

http://www.staff.science.uu.nl/~sleij101/

1

Remark. If $I \subset \mathbb{R}^d$ and $f: I \to \mathbb{C}^\ell$ then

 $f = (f_1, \dots, f_\ell)^\top$

and we can study the functions $f_i : I \to \mathbb{C}$ separately. However, there is no convenient way to restrict the analysis further, to functions defined on (a subset of) \mathbb{R} : e.g., $x \rightsquigarrow f_1(x, x_2, \ldots, x_d)$ depends on (x_2, \ldots, x_d) !

Remark. A function $f : \mathbb{C} \to \mathbb{C}$ can be viewed as a function $f : \mathbb{R}^2 \to \mathbb{C}$.

Remark. If f is defined on a subset I of \mathbb{R}^d , then f can be extended to a function defined on \mathbb{R}^d , for instance, by defining f(x) = 0 for $x \notin I$ (or by periodicity).

<u>2</u>

Purpose

We want to analyse functions, reveal hidden structures.

Applications.

- De-noising, de-blurring
- Compression

Ex. For some $k \in \mathbb{Z}$ and T > 0, $f(t) = \sin(2\pi kt/T)$ for $t \in [0, 10]$. Store $f(j\Delta t)$ for $j = 0, 1, ..., 10^5$ with $\Delta t = 10^{-4}$ (as on a CD). Alternative, store k and T.

Compression also important to facilitate analysis.

• . . .

Strategy

Find a suitable basis to represent the class of functions that are of interest.

 (ϕ_k) (infinite set of) 'basisfunctions'. Then $f = \sum_k \gamma_k \phi_k$ in some sense.

Find (ϕ_k) such that

- 1) $f \approx \sum_{k \in E} \gamma_k \phi_k$, with *E* finite (small) subset of indices *k*.
- 2) E is 'small' and can 'easily' be detected.
- 3) $\sum_{k \in E} \gamma_k \phi_k(t)$ can efficiently be computed.

1) Approximation, 2) Extraction, 3) Computation

Example. $f \in C([-1,1]), \phi_k(t) = t^k$ $(k \in \mathbb{N}_0, |t| < 1)$

Approximation. Weierstrass. $\forall \varepsilon > 0$

 \exists a polynomial p st $\forall t \in [-1, 1], |f(t) - p(t)| \leq \varepsilon$.

Extraction. Taylor. If *f* is sufficiently smooth:

$$p(t) = \sum_{j < k} \frac{t^j}{j!} f^{(j)}(0), \quad f(t) - p(t) = \frac{t^k}{k!} f^{(k)}(\xi).$$

Evaluation. Horner. If $p(t) = \gamma_0 + \gamma_1 t + \ldots + \gamma_k t^k$ then

 $p(t) = \gamma_0 + (\dots (\gamma_{k-2} + (\gamma_{k-1} + \gamma_k t)t)t \dots)t$: $s_0 = \gamma_k, \ s_j = \gamma_{k-j} + s_{j-1}t$ for $j = 1, \dots, k$. Then $p(t) = s_k$.

Polynomials well suited for computing (but not t^k), less suitable for analysis.

5

Example. $f \in C([0, 1]), \phi_k(t) \equiv \cos(2\pi kt) = \phi(kt).$

Reveals periodic structures in *f*:

test against ϕ_k ($k \in \mathbb{N}_0$), i.e., compute $\int f(t)\phi_k(t) dt$

Applications Fourier analysis.

• Audio technique (equalizers, amplyfiers, tuner, CDs)

• MP3 and other audio compression techniques

◦ biology, ear, eye, ...

∘ radar, echo location, CT, MRI, ...

• Cristallography, Geophysics, ...

o denoising, deblurring of images, JPEG compression, MJPEG

• Theory (partial) differential equations

÷

Example. $f \in C([0,1]), \phi_{k,j}(t) = \psi(2^k t - j).$ Reveals periodic structures in *f* and localized changes: compute $\int f(t)\phi_{k,j}(t) dt$ for $k, j \in E \subset \mathbb{Z}$

Daubechies' wavelet of order 8

Application wavelet analysis.

As Fourier, tends to be more practical

- \circ Storing and detection of fingerprints (to help police investigations)
- \circ Computational techniques for partial differential equations

:

Example. $\phi_k(t) = t^k$ polynomials.

Example. $\phi_k(t) \equiv \cos(2\pi kt)$ Harmonic oscillations, Fourier modes

Example. Wavelets

÷

Example. Bessel functions, ...

Example. Splines (smooth, piece-wise polynomials)

Example. Finite element basis functions

<u>9</u>

Preliminaries

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

Norms

Let \mathcal{V} be a (real or) complex vector space. A map $\|\cdot\| : \mathcal{V} \to [0,\infty)$ is a **norm** if 1) $\|f\| = 0$ iff f = 0 $(f \in \mathcal{V})$ 2) $\|\lambda f\| = |\lambda| \|f\|$ $(f \in \mathcal{V}, \lambda \in \mathbb{C})$ 3) $\|f + g\| \le \|f\| + \|g\|$ $(f, g \in \mathcal{V}, \lambda \in \mathbb{C})$

Exercise.

