν is high (ultra sound) and the frequencies of f0 are

concentrated around ω0 in the low frequency range.

Property.

f0(t) cos(2πνt) cos(2πνt) = 1
2
f0(t) [cos(4πνt) + 1]

Since

cos(2πνt) cos(2πν̃t) = 1
2 [cos(2π(ν + ν̃)t) + cos(2π(ν − ν̃)t)]

multiplication with a wave with frequency ≈ the frequency

ν of the carrier wave cos(2πνt) also makes the bat waves

audible.
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The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. If H ∈ L2(R), then H ∗ Π̂T is continuous (Why?).



The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. If H ∈ L2(R), then H ∗ Π̂T is continuous (Why?).

It is impossible to form a step function with a filter h that

has a bounded time domain:

hΠT has bounded domain ⇒ H ∗ Π̂T is analytic.
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Filters

pass band

stop band

transition band

on dB scale



The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. If H ∈ L2(R), then H ∗ Π̂T is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs’ phe-

nomenon in the stop band: take a continuous approxima-

tion of H (rather than H, as H = ΠΩ, itself):

+ better stop properties in the stop band

+ less leakage in the pass band

wider transition band



The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. If H ∈ L2(R), then H ∗ Π̂T is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs’ phe-

nomenon in the stop band: take a continuous approxima-

tion of H (rather than H, as H = ΠΩ, itself):

+ better stop properties in the stop band

+ less leakage in the pass band

wider transition band

H smooth(er) ⇒ h = Ĥ decreases more rapidly at ∞
⇒ hΠT is a more accurate approx. of Ĥ

(than Π̂ΩΠT of Π̂Ω)

⇒ H ∗ΠT is more accurate
(uniform convergence for T →∞)



The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. If H ∈ L2(R), then H ∗ Π̂T is analytic.

To “damp” the “overshoot” (10%) effect of Gibbs’ phe-

nomenon in the stop band: take a continuous approxima-

tion of H (rather than H, as H = ΠΩ, itself):

+ better stop properties in the stop band

+ less leakage in the pass band

wider transition band

(Smooth) approximations of ΠΩ are also called windows

(in frequency domain).



Smooth Windows
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Barlett window: H(ω) ≡ (1− ω
Ω)ΠΩ(ω) [Ω = 1, T = 5]



Smooth Windows

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−100

−80

−60

−40

−20

0

20

H = ΠΩ [Ω = 1, T = 5]



Smooth Windows
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Ω)ΠΩ(ω), on dB scale



Smooth Windows
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Hann window: H(ω) ≡ 0.5(cos(π ωΩ)+1)ΠΩ(ω) on dB scale



Smooth Windows
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Blackman window: Hann + 0.08(cos(2π ωΩ)− 1)ΠΩ(ω)



Smooth Windows
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Blackman window: Hann + 0.08(cos(2π ωΩ)− 1)ΠΩ(ω)
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f(t) = 2 f0(t) cos2(2πνt) (in the left picture) with

f0(t) = 3.5
√
α exp(−πα2t2) (in the right picture)

and α = 0.1, ν = 5
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With Ω = 9, we have that f ∗ Π̂Ω = f0.

The pictures show the error f0 − f̃0 with f̃0 ≡ f ∗ (Π̂ΩΠT )

and T = 4 (the right picture in dB-scale).



Filters

−4 −2 0 2 4

−6

−5

−4

−3

−2

−1

0

1

2

x 10
−3

error f
0
−f*(hΠ

J
)

−4 −2 0 2 4
−120

−100

−80

−60

−40

−20

0

error f
0
−f*(hΠ

J
) on dB

With Ω = 9, we have that f ∗ Π̂Ω = f0.

The pictures show the error f0 − f̃0 with f̃0 ≡ f ∗ (ĤΠT )

H Barlett’s window (in the right picture at dB scale).
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With Ω = 9, we have that f ∗ Π̂Ω = f0.

The pictures show the error f0 − f̃0 with f̃0 ≡ f ∗ (ĤΠT )

H Blackman’s window (in the right picture at dB scale).



The approach with the transformation H Ã H∗Π̂T to make

the filter causal (& finite) is called a window method.

Note. The filters that we considered so far are real and

symmetric (both in time as well as in frequency domain)

and the windowing approach did not change this. In par-

ticular, these filters will not lead to group or time delays.



Program

• Filters

• Finite Impulse Response Filters

• Windows

• Signals of finite duration and bounded bandwidth?

• Infinite Impulse Response Filters

• Analog filters (hardware)

• Digital filters (software)



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

D restricts to the bounded time domain [−T,+T ] and

B filters to the bounded frequency domain [−Ω,Ω].

