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Remark. If I ⊂ R
d and f : I → C

ℓ then

f = (f1, . . . , fℓ)
T

and we can study the functions fi : I → C separately.

However, there is no convenient way to restrict the analysis

further, to functions defined on (a subset of) R:

e.g., x f1(x, x2, . . . , xd) depends on (x2, . . . , xd)!

Remark. A function f : C → C can be viewed as a function

f : R
2 → C.

Remark. If f is defined on a subset I of R
d, then f can

be extended to a function defined on R
d, for instance, by

defining f(x) = 0 for x 6∈ I (or by periodicity).
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Purpose

We want to analyse functions, reveal hidden structures.

Applications.

• De-noising, de-blurring

• Compression

Ex. For some k ∈ Z and T > 0, f(t) = sin(2πkt/T ) for t ∈ [0,10].

Store f(j∆t) for j = 0,1, . . . ,105 with ∆t = 10−4 (as on a CD).

Alternative, store k and T .

Compression also important to facilitate analysis.

• . . .
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Strategy

Find a suitable basis to represent the class of functions

that are of interest.

(φk) (infinite set of) ‘basisfunctions’.

Then f =
∑
k γkφk in some sense.

Find (φk) such that

1) f ≈ ∑
k∈E γkφk, with E finite (small) subset of indices k.

2) E is ‘small’ and can ‘easily’ be detected.

3)
∑
k∈E γkφk(t) can efficiently be computed.

1) Approximation, 2) Extraction, 3) Computation
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Example. f ∈ C([−1,1]), φk(t) = tk (k ∈ N0, |t| ≤ 1)

Approximation. Weierstrass. ∀ ε > 0

∃ a polynomial p st ∀ t ∈ [−1,1], |f(t) − p(t)| ≤ ε.

Extraction. Taylor. If f is sufficiently smooth:

p(t) =
∑

j<k

tj

j!
f(j)(0), f(t) − p(t) =

tk

k!
f(k)(ξ).

Evaluation. Horner. If p(t) = γ0 + γ1t+ . . .+ γkt
k then

p(t) = γ0 + (. . . (γk−2 + (γk−1 + γkt)t)t . . .)t :

s0 = γk, sj = γk−j + sj−1t for j = 1, . . . , k. Then p(t) = sk.

Polynomials well suited for computing (but not tk),

less suitable for analysis.
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Example. f ∈ C([0,1]), φk(t) ≡ cos(2πkt) = φ(kt).

Reveals periodic structures in f :

test against φk (k∈N0), i.e., compute
∫
f(t)φk(t) dt

f

φ
1

k↓

φ
k
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Applications Fourier analysis.

◦ Audio technique (equalizers, amplyfiers, tuner, CDs)

◦ MP3 and other audio compression techniques

◦ biology, ear, eye, . . .

◦ radar, echo location, CT, MRI, . . .

◦ Cristallography, Geophysics, . . .

◦ denoising, deblurring of images, JPEG compression, MJPEG

◦ Theory (partial) differential equations
...
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Example. f ∈ C([0,1]), φk,j(t) = ψ(2kt− j).

Reveals periodic structures in f and localized changes:

compute
∫
f(t)φk,j(t) dt for k, j ∈ E ⊂ Z

f

φ

k ↓

φ
k,j

j→φ
k,j

(t)≡ φ(2kt−j)

Daubechies’ wavelet of order 8
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Application wavelet analysis.

As Fourier, tends to be more practical

◦ Storing and detection of fingerprints (to help police investigations)

◦ Computational techniques for partial differential equations
...
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Example. φk(t) = tk polynomials.

Example. φk(t) ≡ cos(2πkt)

Harmonic oscillations, Fourier modes

Example. Wavelets

Example. Bessel functions, . . .

Example. Splines (smooth, piece-wise polynomials)

Example. Finite element basis functions

...
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Preliminaries
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Program

• Norms and inner products

• Convergence

• Almost everywhere

• Function spaces

• Point-wise convergence

• Function values

• Derivatives
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Norms

Let V be a (real or) complex vector space.

A map ‖ · ‖ : V → [0,∞) is a norm if

1) ‖f‖ = 0 iff f = 0 (f ∈ V)

2) ‖λf‖ = |λ| ‖f‖ (f ∈ V, λ ∈ C)

3) ‖f + g‖ ≤ ‖f‖ + ‖g‖ (f, g ∈ V, λ ∈ C)

Exercise.
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Inner products

Let V be a (real or) complex vector space.

