Scientific Computing, Utrecht, February 17, 2014

Fourier Transforms Wavelets Theory and Applications

http://www.staff.science.uu.nl/~sleij101/

T > 0

T-periodic functions

 $f: \mathbb{R} \to \mathbb{C}$ is *T*-periodic if f(t+T) = f(t) $\forall t \in \mathbb{R}$

Example. For each $k \in \mathbb{Z}$, $t \rightsquigarrow \cos(2\pi t \frac{k}{T})$ and $t \rightsquigarrow \sin(2\pi t \frac{k}{T})$ are T-periodic.

Fourier: these are essentially all *T*-periodic functions: each *T*-periodic function is in some sense a linear combinations of these sines and cosines

T is the length of the period.

Note that $\exp(2\pi i t \frac{k}{T}) = \cos(2\pi t \frac{k}{T}) + i \sin(2\pi t \frac{k}{T})$

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

<u>1</u>

Functions on [a, a+T] can be identified with T-periodic functions:

If g is defined on [a, a + T], then

 $f(t)\equiv g(t+kT) \quad (t\in\mathbb{R}) \quad k\in\mathbb{Z} \text{ s.t. } t+kT\in[a,a+T)$ defines a T-periodic function and f=g on [a,a+T].

If f is T-periodic, then

$$\int_0^T f(t) dt = \int_{\tau}^{\tau+T} f(t) dt \qquad (\tau \in \mathbb{R})$$

For T-periodic, integrable functions f on $\mathbb R$ define

$$||f||_1 \equiv \frac{1}{T} \int_0^T |f(t)| \, \mathrm{d}t$$

The space of all complex-valued T-periodic functions for which $||f||_1 < \infty$ is denoted by $L^1_T(\mathbb{R})$.

$$||f||_2 \equiv \sqrt{\frac{1}{T} \int_0^T |f(t)|^2 \, \mathrm{d}t}$$

The space of all complex-valued T-periodic functions for which $||f||_2 < \infty$ is denoted by $L^2_T(\mathbb{R})$.

Note. We identify functions that coincide a.e..

Fourier series

For $f \in L^1_T(\mathbb{R})$, put

$$\gamma_k(f) \equiv \frac{1}{T} \int_0^T f(t) e^{-2\pi i t \frac{k}{T}} dt$$
 $(k \in \mathbb{Z})$

 $\gamma_k(f)$ is the *k*th Fourier coefficient. For $n \in \mathbb{N}$,

$$S_n(f)(t) \equiv \sum_{k=-n}^n \gamma_k e^{2\pi i t \frac{k}{T}}$$
 $(t \in \mathbb{R})$

 $S_n(f)$ is the *n*th partial Fourier series.

The formal infinite sum is the **Fourier series of** f:

$$f \sim \sum \gamma_k e^{2\pi i t \frac{k}{T}}$$
.

Note. This is not statement on convergence!

Use $\exp(2\pi i t \frac{k}{T}) = \cos(2\pi t \frac{k}{T}) + i \sin(2\pi t \frac{k}{T})$ for a formulation in sines and cosines.

$$||f||_1 \le ||f||_2 \le ||f||_\infty \equiv \text{ess-sup}\{|f(x)| \mid x \in \mathbb{R}\}$$

$$C_T(\mathbb{R}) \equiv \{ f \in C(\mathbb{R}) \mid f \text{ is } T\text{-periodic} \} \subset L_T^2(\mathbb{R}) \subset L_T^1(\mathbb{R})$$

 $L^2_T(\mathbb{R})$ is an inner product space w.r.t.

$$(f,g) \equiv \frac{1}{T} \int_0^T f(t) \, \overline{g(t)} \, \mathrm{d}t \qquad (f,g \in L_T^2(\mathbb{R}))$$

For each $k \in \mathbb{Z}$, put $\phi_k(t) \equiv \exp(2\pi i t \frac{k}{T})$ $(t \in \mathbb{R})$.