There are no functions f for which BDf = f (Why not?).



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

D restricts to the bounded time domain [−T,+T ] and

B filters to the bounded frequency domain [−Ω,Ω].

There are no functions f for which BDf = f (Why not?).

Find the functions ψ for which BDψ = λψ:

ψ is an eigenfunctions of BD with eigenvalue λ.



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

D restricts to the bounded time domain [−T,+T ] and

B filters to the bounded frequency domain [−Ω,Ω].

There are no functions f for which BDf = f (Why not?).

Find the functions ψ for which BDψ = λψ:

ψ is an eigenfunctions of BD with eigenvalue λ.

Note. Bψ = ψ ∈ B. Hence,

λ‖ψ‖22 = (BDψ,ψ) = (Dψ,ψ) = ‖Dψ‖22 > 0.

By restricting a signal in B to [−T, T ], energy gets lost:

1− ‖Dψ‖22
‖ψ‖22

= 1− λ.



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

D restricts to the bounded time domain [−T,+T ] and

B filters to the bounded frequency domain [−Ω,Ω].

There are no functions f for which BDf = f (Why not?).

Find the functions ψ for which BDψ = λψ:

ψ is an eigenfunctions of BD with eigenvalue λ.

Or, equivalently, ψ̃(= Dψ) for which DBψ̃ = λψ̃.



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Except for a scaling of the t, the eigenfunctions depend on

ΩT only (not on the individual values of T or Ω)



Eigenvalues

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

4ΩT=14

k

λ k

4ΩT = 14, k Ã λk, . . . at ±ln(ΩT ) from 4ΩT (−.)



Eigenvalues

0 2 4 6 8 10 12 14 16 18 20
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

4ΩT=14

k

10
 lo

g 10
(λ

k)

4ΩT = 14, k Ã 10 log10λk = 20 log10
‖Dψk‖2
‖ψ‖2



Eigenvalues
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions

−1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

λ
15

=3.16e−001,    1−λ
15

=6.84e−001

4ΩT=14,         graph of ψ
15

 scaled to [−1,1]: T=1.

4ΩT = 14, φ15



Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Property. λn ≈ 1 if n < 4ΩT − ln(ΩT ),

λn ≈ 0 if n > 4ΩT + ln(ΩT ).

Discussion. ‘4ΩT different signals from B can be packed

on [−T, T ]’: The dimension of the ‘space’ of signals in B
that are concentrated in time in [−T,+T ] is ≈ 4ΩT .

Space as span{ψk | 1− λk < ε}



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Property. λn ≈ 1 if n < 4ΩT − ln(ΩT ),

λn ≈ 0 if n > 4ΩT + ln(ΩT ).

Discussion. Results are mainly of theoretical interest. It

is hard (unstable) to compute the ψk for large values of

4ΩT .



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Let BDψk = λkψk, s.t. λi+1 < λi and ‖ψk‖2 = 1.

Theorem. • (ψk) forms an orthonormal basis of B,

• ( 1√
λk
ψΠT ) forms an orthonormal basis of {fΠT | f ∈ B}.



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Let BDψk = λkψk, s.t. λi+1 < λi and ‖ψk‖2 = 1.

Theorem.

f =
∑

j

βj

λj
ψk with βj ≡

∫ T

−T
f(t)ψk(t) dt (f ∈ B)



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Let BDψk = λkψk, s.t. λi+1 < λi and ‖ψk‖2 = 1.

Theorem.

f =
∑

j

βj

λj
ψk with βj ≡

∫ T

−T
f(t)ψk(t) dt (f ∈ B)

Proof. Use Hilbert theory: BDB is a compact Hermitian

operator on the Hilbert space B (close subspace L2(R)).



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Let BDψk = λkψk, s.t. λi+1 < λi and ‖ψk‖2 = 1.

Theorem.

f =
∑

j

βj

λj
ψk with βj ≡

∫ T

−T
f(t)ψk(t) dt (f ∈ B)

Discussion. f can be reconstructed from fΠT if f ∈ B.

Ill conditioned (for λk ≈ 0).

Remedy. Restrict to λk ≈ 1.



B ≡ BΩ ≡ {f ∈ L2(R) | f̂ΠΩ = f̂}.
Df ≡ DT (f) ≡ fΠT , Bf ≡ BΩ(f) ≡ f ∗ Π̂Ω (f ∈ L2(R))

BDψ(t) = 2Ω
∫ T

−T
sinc(2Ω(t− s))ψ(s) ds = λψ(t)

Put c ≡ 2ΩT and φ(x) ≡ ψ(Tx). Then (with s = Tx)

c
∫ 1

−1
sinc(c(y − x))φ(x) dx = λφ(y)

Let BDψk = λkψk, s.t. λi+1 < λi and ‖ψk‖2 = 1.