<u>13</u>

Inner products

Let \mathcal{V} be a (real or) complex vector space.

A map $(\cdot, \cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ is an inner product if

1) $(f, f) \ge 0$, (f, f) = 0 iff f = 0 $(f \in \mathcal{V})$ 2) $(f, g) = \overline{(g, f)}$ $(f, g \in \mathcal{V})$ 3) $f \rightsquigarrow (f, g)$ is linear $(g \in \mathcal{V})$

Theorem. If (\cdot, \cdot) is an inner product on \mathcal{V} , then $f \rightsquigarrow \sqrt{(f, f)}$ defines a norm on \mathcal{V} .

Example.
$$||f||_2 = \sqrt{(f,f)}$$
 on $\mathcal{V} = C([a,b])$.

 \mathcal{V} is a space with norm $\|\cdot\|$.

A sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$ if

$$\lim_{n \to \infty} \|f_n - f\| = 0$$

Exercise. $\mathcal{V} = C([0,1]), f_n(t) = t^n \quad (n \in \mathbb{N}, t \in [0,1]).$ Does (f_n) converge with respect to $\|\cdot\|_1$? Does (f_n) converge with respect to $\|\cdot\|_\infty$?

Exercise. $\mathcal{V} = C([0,2]), f_n(t) = \min(t^n, 1).$ Does (f_n) converge with respect to $\|\cdot\|_1$? <u>14</u>

 (f_n) is a **Cauchy sequence** with respect to a norm $\|\cdot\|$

if $||f_n - f_m|| \to 0$ if $n > m, m \to \infty$

A space \mathcal{V} with norm $\|\cdot\|$ is **complete** if each Cauchy sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$.

Exercise. $\mathcal{V} = C([0, 2])$. Is \mathcal{V} complete wrt $\|\cdot\|_1$? Is \mathcal{V} complete wrt $\|\cdot\|_2$? Is \mathcal{V} complete wrt $\|\cdot\|_{\infty}$?

Can we complete C([0,2]) wrt the $\|\cdot\|_2$? What kind of objects are contained in the completion? Consider two functions f and g on [a, b].

f and g coincide **almost everywhere** (f = g a.e.)

if the set $\mathcal{N} \equiv \{t \in [a, b] \mid f(t) \neq g(t)\}$ on which they differ is negligible, i.e., has measure zero, i.e., $\int_a^b \chi_{\mathcal{N}}(t) dt = 0$.

Example. Let f(t) = 1 for t > 0 and f(t) = 0 elsewhere, and let $\tilde{f}(t) = 1$ for $t \ge 0$ and $\tilde{f}(t) = 0$ elsewhere. Then $f = \tilde{f}$ a.e..

Unless stated otherwise,

we will identify functions that coincide a.e.

<u>17</u>

For functions $f:[a,b] \to \mathbb{C}$

$$|f||_{1} \equiv \int_{a}^{b} |f(t)| \, \mathrm{d}t, \qquad ||f||_{2} \equiv \sqrt{\int_{a}^{b} |f(t)|^{2} \, \mathrm{d}t}$$
$$||f||_{\infty} \equiv \operatorname{ess-sup}\{|f(t)| \mid t \in [a, b]\}$$

Theorem. $||f||_1 \le \sqrt{b-a} ||f||_2 \le (b-a) ||f||_{\infty}$

 $L^1([a,b]), L^2([a,b]), L^{\infty}([a,b])$ is the space of all functions $f:[a,b] \to \mathbb{C}$ for which $\|f\|_1 < \infty$, $\|f\|_2 < \infty$, $\|f\|_{\infty} < \infty$, respectively, and we identify functions that coincide a.e..

 $L^2([a,b])$ is an inner product space: $(f,g) \equiv \int_a^b f(t) \overline{g(t)} dt$.

Theorem. $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$ **Exercise.** Show that all inclusions are strict. (f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$ if $\|f_n - f_m\| \to 0$ if $n > m, m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$.

Density Theorem. C([a,b]) is **dense** in $L^p([a,b])$ for p = 1 as well as for p = 2, i.e., for each $f \in L^p([a,b])$ and each $\varepsilon > 0$ there is a $g \in C([a,b])$ such that $||f-g||_p < \varepsilon$.

Exercise. C([a,b]) is **not** dense in $L^{\infty}([a,b])$ (with f(t) = 1 for t > 0 and f(t) = -1 for $t \le 0$ ($|t| \le 1$) show that $||f - g||_{\infty} \ge 1$ for all $g \in C([-1,+1])$.)

