Scientific Computing, Utrecht, February 24, 2014

Fourier Transforms Wavelets Theory and Applications

http://www.staff.science.uu.nl/~sleij101/

Program

- Heuristic
- Fourier transform for L^1 functions
- Derivatives
- Fourier transform for L^2 functions
- Extensions
- Duality observations

Fourier Integrals

<u>1</u>

$$f \colon \mathbb{R} o \mathbb{C} \quad \mathrm{st} \quad \|f\|_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty.$$

and
$$f \in C^{(1)}(\mathbb{R})$$
, $f(t) = \sum_{k \in \mathbb{Z}} \gamma_k^T e^{2\pi i t \frac{k}{T}}$ $(|t| < T/2)$

(restrict f to [-T/2, T/2], extend T-periodic, use Th. 2.4.b)

With
$$\widehat{f}(\omega) \equiv \int f(t)e^{-2\pi it\omega} dt$$

we have that $T\gamma_k^T \approx \hat{f}(\frac{k}{T})$. Hence, (Riemann sum)

$$f(t) pprox \sum_{k \in \mathbb{Z}} rac{1}{T} \widehat{f}(rac{k}{T}) e^{2\pi i t rac{k}{T}} pprox \int \widehat{f}(\omega) e^{2\pi i t \omega} \, \mathrm{d}\omega$$

Conjecture. $f(t) = \hat{f}(-t)$.

2

$$f: \mathbb{R} \to \mathbb{C}$$
 st $||f||_1 \equiv \int |f(t)| \, \mathrm{d}t = \int_{-\infty}^{+\infty} |f(t)| \, \mathrm{d}t < \infty$

$$\widehat{f}(\omega) \equiv \int f(t) e^{-2\pi i t \omega} \, \mathrm{d}t \quad (\omega \in \mathbb{R})$$

Theorem. $||f||_1 < \infty$

- \hat{f} is bounded: $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.
- \hat{f} is uniformly continuous:

$$\sup_{\omega} |\widehat{f}(\omega + \delta) - \widehat{f}(\omega)| \to 0 \text{ if } \delta \to 0.$$

• \hat{f} vanishes at ∞ : $\hat{f}(\omega) \to 0$ if $|\omega| \to \infty$.

$$L^1(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C} \mid \|f\|_1 < \infty \}, \text{ norm } \| \cdot \|_1$$
$$C_{\infty}(\mathbb{R}) = \{ g \in C(\mathbb{R}) \mid g \text{ vanishes at } \infty \}, \text{ norm } \| \cdot \|_{\infty}.$$

$$f \in L^1(\mathbb{R}) \Rightarrow \widehat{f} \in C_{\infty}(\mathbb{R}) \quad \text{and} \quad \|\widehat{f}\|_{\infty} \le \|f\|_1$$

Applications

- Differential equations.
- \bullet $\mbox{Insight}$ Smoothness f relates to decrease \hat{f} at ∞
- New concept of derivative.

Corollary. $f \in L^1(\mathbb{R})$ with support bounded by T, then \hat{f} is analytic on \mathbb{R} , i.e., $\hat{f} \in C^{(\infty)}(\mathbb{R})$ and

$$\widehat{f}(\omega) = \sum_{k=0}^{\infty} \frac{\omega^k}{k!} \widehat{f}^{(k)}(0) \quad (\omega \in \mathbb{R}).$$

To be precise,

with (Taylor's theorem on Taylor series)

$$\widehat{f}(\omega) = \sum_{k=0}^{n-1} \frac{\omega^k}{k!} \widehat{f}^{(k)}(0) + \frac{\omega^n}{n!} \widehat{f}^{(n)}(\xi)$$

for some ξ in between 0 and ω , we have that

$$\left|\frac{\omega^n}{n!}\widehat{f}^{(n)}(\xi)\right| \leq \frac{(2\pi T\omega)^n}{n!}\|f\|_1 \to 0 \quad \text{if } n \to \infty.$$

Differential equations.

See exercises.

<u>5</u>

<u>6</u>

Insight

First note that

$$f, tf, t^2 f, \dots, t^n f \in L^1(\mathbb{R}) \quad \Leftrightarrow \quad (1+|t|)^n f \in L^1(\mathbb{R}).$$

Therefore,

$$(1+|t|)^n f \in L^1(\mathbb{R})$$
, then $\hat{f} \in C^{(k)}(\mathbb{R})$ for $k=0,\ldots,n$. $f,f',\ldots,f^{(n)}\in L^1(\mathbb{R})$, then $(1+|\omega|)^n \hat{f}$ bounded.