Theorem.

f =
∑

j

βj

λj
ψk with βj ≡

∫ T

−T
f(t)ψk(t) dt (f ∈ B)

Discussion. f can be reconstructed from fΠT if f ∈ B.

Ill conditioned (for λk ≈ 0).

Remedy. Solve f r = argming∈B(‖g − fΠT‖22 + τ‖g‖22)
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Program

• Filters

• Finite Impulse Response Filters

• Windows

• Signals of finite duration and bounded bandwidth?

• Infinite Impulse Response Filters

• Analog filters (hardware)

• Digital filters (software)



Infinite Impulse Response filters?

Part of the problems with the FIR filters come from the

fact that the filters have a bounded (finite) time domain.

The technique of windowing in time domain is still usefull

if (long) delays are allowed.

For instance, in Imaging (where, in the above discussion we

should read ‘space’ for ‘time’), where we have the complete

(blurred, noicy) image (signal f) available. The technique

might not be useful in case the signal that has to be pro-

cessed ‘comes in’ in time: then the signal is only partially

available or we have to ‘wait’ too long.



Infinite Impulse Response filters?

Part of the problems with the FIR filters come from the

fact that the filters have a bounded (finite) time domain.

Can we create filters with unbounded domain (IIR) that

nevertheless forms the output from ‘local’ information?

Note that this may not be impossible since a signal of

bounded bandwidth is completely determined by its values

at any (non empty) time interval.

This suggests to exploit the smoothness of the input signal

(of bounded bandwidth).



Program

• Filters

• Finite Impulse Response Filters

• Windows

• Signals of finite duration and bounded bandwidth?

• Infinite Impulse Response Filters

• Analog filters (hardware)

• Digital filters (software)



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

The higher order derivatives in g represent feedback to

the system. They give infinite impulse response.

Systems of this form can be realised in electronic circuits.

Coupled second order differential equations can be formed

into higher dimensional coupled first order systems. Also,

by elimination, coupled second order differential equations

can formed into one dimensional higher order systems.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

FT of (?) leadsto

p(2πiω) ĝ(ω) = q(2πiω) f̂(ω),

where, for ζ ∈ C,

p(ζ) ≡ a0+a1ζ+. . .+akζ
k and q(ζ) ≡ b0+b1ζ+. . .+bmζ

m

Let aj be such that p(ζ) 6= 0 for all ζ ∈ {2πiω | ω ∈ R}.

Then, H(ω) ≡ q(2πiω)

p(2πiω)
∈ C∞(R) and bounded if m ≤ k.

H ∈ L2(R) if m < k. Then H = ĥ for some h ∈ L2(R).



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

FT of (?) leadsto

p(2πiω) ĝ(ω) = q(2πiω) f̂(ω),

where, for ζ ∈ C,

p(ζ) ≡ a0+a1ζ+. . .+akζ
k and q(ζ) ≡ b0+b1ζ+. . .+bmζ

m

Let aj be such that p(ζ) 6= 0 for all ζ ∈ {2πiω | ω ∈ R}.

Then, H(ω) ≡ q(2πiω)

p(2πiω)
∈ C∞(R) and bounded if m ≤ k.

H ∈ L2(R) if m < k. Then H = ĥ for some h ∈ L2(R).

Does h belong to L1(R) (to guarantee that g is L2 if f is)?



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

FT of (?) leadsto

p(2πiω) ĝ(ω) = q(2πiω) f̂(ω),

where, for ζ ∈ C,

p(ζ) ≡ a0+a1ζ+. . .+akζ
k and q(ζ) ≡ b0+b1ζ+. . .+bmζ

m

Let aj be such that p(ζ) 6= 0 for all ζ ∈ {2πiω | ω ∈ R}.

Then, H(ω) ≡ q(2πiω)

p(2πiω)
∈ C∞(R) and bounded if m ≤ k.

H ∈ L2(R) if m < k. Then H = ĥ for some h ∈ L2(R).

Note. H(ω) = c∗(A− 2πiωB)−1b is of the above form. [Ex.3.11]



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Proof. Factorise p to see that for some γ1, . . . , γk ∈ C

q(ζ)

p(ζ)
=

k∑

j=1

γj

(ζ − λj)µ(j)
.

Here, λ1, . . . , λk are the zeros of p counted according to

multiplicity, µ(j) ≡ #{i | i ≤ j, λi = λj}.