A map (·, ·) : V × V → C is an inner product if

1) (f, f) ≥ 0 , (f, f) = 0 iff f = 0 (f ∈ V)

2) (f, g) = (g, f) (f, g ∈ V)

3) f  (f, g) is linear (g ∈ V)

Theorem. If (·, ·) is an inner product on V,

then f  
√

(f, f) defines a norm on V.

Example. ‖f‖2 =
√

(f, f) on V = C([a, b]).
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V is a space with norm ‖ · ‖.

A sequence (fn) in V converges to an f ∈ V if

lim
n→∞ ‖fn − f‖ = 0

Exercise. V = C([0,1]), fn(t) = tn (n ∈ N, t ∈ [0,1]).

Does (fn) converge with respect to ‖ · ‖1?
Does (fn) converge with respect to ‖ · ‖∞?

Exercise. V = C([0,2]), fn(t) = min(tn,1).

Does (fn) converge with respect to ‖ · ‖1?
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(fn) is a Cauchy sequence with respect to a norm ‖ · ‖
if ‖fn − fm‖ → 0 if n > m, m→ ∞

A space V with norm ‖ · ‖ is complete if each Cauchy

sequence (fn) in V converges to an f ∈ V.

Exercise. V = C([0,2]).

Is V complete wrt ‖ · ‖1?
Is V complete wrt ‖ · ‖2?
Is V complete wrt ‖ · ‖∞?

Can we complete C([0,2]) wrt the ‖ · ‖2?
What kind of objects are contained in the completion?
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Consider two functions f and g on [a, b].

f and g coincide almost everywhere (f = g a.e.)

if the set N ≡ {t ∈ [a, b] | f(t) 6= g(t)} on which they differ

is negligible, i.e., has measure zero, i.e.,
∫ b
a χN (t) dt = 0.

Example. Let f(t) = 1 for t > 0 and f(t) = 0 elsewhere,

and let f̃(t) = 1 for t ≥ 0 and f̃(t) = 0 elsewhere.

Then f = f̃ a.e..

Unless stated otherwise,

we will identify functions that coincide a.e.
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For functions f : [a, b] → C

‖f‖1 ≡
∫ b

a
|f(t)| dt, ‖f‖2 ≡

√∫ b

a
|f(t)|2 dt

‖f‖∞ ≡ ess-sup{|f(t)| | t ∈ [a, b]}

Theorem. ‖f‖1 ≤
√
b− a ‖f‖2 ≤ (b− a) ‖f‖∞

L1([a, b]), L2([a, b]), L∞([a, b]) is the space of all functions

f : [a, b] → C for which ‖f‖1 < ∞, ‖f‖2 < ∞, ‖f‖∞ < ∞,

respectively, and we identify functions that coincide a.e..

L2([a, b]) is an inner product space: (f, g) ≡ ∫ b
a f(t) g(t) dt.

Theorem. C([a, b]) ⊂ L∞([a, b]) ⊂ L2([a, b]) ⊂ L1([a, b])

Exercise. Show that all inclusions are strict.
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(fn) is a Cauchy sequence wrt a norm ‖ · ‖
if ‖fn − fm‖ → 0 if n > m, m→ ∞

Completeness Theorem.

The spaces Lp([a, b]), for p = 1,2,∞, are complete

that is, if (fn) is a Cauchy sequence in Lp([a, b]) then

there is an f ∈ Lp([a, b]) such that limn→∞ ‖fn − f‖p = 0.

Density Theorem. C([a, b]) is dense in Lp([a, b])

for p = 1 as well as for p = 2, i.e., for each f ∈ Lp([a, b])

and each ε > 0 there is a g ∈ C([a, b]) such that ‖f−g‖p < ε.

Exercise. C([a, b]) is not dense in L∞([a, b])

(with f(t) = 1 for t > 0 and f(t) = −1 for t ≤ 0 (|t| ≤ 1)

show that ‖f − g‖∞ ≥ 1 for all g ∈ C([−1,+1]).)
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For sequences (γk)k∈Z in C. With γ(k) = γk, γ : Z → C.