- 'Size' of f at ∞ determines smoothness of \hat{f} .
- Smoothness of f determines 'size' of \hat{f} at ∞ .
- $\widehat{\cdot}$ identifies $L^2(\mathbb{R})$ with $L^2(\mathbb{R})$ (see later): 'size' of f at ∞ corresponds to smoothness of \widehat{f} .

 $f: \mathbb{R} \to \mathbb{C}$ st $||f||_2 \equiv \sqrt{\int |f(t)|^2 dt} < \infty$: $f \in L^2(\mathbb{R})$.

Note that $f_n \equiv f \Pi_n \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ $(n \in \mathbb{N})$.

Lemma. $||f_n||_2 = ||\widehat{f_n}||_2$ & $(\widehat{f_n})$ is Cauchy in $L^2(\mathbb{R})$.

$$\exists g \in L^2(\mathbb{R}) \text{ st } \|\widehat{f_n} - g\|_2 \to 0 \text{ } (n \to \infty).$$

Proposition. $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \Rightarrow q = \hat{f}$.

Definition. $\hat{f} \equiv g$. **Plancherel.** $\|\hat{f}\|_2 = \|f\|_2$.

For $f \in L^2(\mathbb{R})$, we also put $\hat{f}(\omega) = \int f(t)e^{-2\pi it\omega} d\omega$.

Theorem. $f \in L^2(\mathbb{R})$ then $\|\hat{f}\|_2 = \|f\|_2$, and

$$\hat{f}(\omega) = \int f(t)e^{-2\pi it\omega} d\omega, \quad f(t) = \int \hat{f}(\omega) e^{+2\pi it\omega} d\omega.$$

New concept of derivative.

For the moment (see later), assume that $\hat{\cdot}$ identifies $L^2(\mathbb{R})$ with $L^2(\mathbb{R})$.

If $(1+|\omega|)^n \widehat{f} \in L^2(\mathbb{R})$ then, $\forall k=0,\ldots,n,\ \omega^k \widehat{f} \in L^2(\mathbb{R})$ and $\exists g \in L^2(\mathbb{R})$ st $\widehat{g}=(2\pi i \omega)^k \widehat{f}$. Denote $f^{(k)}\equiv g$. Consistent. If $f,\ldots,f^{(k)}\in L^1(\mathbb{R})$, then $g=f^{(k)}$.

Let $\gamma > 0$. Suppose $(1 + |\omega|)^{\gamma} \hat{f} \in L^{2}(\mathbb{R})$. Then, $\exists g \in L^{2}(\mathbb{R})$ st $\hat{g} = (2\pi i \omega)^{\gamma} \hat{f}$. Denote $f^{(\gamma)} \equiv g$. $f^{(\gamma)}$ is a **pseudo (or fractional) derivative** of f.

$$H^{(\gamma)} \equiv \{ f \mid (1 + |\omega|)^{\gamma} \widehat{f} \in L^{2}(\mathbb{R}) \}$$

is the **Sobolev space** of order γ .

Interpretation. $f(t) = \int \hat{f}(\omega) e^{2\pi i t \omega} d\omega$:

f is a superposition of harmonic oscillations: with $\hat{f}(\omega) = |\hat{f}(\omega)| e^{2\pi i \phi(\omega)}$.

 $|\hat{f}(\omega)|$ is the **amplitude** of the oscilation with **frequency** ω , $\phi(\omega)$ is the **phase**.

9

 $L^1(\mathbb{R}) \stackrel{\widehat{}}{ o} C_\infty(\mathbb{R}), \quad \|\widehat{f}\|_\infty \leq \|f\|_1, \quad \text{not surjective}$

 $L^2(\mathbb{R}) \xrightarrow{\hat{}} L^2(\mathbb{R}), \quad \|\hat{f}\|_2 = \|f\|_2, \quad \text{inversion exists.}$

Interpretation. $f(t) = \int \hat{f}(\omega) e^{2\pi i t \omega} d\omega$: f is a superposition of harmonic oscillations:

vith $\widehat{f}(\omega) = |\widehat{f}(\omega)| \, e^{2\pi i t \phi(\omega)}$,

 $|\hat{f}(\omega)|$ is the **amplitude** of the oscilation with **frequency** ω , $\phi(\omega)$ is the **phase**.