The zeros of p are the poles of the filter,

the zeros of q are the zeros of the filter.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Proof. It suffices to show that, for j ∈ N, the function

H(ω) ≡ 1

(2πiω − λ)j
(ω ∈ R)

is the FT of an h in L2(R) ∩ L1(R) if λ ∈ C, λ 6∈ iR.

Clearly, H ∈ L2(R). Hence, h ∈ L2(R).



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Proof. It suffices to show that, for j ∈ N, the function

H(ω) ≡ 1

(2πiω − λ)j
(ω ∈ R)

is the FT of an h in L2(R) ∩ L1(R) if λ ∈ C, λ 6∈ iR.

Clearly, H ∈ L2(R). Hence, h ∈ L2(R).

[Ex.3.3]If Re(λ) < 0, then h is a scalar multiple of




tj−1 eλt for t ≥ 0

0 for t < 0 (h is causal!)



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Proof. It suffices to show that, for j ∈ N, the function

H(ω) ≡ 1

(2πiω − λ)j
(ω ∈ R)

is the FT of an h in L2(R) ∩ L1(R) if λ ∈ C, λ 6∈ iR.

Clearly, H ∈ L2(R). Hence, h ∈ L2(R).

[Ex.3.3]If Re(λ) > 0, then h is a scalar multiple of




tj−1 eλt for t ≤ 0

0 for t > 0 (h is causal!)



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Proof. It suffices to show that, for j ∈ N, the function

H(ω) ≡ 1

(2πiω − λ)j
(ω ∈ R)

is the FT of an h in L2(R) ∩ L1(R) if λ ∈ C, λ 6∈ iR.

Clearly, H ∈ L2(R). Hence, h ∈ L2(R).

[Ex.3.3]In all cases h ∈ L2(R) ∩ L1(R). ¤



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.

Proof. See the proof of the preceding theorem. ¤



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.

The filter needs a start.

Suppose f(t) = 0 for all t < 0. Then

g(0) = g′(0) = . . . = g(k−1) = 0

seems a reasonable choice.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.

The filter needs a start.

Suppose f(t) = 0 for all t < 0. Then

g(0) = g′(0) = . . . = g(k−1) = 0

holds for g = f ∗ h ⇔ the filter is causal.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.

Property. h is real if the coefficients aj and bj are real.

Proof. f ≈ real pulse ⇒ g real ⇒ h ≈ g real.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Theorem. Let m < k. Then h ∈ L2(R) ∩ L1(R):

f ∈ L2(R) ⇒ ĝ = f̂H & g = f ∗ h ∈ L2(R).

Theorem. Let m < k.

The filter is causal ⇔ the poles are in C−.

Poles are the zeros of p. C− ≡ {λ ∈ C | Re(λ) < 0} is the

left half of the complex plane.

Property. h is real if the coefficients aj and bj are real.

h real and causal ⇒ H is even (H(−ω) = H(ω)), not-real

time/group delays are an issue!



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example 1. g+ 1
2πΩ

g′ = f .

Then, p(ζ) = 1 + 1
2πΩ
ζ, q(ζ) = 1, H(ω) = 1

1+i ω
Ω

with gain |H(ω)| = 1√
1+|ωΩ|2



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example 3. g+ ( 1
2πΩ

)k g(k) = f .

Then, p(ζ) = 1+( 1
2πΩ
ζ)k, q(ζ) = 1, H(ω) = 1

1+(i ω
Ω
)k

with gain |H(ω)| = 1√
1+|ωΩ|2k

.

Note that for large(r) k:

if |ω| < Ω, then |ωΩ|2k ≈ 0 and |H(ω)| ≈ 1

if |ω| > Ω, then |Ωω |2k ≈ 0 and |H(ω)| ≈ 0



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example 1. g+ 1
2πΩ

g′ = f .

Then, p(ζ) = 1 + 1
2πΩ
ζ, q(ζ) = 1, H(ω) = 1

1+i ω
Ω

with gain |H(ω)| = 1√
1+|ωΩ|2

Example 2. g − 1
2πΩ

g′ = f .

Then, p(ζ) = 1− 1
2πΩ
ζ, q(ζ) = 1, H(ω) = 1

1−i ω
Ω

with gain |H(ω)| = 1√
1+|ωΩ|2



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Examples. (1) g+ 1
2πΩ

g′ = f. (2) g − 1
2πΩ

g′ = f .

Same gain.

Pole (1) in C−, pole (2) in C+: (1) causal, (2) not causal.