γ 1 ≡
∞∑

k=−∞
|γk|, γ 2 ≡

√√√√
∞∑

k=−∞
|γk|2, γ ∞ ≡ sup

k∈Z

|γk|

ℓ1(Z), ℓ2(Z), ℓ∞(Z) is the space of all sequences γ in C for

which γ 1 < ∞, γ 2 <∞, γ ∞ < ∞, resp.

ℓ2(Z) is an inner product space: <γ, µ>≡ ∑
γk µk.

Theorem. γ ∞ ≤ γ 2 ≤ γ 1 (γ : Z → C)

ℓ1(Z) ⊂ ℓ2(Z) ⊂ ℓ∞(Z)
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For functions f : R → C

‖f‖1 ≡
∫ ∞

−∞
|f(t)| dt, ‖f‖2 ≡

√∫ ∞

−∞
|f(t)|2 dt

‖f‖∞ ≡ ess-sup{|f(t)| | t ∈ R}

L1(R), L2(R), L∞(R) is the space of all functions f : R → C

for which ‖f‖1 <∞, ‖f‖2 < ∞, ‖f‖∞ < ∞, respectively, and

we identify functions that coincide a.e..

L2(R) is an inner product space: (f, g) ≡ ∫∞
−∞ f(t) g(t) dt.

Exercise. Discuss the inclusions

C(R) ⊂ L∞(R) ⊂ L2(R) ⊂ L1(R)
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On [a, b]: C([a, b]) ⊂ L∞([a, b]) ⊂ L2([a, b]) ⊂ L1([a, b])

On Z: ℓ1(Z) ⊂ ℓ2(Z) ⊂ ℓ∞(Z)

On R: C(R) ??L∞(R) ??L2(R) ??L1(R)

Explanation: ‖f‖1 =
∑
k∈Z ‖f |[k,k+1]‖1 for f : R → C:

mixure of ‘on [a, b]’ and ‘on Z.

Exercise. L∞(R) ∩ L1(R) ⊂ L2(R).

L2([a,b])

L1([a,b])

L∞([a,b])

C([a,b])

l2(Z)

l∞(Z)

l1(Z) L2(R)

L1(R)

L∞(R) 23

For I = [a, b] or I = R,

consider a sequence (fn) in L1(R) and an f ∈ L1(R) st

lim
n→∞ fn(t) = f(t) (t ∈ I).

The sequence converges point-wise.

Fatou’s lemma. If there is a g st

g ∈ L1(I) and |fn(t)| ≤ |g(t)| (t ∈ I, n ∈ N),

then lim
n→∞ fn(t) = f(t) (t ∈ I) ⇒ lim

n→∞ ‖fn − f‖1 = 0
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We identify functions that coincide a.e.

Function values

Note. Formally, f(t) does not have a meaning.

However, if f = g a.e. and g is continuous at t,

then g(t) is well-defined and

Convention. With f(t) we will denote this value g(t).

More generally, we put f(t+),

if f = g a.e. for a function g that is left continuous at t

(limε>0,ε→0 g(t+ε) = g(t)). Then f(t+) has the value g(t).

Similarly,

f(t−) = g(t) if f = g, a.e., and limε>0,ε→0 g(t− ε) = g(t)

25

We identify functions that coincide a.e.

Weak Derivatives

Consider a function f on [a, b]. We will put f ′ if there is a

function g on [a, b] and a c ∈ [a, b] such that

f(t) = f(c) +

∫ t

c
g(s) ds (t ∈ [a, b]).

Then, f ′ will denote the function g.

g is unique if we identify functions that coincide a.e..

Theorem. If f ′ ∈ L1([a, b]) then f ∈ C([a, b]).

f is said to be absolutely continuous if f ′ ∈ L1([a, b]).
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We identify functions that coincide a.e.

Weak Derivatives

There is a continuous non-decreasing function f on [0,1]

with f(0) = 0, f(1) = 1 such that

f ′(t) = 0 for almost all t ∈ [0,1]:

Allthough most values f ′(t) exists, f ′ does not exists!
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Integration by parts

If f ′, g′ ∈ L1([a, b]) then

∫ b

a
f ′(t)g(t) dt = f(b)g(b)− f(a)g(a) −

∫ b

a
f(t)g′(t) dt

It is essential that both f and g are continuous on [a, b],

the functions f ′ and g′ need not be continuous.
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