Theorem. The ϕ_k form an orthonormal system in $L^2_T(\mathbb{R})$:

$$(\phi_k, \phi_j) = 0$$
 if $k \neq j$ and $\|\phi_k\|_2 = 1$ $(j, k \in \mathbb{Z})$

<u>5</u>

Fourier series

For $f \in L^2_T(\mathbb{R})$,

$$\gamma_k(f) \equiv rac{1}{T} \int_0^T f(t) e^{-2\pi i t rac{k}{T}} \, \mathrm{d}t = (f, \phi_k)$$

 $\gamma_k(f)$ is the *k*th Fourier coefficient. For $n \in \mathbb{N}$,

$$S_n(f)(t) \equiv \sum_{k=-n}^n \gamma_k e^{2\pi i t \frac{k}{T}} = \sum_{|k| \le n} (f, \phi_k) \phi_k$$

Note that $S_n(f) \in C^{(\infty)}(\mathbb{R})$.

<u>6</u>

L^2 -Convergence

Theorem. $||S_n(f) - f||_2 \to 0 \quad (n \to \infty) \text{ if } f \in L^2_T(\mathbb{R}).$

Therefore, for $f \in L^2_T(\mathbb{R})$, in the L^2_T -sense, we have that

$$f = \sum_{k=-\infty}^{\infty} \gamma_k(f) e^{2\pi i t \frac{k}{T}}$$

What about $||S_n(f) - f||_{\infty}$ or $|S_n(f)(t) - f(t)|$ for $n \to \infty$?

 $\exists f \in C_T(\mathbb{R})$ and a $t \in \mathbb{R}$ for which $(S_n(f)(t))$ diverges: additional smoothness is required for stronger convergence.

Uniform Convergence

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. $f(t) \equiv |t|$ on [-1, +1].

Example. If $f(t)=f(0)+\int_0^t g(s)\,\mathrm{d}s$ with $g\in L^1_T(\mathbb{R})$, f is absolutely continuous (AC), then f is of BV: . Proof. $f(t)=f(0)+\int_0^t g(s)\,\mathrm{d}s=f(0)+f_+(t)-f_-(t)$ with $f_+(t)\equiv \int_0^t \max(g(s),0)\,\mathrm{d}s \quad \text{and} \quad f_-(t)\equiv \int_0^t \max(-g(s),0)\,\mathrm{d}s$

<u>9</u>

Uniform Convergence

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of bounded variation.

Theorem. $\|\sigma_n(f) - f\|_{\infty} \to 0 \ (n \to \infty)$ iff $f \in C_T(\mathbb{R})$

Here, $\sigma_n(f) \equiv \frac{1}{n} \sum_{j=0}^{n-1} S_n(f)$ Césaro sum

Example. $f(t) = \cos(2\pi t \frac{1}{T})$. Then,

$$S_n(f) = \frac{1}{2}(e^{-2\pi it/T} + e^{2\pi it/T}) = f \quad (n \ge 1),$$

whereas $\sigma_n(f) = \frac{n-1}{n}f$ $(n \in \mathbb{N}).$

Point-wise Convergence

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Theorem.

 $S_n(f)(t) \to \frac{1}{2}[f(t+) + f(t-)] \quad (n \to \infty) \text{ if } f \in L^1_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Here, $f(t+) \equiv \lim_{\varepsilon > 0, \varepsilon \to 0} f(t+\varepsilon)$ $f(t-) \equiv \lim_{\varepsilon > 0, \varepsilon \to 0} f(t-\varepsilon)$

and we assume that the (essential) limits exist.

Note that, for $f \in L^1_T(\mathbb{R})$, f(t) is not well-defined.

Theorem. $||S_n(f) - f||_2 \to 0 \quad (n \to \infty)$ if $f \in L^2_T(\mathbb{R})$.

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of bounded variation.

Theorem. $\|\sigma_n(f) - f\|_{\infty} \to 0 \ (n \to \infty)$ iff $f \in C_T(\mathbb{R})$

Theorem.

$$S_n(f)(t) \to \frac{1}{2}[f(t+) + f(t-)] \quad (n \to \infty) \text{ if } f \in L^1_T(\mathbb{R})$$

and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

There is an $f \in C_T(\mathbb{R})$ and a $t \in \mathbb{R}$ for which $(S_n(f)(t))$ diverges.

If $f \in C_T^{(1)}(\mathbb{R})$ then $2\pi i k \gamma_k(f) = T \gamma_k(f')$

Differential equations

Turn differential equations into algebraic equations.