Let $\nu \in \mathbb{R}$ be a frequency. Can the function ϕ_{ν} , with

$$\phi_{\nu}(t) \equiv e^{2\pi i t \nu} \qquad (t \in \mathbb{R})$$

be viewed as a superposition of harmonic oscilations?

Can $\phi_{\nu}(t) \equiv e^{2\pi i t \nu}$ be viewed as a superpos. of harm. osc.?

The Dirac δ function

$$e^{2\pi i t \nu} = \int \delta_{\nu}(\omega) \, e^{2\pi i t \omega} \, d\omega \qquad (t \in \mathbb{R})$$

Here δ_{ν} is the **Dirac** δ **function** or **point measure** at ν defined by the following two properties:

$$\begin{split} &\delta_{\nu}(\omega) = 0 \ \text{ for all } \omega \neq \nu \quad \text{ and } \\ &\int \delta_{\nu}(\omega) \, g(\omega) \, \mathrm{d}\omega = g(\nu) \quad (g \in C(\mathbb{R})). \end{split}$$

 δ_{ν} can be view as some **weak limit** of, e.g., $\frac{1}{2\varepsilon}\Pi_{\varepsilon}$ for $\varepsilon \to 0$. In some sense $\widehat{\phi}_{\nu} = \delta_{\nu}$ and $\phi_{\nu}(t) = \widehat{\delta_{\nu}}(-t)$.

Application of the Dirac δ -function.

Suppose f is $C^{(1)}$ on both $(-\infty,\tau)$ and (τ,∞) and $f(\tau+)$ and $f(\tau-)$ exists. Then, with $\alpha\equiv f(\tau+)-f(\tau-)$,

$$f(t) = f(0) + \int_0^t \left(f'(s) + \alpha \delta_\tau(s) \right) ds \qquad (t \in \mathbb{R}).$$

The function $f' + \alpha \delta_{\tau}$ can be viewed as the derivative of f.

Exercise. Consider the approximate derivatives $\partial_{\Delta t} f$:

$$\partial_{\Delta t} f(t) \equiv \frac{f(t + \Delta t) - f(t - \Delta t)}{2\Delta t}.$$

Show that the behaviour for $(\partial_{\Delta t} f)$ for $\Delta t \to 0$ is consistent with the point of view that $f' + \alpha \delta_{\tau}$ is the derivative of f and the definition of δ_{τ} . Pay special attention to t's for which $\tau \in (t - \Delta t, t + \Delta t)$

<u>13</u>

<u>14</u>

Application of the Dirac δ -function.

Exercise. For $\lambda \in \mathbb{C}$, $Re(\lambda) \neq 0$,

consider the differential equation

$$f'(t) = \lambda f(t) \ (t \in \mathbb{R}, t \neq 0), \quad f(0-) = 0, f(0+) = 1$$

- Solve this eq. for an $f \in L^2(\mathbb{R})$ (if exist).
- Is the eq. equivalent to

$$f \in L^2(\mathbb{R})$$
 st $f' = \lambda f + \delta_0$

• Use Fourier transform to show that

$$\widehat{f}(\omega) = \frac{1}{2\pi i \omega - \lambda} \quad (\omega \in \mathbb{R})$$

• Discuss the situation for $Re(\lambda) < 0$ and $Re(\lambda) > 0$.

Duality

 $f \in L^2(\mathbb{R})$.

Energy:

$$E \equiv \int |f(t)|^2 dt = \int |\hat{f}(\omega)|^2 d\omega.$$

Energy center:

$$t_0 \equiv \frac{1}{E} \int t |f(t)|^2 dt, \qquad \omega_0 \equiv \frac{1}{E} \int \omega |\hat{f}(\omega)|^2 d\omega.$$

Spread:

$$\sigma_t^2 \equiv \frac{1}{E} \int (t - t_0)^2 |f(t)|^2 \, \mathrm{d}t, \quad \sigma_\omega^2 \equiv \frac{1}{E} \int (\omega - \omega_0)^2 |\widehat{f}(\omega)|^2 \, \mathrm{d}\omega.$$

Heisenberg uncertainty principle.

$$\sigma_t \sigma_\omega \ge \frac{1}{4\pi}.$$

$$\sigma_t \sigma_\omega = \frac{1}{4\pi} \iff f(t) = c e^{\gamma(t - t_0)^2} \ (t \in \mathbb{R})$$

<u>18</u>