For sequences $(\gamma_k)_{k \in \mathbb{Z}}$ in \mathbb{C} . With $\gamma(k) = \gamma_k$, $\gamma : \mathbb{Z} \to \mathbb{C}$.

$$|\gamma|_1 \equiv \sum_{k=-\infty}^{\infty} |\gamma_k|, \quad |\gamma|_2 \equiv \sqrt{\sum_{k=-\infty}^{\infty} |\gamma_k|^2}, \quad |\gamma|_{\infty} \equiv \sup_{k \in \mathbb{Z}} |\gamma_k|$$

 $\ell^1(\mathbb{Z}), \ \ell^2(\mathbb{Z}), \ \ell^\infty(\mathbb{Z})$ is the space of all sequences γ in \mathbb{C} for which $|\gamma|_1 < \infty, \ |\gamma|_2 < \infty, \ |\gamma|_\infty < \infty$, resp.

 $\ell^2(\mathbb{Z})$ is an inner product space: $\langle \gamma, \mu \rangle \equiv \sum \gamma_k \overline{\mu_k}$.

Theorem. $|\gamma|_{\infty} \leq |\gamma|_{2} \leq |\gamma|_{1} \quad (\gamma : \mathbb{Z} \to \mathbb{C})$ $\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})$ For functions $f : \mathbb{R} \to \mathbb{C}$

$$\|f\|_{1} \equiv \int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t, \qquad \|f\|_{2} \equiv \sqrt{\int_{-\infty}^{\infty} |f(t)|^{2} \, \mathrm{d}t}$$
$$\|f\|_{\infty} \equiv \operatorname{ess-sup}\{|f(t)| \mid t \in \mathbb{R}\}$$

 $L^1(\mathbb{R}), L^2(\mathbb{R}), L^{\infty}(\mathbb{R})$ is the space of all functions $f : \mathbb{R} \to \mathbb{C}$ for which $\|f\|_1 < \infty$, $\|f\|_2 < \infty$, $\|f\|_{\infty} < \infty$, respectively, and we identify functions that coincide a.e..

 $L^2(\mathbb{R})$ is an inner product space: $(f,g) \equiv \int_{-\infty}^{\infty} f(t) \overline{g(t)} dt$.

Exercise. Discuss the inclusions $C(\mathbb{R}) \subset L^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \subset L^{1}(\mathbb{R})$

<u>21</u>

23

1^{°°}(R)

On [a,b]: $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$ On \mathbb{Z} : $\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})$

On \mathbb{R} : $C(\mathbb{R})$?? $L^{\infty}(\mathbb{R})$?? $L^{2}(\mathbb{R})$?? $L^{1}(\mathbb{R})$

Explanation: $||f||_1 = \sum_{k \in \mathbb{Z}} ||f|_{[k,k+1]}||_1$ for $f : \mathbb{R} \to \mathbb{C}$:

mixure of 'on [a,b]' and 'on \mathbb{Z} .

Exercise.

$$L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R}).$$

For I = [a, b] or $I = \mathbb{R}$, consider a sequence (f_n) in $L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ st

 $\lim_{n \to \infty} f_n(t) = f(t) \qquad (t \in I).$

The sequence converges point-wise.

Fatou's lemma. If there is a g st $g \in L^1(I)$ and $|f_n(t)| \le |g(t)|$ $(t \in I, n \in \mathbb{N})$, then $\lim_{n \to \infty} f_n(t) = f(t)$ $(t \in I) \Rightarrow \lim_{n \to \infty} ||f_n - f||_1 = 0$ <u>22</u>

Function values

Note. Formally, f(t) does not have a meaning.

However, if f = g a.e. and g is continuous at t, then g(t) is well-defined and **Convention**. With f(t) we will denote this value g(t).

More generally, we put f(t+),

if f = g a.e. for a function g that is left continuous at t($\lim_{\varepsilon > 0, \varepsilon \to 0} g(t+\varepsilon) = g(t)$). Then f(t+) has the value g(t). Similarly,

f(t-) = g(t) if f = g, a.e., and $\lim_{\varepsilon > 0, \varepsilon \to 0} g(t-\varepsilon) = g(t)$

Weak Derivatives

Consider a function f on [a,b]. We will put f' if there is a function g on [a,b] and a $c \in [a,b]$ such that

$$f(t) = f(c) + \int_{c}^{t} g(s) \, \mathrm{d}s \qquad (t \in [a, b]).$$

Then, f' will denote the function g.

 \boldsymbol{g} is unique if we identify functions that coincide a.e..

Theorem. If $f' \in L^1([a, b])$ then $f \in C([a, b])$.

f is said to be **absolutely continuous** if $f' \in L^1([a, b])$.

<u>25</u>

We identify functions that coincide a.e.

Weak Derivatives

There is a **continuous non-decreasing** function f on [0,1] with f(0) = 0, f(1) = 1 such that

f'(t) = 0 for almost all $t \in [0, 1]$: Allthough most values f'(t) exists, f' does not exists!

Integration by parts

If $f', g' \in L^1([a,b])$ then

$$\int_a^b f'(t)g(t) \,\mathrm{d}t = f(b)g(b) - f(a)g(a) - \int_a^b f(t)g'(t) \,\mathrm{d}t$$

It is essential that both f and g are continuous on [a,b], the functions f' and g' need not be continuous.

<u>27</u>