Note. All filters are essentially of the above form: see the

proof of the “L1-theorem”.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Examples. (1) g+ 1
2πΩ

g′ = f. (2) g − 1
2πΩ

g′ = f .

Let g be the L2(R) solution.

Suppose g is perturbed at time t0, that is,

• g̃ satisfies the ODE,
• g̃(t) = g(t) for t < t0,
• g̃(t0) = g(t0) + ε.

Here we assumed that we obtained the output g(t) at time t

by solving the ODE (following the increasing time t): this

was the purpose of this type of filters.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Examples. (1) g+ 1
2πΩ

g′ = f. (2) g − 1
2πΩ

g′ = f .

Let g be the L2(R) solution.

Suppose g is perturbed at time t0, that is,

• g̃ satisfies the ODE,
• g̃(t) = g(t) for t < t0,
• g̃(t0) = g(t0) + ε.

Then (g̃ − g)(t) = ε eλ1(t−t0) for t ≥ t0.
Here λ1 is the zero of p.

(1) ⇒ λ1 = − 1
2πΩ

< 0 and |(g̃ − g)(t)| → 0 for t→∞.

(2) ⇒ λ1 = + 1
2πΩ

< 0 and |(g̃ − g)(t)| → ∞ for t→∞.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Conclusion. Let m < k.

The filter is stable (perturbations do not have a lasting

effect) if and only if the poles are in C−.

To avoid discussions on what effects are acceptable (how

long, how large?), a formal definition of stability is intro-

duced.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Definition. Let m < k.

The filter is stable if and only if all poles are in C−

(that is, λ ∈ C & p(λ) = 0 ⇒ Re(λ) < 0.)

Theorem. Let m < k.

The filter is stable ⇔ the filter is causal.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

With p(ζ) ≡ a0 + . . .+ akζ
k and q(ζ) ≡ b0 + . . .+ bmζm,

put H(ω) ≡ |H(ω)| e−iφ(ω) ≡ q(2πiω)
p(2πiω).

Summary. Polynomials p and q should be such that

1) For technical realisation: p and q are real (real coeff.)

2) degr(p) > degr(q)

3) For caus. and stab.: λ ∈ C & p(λ) = 0 ⇒ Re(λ) < 0

4) For requested filtering: |H| ≈ ΠΩ

5) For acceptable group/time delay; φ(ω) ≈ . . .



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example. g+ ( 1
2πΩ

)k g(k) = f .

Then, p(ζ) = 1 + ( 1
2πΩ
ζ)k with gain |H(ω)| = 1√

1+|ωΩ|2k
.



Butterworth filter

−3 −2 −1 0 1 2 3

0
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0.6

0.8

1

|H(ω)| = 1√
1+|ωΩ|2k

(blue), k = 1. Here we took Ω = 1.



Butterworth filter

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

|H(ω)| = 1√
1+|ωΩ|2k

(blue), k = 5. Here we took Ω = 1.



Butterworth filter

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

|H(ω)| = 1√
1+|ωΩ|2k

(blue), k = 10. Here we took Ω = 1.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example. g+ ( 1
2πΩ

)k g(k) = f .

Then, p(ζ) = 1 + ( 1
2πΩ
ζ)k with gain |H(ω)| = 1√

1+|ωΩ|2k
.

The gain is fine, but

the filter is unstable and not causal for k > 2

(if k = 2 then p has even zeros on iR).



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Example. g+ ( 1
2πΩ

)k g(k) = f .

Then, p(ζ) = 1 + ( 1
2πΩ
ζ)k with gain |H(ω)| = 1√

1+|ωΩ|2k
.

Butterworth filters:

• stable, real coefficients

• q = 1,
1

|p(2πiω)| =
1√

1 +
∣∣∣ωΩ

∣∣∣2k



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Butterworth filters:

• stable, real coefficients

• q = 1,
1

|p(2πiω)| =
1√

1 +
∣∣∣ωΩ

∣∣∣2k

Example. g+
√

2
2πΩg

′ + ( 1
2πΩ

)2 g(2) = f .

⇒ p(2πΩζ) = 1 +
√

2 ζ + ζ2, gain |H(ω)| = 1√
1+|ωΩ|4

.



Given a0, a1, . . . , ak and b0, . . . , bm in R.

For a given input signal f , the output g is such that

a0g+ a1g
′+ . . .+ akg

(k) = b0f + b1f
′+ . . .+ bmf

(m) (?)

Butterworth filters:

• stable, real coefficients

• q = 1,
1

|p(2πiω)| =
1√

1 +
∣∣∣ωΩ

∣∣∣2k

Example. g+
√

2
2πΩg

′ + ( 1
2πΩ

)2 g(2) = f .