With $f \in C_T(\mathbb{R})$, $a,b,c \in \mathbb{C}$, find a T-periodic u s.t.

$$a u'' + b u' + c u = f$$

Solution.
$$\gamma_k(f) = a \gamma_k(u'') + b \gamma_k(u') + c \gamma_k(u)$$

= $\left[a(\frac{2\pi i k}{T})^2 + b \frac{2\pi i k}{T} + c\right] \gamma_k(u)$

What about boundary conditions?

Applications. Electric circuits.

Error estimates

Theorem. If $f \in C_T(\mathbb{R})$ and $f' \in L_T^1(\mathbb{R})$ then

$$\gamma_k(f) = \frac{T}{2\pi i k} \gamma_k(f') \quad (k \in \mathbb{Z}, k \neq 0)$$

Theorem. $f \in L^1_T(\mathbb{R})$.

$$\begin{split} |\gamma_k(f)| &\leq \|f\|_1 \leq \|f\|_\infty \\ \gamma_k(f) &\to 0 \quad \text{if} \quad |k| \to \infty. \qquad \text{(Riemann-Lebesgue)} \\ |\gamma_k(f)| &\leq \frac{1}{|k|^\ell} (\frac{T}{2\pi})^\ell \, \|f^{(\ell)}\|_1 \quad \text{if} \quad f \in C_T^{(\ell)}(\mathbb{R}) \end{split}$$

Theorem.
$$f \in C_T^{(\ell)}(\mathbb{R})$$

 $\|S_n(f) - f\|_{\infty} \le \frac{1}{n^{\ell-1}} (\frac{T}{2\pi})^{\ell} \|f^{(\ell)}\|_1$

<u>13</u>

Parseval.
$$||f||_2^2 = \sum_{k=-\infty}^{\infty} |\gamma_k(f)|^2$$
 $(f \in L_T^2(\mathbb{R}))$

Consider $\ell^2(\mathbb{Z}) \equiv \{(\gamma_k)_{k \in \mathbb{Z}} \mid \gamma_k \in \mathbb{C}, \|(\gamma_k)\|_2 \equiv \sum |\gamma_k|^2 < \infty \}$ with inner product $\langle (\gamma_k), (\mu_k) \rangle \equiv \sum \gamma_k \overline{\mu_k}$.

Riesz-Fischer. The Fourier transform $f \rightsquigarrow (\gamma_k(f))_{k \in \mathbb{Z}}$ identifies the inner product spaces $L^2_T(\mathbb{R})$ and $\ell^2(\mathbb{Z})$. In particular, $(f,g) = <(\gamma_k(f)), (\gamma_k(g))> \quad (f,g \in L^2_T(\mathbb{R})).$

Proof. $(\gamma_k) \in \ell^2(\mathbb{Z})$ then $(\sum_{|k| < n} \gamma_k \, \phi_k)_n$ Cauchy sequence in $L^2_T(\mathbb{R})$. $\|f + \zeta g\|_2^2 = \|f\|_2^2 + 2 \mathrm{Re}(\zeta(f,g)) + \|g\|_2^2$ for all $f,g \in L^2_T(\mathbb{R})$, $\zeta \in \mathbb{C}$. $\|(\gamma_k) + \zeta(\mu_k)\|_2^2 = \|(\gamma_k)\|_2^2 + 2 \mathrm{Re}(\zeta < (\gamma_k), (\mu_k) >) + \|(\mu_k)\|_2^2$ for all Now, apply Parseval and take $\zeta = 1$ and $\zeta = i$.

 $L^1_T(\mathbb{R}) \stackrel{\gamma(\cdot)}{\to} \ell^\infty(\mathbb{Z}), \quad \llbracket \gamma(f) \rrbracket_\infty \leq \|f\|_1, \quad \text{not surjective}$

 $L^2(\mathbb{R}) \stackrel{\gamma(\cdot)}{\longrightarrow} \ell^2(\mathbb{Z}), \quad |\!|\!| \gamma(f) |\!|\!|_2 = |\!|f|\!|\!|_2, \quad \text{inversion exists}.$

Here, $\ell^\infty(\mathbb{Z}) \equiv \{(\gamma_k) | \|(\gamma_k)\|_{\infty} < \infty\}$ and $\gamma(f) \equiv (\gamma_k(f))$.