⇒ p(2πΩζ) = 1 +
√

2 ζ + ζ2, gain |H(ω)| = 1√
1+|ωΩ|4

.

p(2πΩλi) = 0 ⇒ λ2 = λ1 & 2Re(λi) = λ1 + λ2 = −√2.



Chebyshev filters.

• stable, real coefficients

• q = 1,
1

|p(2πiω)| =
1√

1 + ε2T2
k

(
ω
Ω

)

Here, Tk is the kth degree Chebyshev polynomial. [Ex.2.8]

Property.

• Tk is a real polynomial of degree k

• |Tk(x)| ≤ 1 for all x ∈ [−1,+1],

• |Tk(x)| ≥ |P (x)| for all x, |x| > 1 and

all polynomials P of degree ≤ k

for which sup{|P (x)| | x ∈ [−1,1]} ≤ 1



Chebyshev filters
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Chebyshev polynomial T
8

Cheb. pol. Tk of degree k = 8



Chebyshev filters
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Chebyshev polynomial T
8

Cheb. pol. Tk of degree k = 8



Butterworth filter
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Gain Butterworth filter of degree k = 10



Chebyshev filters

−3 −2 −1 0 1 2 3
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1

Gain Chebyshev filter of degree k = 8



Butterworth filter
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Gain Butterworth filter of degree k = 10, dB scale



Chebyshev filters
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Gain Chebyshev filter of degree k = 8, dB scale



Windowing versus analogue filtering

Windowing.

+ Real frequency response function

Long filter (long impulse response function)

(requiring information from “past” as well as “future”)

Analogue filtering.

+ “Short” filters

+ No “future” information needed

Non-real frequency response function

Stability issues



Program

• Filters

• Finite Impulse Response Filters

• Windows

• Signals of finite duration and bounded bandwidth?

• Infinite Impulse Response Filters

• Analog filters (hardware)

• Digital filters (software)



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)

The values fk can be obtained by sampling a function F

on R:

fn ≡ F (n∆t) with sampling frequency 1
∆t = 2Ω

where Ω the bandwidth of the signal F .



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)

We wish to construct Infinite Impulse Response (IIR) filters

that rely on “local information”.



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)
Recall

f̂(ω) ≡
∞∑

n=−∞
fn e

−2πiωn ⇔ fn =
∫ 1

0
f̂(ω) e2πiωn dω

If f is from sampling F , then the formula

fn =
1

2Ω

∫ Ω

−Ω
f̂(ω) e2πiωn∆t dω

is more appropriate.

To simplify notation, we (took and) take Ω = 1
2.

This corresponds to scaling of

the ω-axis by 2Ω and the t-axis by ∆t = 1
2Ω:

G(t) = F (t∆t) ⇔ Ĝ(ω) = f̂(2Ωω).

G has bandwidth 1
2, G is to be sampled at t = n.



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)
Recall

f̂(ω) ≡
∞∑

n=−∞
fn e

−2πiωn ⇔ fn =
∫ 1

0
f̂(ω) e2πiωn dω

Given α0, . . . , αk and β0, . . . , βm in R, α0 6= 0

the output g satisfies

α0gn = (β0fn + . . .+ βmfn−m)− (α1gn−1 + . . .+ αkgn−k)



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)
Recall

f̂(ω) ≡
∞∑

n=−∞
fn e

−2πiωn ⇔ fn =
∫ 1

0
f̂(ω) e2πiωn dω

With α ≡ (α0, . . . , αk), β ≡ (β0, . . . , βm), α0 6= 0,

the output g satisfies α ∗ g = β ∗ f (?)

The digital filter has

m feed-forward stages and
k feed-backward stages.
k is the order of the filter.

If k = 0 then the filter is Finite Impulse Response (FIR).



We consider discrete signals f ≡ (. . . , f0, f1, f2, . . .) ∈ `2(Z)
Recall

f̂(ω) ≡
∞∑

n=−∞
fn e

−2πiωn ⇔ fn =
∫ 1

0
f̂(ω) e2πiωn dω

With α ≡ (α0, . . . , αk), β ≡ (β0, . . . , βm), α0 6= 0,

the output g satisfies α ∗ g = β ∗ f (?)

DFT of (?) leadsto

p(z̄)ĝ(ω) = q(z̄)f̂(ω) with z = e2πiω

p(ζ) ≡ α0 + . . .+ αkζ
k and q(ζ) ≡ β0 + . . .+ βmζm (ζ ∈ C).

Let α be such that p(ζ) 6= 0 for all ζ ∈ C, |ζ| = 1.

Then H(ω) =
q(z̄)

p(z̄)
for z ≡ e2πiω.

H is 1-periodic, continuous and bounded.

H ∈ L2
1(R), whence H = ĥ for some h ∈ `2(Z)



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Proof. For some γj, γ̃j ∈ C, µ(j) ∈ N, we have

q(ζ)

p(ζ)
=

m∑

j=0

γ̃j ζ
j +

k∑

j=0

γj

(ζ − λj)µ(j)
(ζ ∈ C).

Here, λj are the zeros of p. They are counted according

to multiplicity. The 1/λj are the poles of the filter.

Suffices to consider λ ∈ C, |λ| 6= 1, µ ∈ N and show

H(ω) ≡ 1

(z̄ − λ)µ
=

∑

n∈Z
hn z̄

n (z = e2πiω)

for some h ∈ `1(Z). Then H(ω) = ĥ(ω).

Note that now there are no restrictions on the degree of q

in relation to the degree of p.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Proof. Let λ ∈ C, |λ| 6= 1. We will show that

1

z̄ − λ
=

∑

n∈Z
hn z̄

n (z = e2πiω)

for some h = (hn) ∈ `1(Z). (Exercise: similar proof if µ > 1.)

1

z̄ − λ
= −1

λ

1

1− z̄/λ
=

1

z̄

1

1− λ/z̄

If |λ| > 1, then |z̄/λ| = 1/|λ| < 1, and

−1

λ

1

1− z̄/λ
= −

∞∑

n=0

1

λn+1
z̄ n and

∞∑

n=0

1

|λ|n+1
<∞.

Hence, hn = 1
λn+1 (n ≥ 0), hn = 0 (n < 0), h ∈ `1(Z).

Note that h is causal.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Proof. Let λ ∈ C, |λ| 6= 1. We will show that

1

z̄ − λ
=

∑

n∈Z
hn z̄

n (z = e2πiω)

for some h = (hn) ∈ `1(Z). (Exercise: similar proof if µ > 1.)

1

z̄ − λ
= −1

λ

1

1− z̄/λ
=

1

z̄

1

1− λ/z̄

If |λ| < 1, then |λ/z̄| = |λ| < 1, and

1

z̄

1

1− λ/z̄
=

-1∑

n=−∞

1

λn+1
z̄ n and

-1∑

n=−∞

1

|λ|n+1
<∞.

Hence, hn = 1
λn+1 (n < 0), hn = 0 (n ≥ 0), h ∈ `1(Z).

Note that h is not causal.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Proof. See the proof of the preceding theorem.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

To start the filter, suppose fj = 0 for j < 0. Then

g−k+1 = g−k+2 = . . . = g−1 = 0

holds for g = f ∗ h ⇔ the filter is causal.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Let g ∈ `2(Z) be the output for input f ∈ `2(Z).
Suppose gn0 is perturbed, that is,

• g̃ satisfies the recurrence relations for n 6= n0,
• g̃n = gn for n < n0,
• g̃n0 = gn0 + ε.

Here we assume that we obtained g by recursively solving

the recurrence relations (?).



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Let g ∈ `2(Z) be the output for input f ∈ `2(Z).
Suppose gn0 is perturbed, that is,

• g̃ satisfies the recurrence relations for n 6= n0,
• g̃n = gn for n < n0,
• g̃n0 = gn0 + ε.

Then,

• g̃ − g satisfies the recurrence for f ≡ 0, n 6= n0,
• g̃n − gn = 0 for n < n0,
• g̃n0 − gn0 = ε.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Let g ∈ `2(Z) be the output for input f ∈ `2(Z).
Suppose gn0 is perturbed, that is,

• g̃ satisfies the recurrence relations for n 6= n0,
• g̃n = gn for n < n0,
• g̃n0 = gn0 + ε.

Example. p(ζ) = α0 + α1ζ and q(ζ) = 1.

Then p(−α0/α1) = 0. With λ ≡ −α1/α0, we have

α0λ
n+1 + α1λ

n = λn(α0λ+ α1) = 0 :

g̃n − gn = ελn−n0 for n ≥ n0.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Let g ∈ `2(Z) be the output for input f ∈ `2(Z).
Suppose gn0 is perturbed, that is,

• g̃ satisfies the recurrence relations for n 6= n0,
• g̃n = gn for n < n0,
• g̃n0 = gn0 + ε.

Then, for some δ1, . . . , δk, we have that

g̃n − gn =
k∑

j=1

δj n
µ(j)λ−nj (n ≥ n0 − k+ 1).

The error g̃n − gn vanishes for n→∞ ⇔ all λj in S.

Here, 1/λj zero of p.



Theorem. h ∈ `1(Z). Hence, g = f∗h ∈ `2(Z) if f ∈ `2(Z).

Theorem. The filter is causal ⇔ the poles are in S.

Here S ≡ {ζ ∈ C | |ζ| < 1}.

Definition. The filter is stable if all poles are in S,

that is, p(1/λ) = 0 ⇒ |λ| < 1.

Theorem. The filter is stable ⇔ it is causal.



α0 + α1gn−1 + . . .+ αkgn−k = β0fn + . . .+ βmfn−m
p(ζ) ≡ α0 + . . .+ αkζ

k, q(ζ) ≡ β0 + . . .+ βmζm,

Put H(ω) ≡ |H(ω)| e−iφ(ω) ≡ q(z̄)
p(z̄) with z = e2πiω.

Summary. Polynomials p and q should be such that

1) For technical realisation: p and q are real (real coeff.)

2) For caus. and stab.: λ ∈ C & p(λ) = 0 ⇒ |λ| > 1

3) For requested filtering: |H| ≈ ΠΩ

4) For acceptable group/time delay; φ(ω) ≈ . . .

Note.
There is no restriction on the degree of the polynomial q.



α0 + α1gn−1 + . . .+ αkgn−k = β0fn + . . .+ βmfn−m
p(ζ) ≡ α0 + . . .+ αkζ

k, q(ζ) ≡ β0 + . . .+ βmζm,

Put H(ω) ≡ |H(ω)| e−iφ(ω) ≡ q(z̄)
p(z̄) with z = e2πiω.

Discussion. The stability/causality restriction |λ| > 1 on
the zeros of the polynomial p seems a bit odd: because, the
familiar stability condition for difference equation is |λ| < 1.
This is explained from the fact that e−2πiωn is used for the
Fourier transform: changing −n into +n (or, equivalently,
reversing time t = n), leads to the usual stability condition.

The familiar looking condition can also be recovered by
changing the “order” of the pol. terms: with N ≡ max(m, k),
put Q(ζ) ≡ ζNq(1/ζ) and P (ζ) ≡ ζNp(1/ζ) (ζ ∈ C).

Then, • P and Q are polynomials of degree N ,

• H(ω) = Q(z)
P (z) with z = e2πiω

• P (λ) = 0 ⇔ p(1/λ) = 0.



From analogue to digital

Analogue filters can easily be transformed into digital ones

using:
ζ ≡ γZ(z) with Z(z) ≡ z − 1

z + 1
(z ∈ C)

Z is Cayley’s transform. It is a conformal (i.e., analatyic

with non-zero derivative) bijection, mapping

• C\{−1} onto C\{1},
• {z ∈ C | |z| < 1} onto {ζ ∈ C | Re(ζ) < 0} and

• {z ∈ C | |z| = 1, z 6= −1} onto iR
◦ −1 to ∞.

We select γ < 0 and use its size to scale the iR axis.
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the northern one.
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From analogue to digital

Analogue filters can easily be transformed into digital ones

using:
ζ ≡ γZ(z) with Z(z) ≡ z − 1

z + 1
(z ∈ C)

Properties. Select γ < 0. Put ω ≡ − γ
2π tan(πv) (v ∈ R).

• z = e−2πiv ⇔ ζ = −iγ tan(πv) = 2πiω.

• Re(ζ) < 0 ⇔ |z| > 1.

If, for V > 0, we are interested in approximating ΠV (v),

then we can try to approximate ΠΩ(ω) for Ω ≡ − γ
2π tanπV .

Nate that γ = − 2π
tan(πV )

might be an attractive scaling then.



From analogue to digital

Analogue filters can easily be transformed into digital ones

using:
ζ ≡ γZ(z) with Z(z) ≡ z − 1

z + 1
(z ∈ C)

Consider a stable analogue filter A(ζ) ≡ q(ζ)

p(ζ)
:

with H(ω) ≡ A(2πiω), we have

• |H(ω)| ≈ ΠΩ(ω), • A(ζ) = ∞ ⇔ Re(ζ) < 0.

With D(z) ≡ A(ζ) and H̃(v) ≡ D(e−2πiv),

D is a stable digital filter:

• D(z) =
q̃(z)

p̃(z)
for some polynomials p̃ and q̃,

• D(e−2πiv) = A(2πiω), |H̃(v)| ≈ ΠΩ(ω) = ΠV (v),

• D(z) = ∞ ⇔ A(ζ) = ∞ ⇔ |z| > 1.


