

http://www.staff.science.uu.nl/~sleij101/

1

3

$$f * h(t) = \int_{-\infty}^{+\infty} f(t-s)h(s) \,\mathrm{d}s$$

Well-defined if $f \in L^p(\mathbb{R}), h \in L^q(\mathbb{R})$ $(p, q \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1)$ Then $||f * h||_{\infty} \le ||f||_p ||h||_q$ and f * h is uniformly continuous.

Application. Narrow Gaussians,

$$h(x,y) = \frac{1}{\delta} e^{-\pi \frac{1}{\delta^2} (x^2 + y^2)},$$

are used to smooth ('denoise') pictures:

$$f_{\text{denoised}} = (f+n) * h$$

(using the 2d-variant of the convolution product). The idea here is the $n * h \approx 0$ if n is noise.

$f * h(t) = \int_{-\infty}^{+\infty} f(t-s)h(s) \,\mathrm{d}s$

Well-defined if $f \in L^p(\mathbb{R}), h \in L^q(\mathbb{R})$ $(p, q \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1)$ Then $||f*h||_{\infty} \leq ||f||_p ||h||_q$ and f*h is uniformly continuous.

Application. With $B_0(x) \equiv 1$ if $x \in [0,1]$, $B_0(x) \equiv 0$ elsewhere, define

$$B_k \equiv B_0 * B_{k-1} \qquad (k \in \mathbb{N})$$

Theorem. For all $k \in \mathbb{N}$:

- $B_k \in C^{(k-1)}(\mathbb{R})$
- On [j, j + 1], B_k is a polynomial of degree $k \ (j \in \mathbb{Z})$.
- $B_k(x) > 0$ for all $x \in (0, k + 1)$
- $B_k(x) = 0$ for all $x \notin (0, k+1)$.

The B_k are **basis splines** or **Box splines** of degree k.

Program

- Convolution products
- Correlation
- Radar

[Ex.6.5]

<u>4</u>

Theorem. $f, h \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$. Then

$$\widehat{(f*h)} = \widehat{f} \cdot \widehat{h}$$

Application. h and f * h are known. Construct f.

Solution. In principle

$$\widehat{f} = \frac{\widehat{f * h}}{\widehat{h}}.$$

Discussion. The received signal f * h (and h?) will be affected by noise: received f * h + n.

Remedy. (Tikhonov) Regularise: for some appropriate regularisation parameter τ (which one?)

$$f^{\mathsf{r}} \equiv \operatorname{armin}_{g} \left(\|g * h - [f * h + n] \|_{2}^{2} + \tau \|g\|_{2}^{2} \right)$$

(and combine with filtering).

<u>5</u>

Application.

$$(h, f_t) = \int \overline{f(s-t)} h(s) \, \mathrm{d}s = f^{\mathsf{T}} * h(t)$$

 $f * h(t) = \int_{-\infty}^{+\infty} f(t-s)h(s) \,\mathrm{d}s$

Then $||f * h||_{\infty} \le ||f||_p ||h||_q$ and f * h is uniformly continuous.

Notation. $f_s(t) \equiv f(t-s)$; s is a delay. $f^{\mathsf{T}}(t) = \overline{f(-t)}$.

Prop. $f * h(t) = (h, f_t^{\top}), \quad ||f||_p = ||\overline{f}||_p = ||f_t||_p = ||f^{\top}||_p.$

 $f \in L^p, h \in L^1$. Then $||f * h||_p \le ||h||_1 ||f||_p$.

 $(f * h, q) = (h, f^{\mathsf{T}} * q).$

Well-defined if $f \in L^p(\mathbb{R}), h \in L^q(\mathbb{R})$ $(p,q \in [1,\infty], \frac{1}{p} + \frac{1}{q} = 1)$

The map $f \odot h(t) \equiv (h, f_t)$ is called the **correlation product** of *f* and *h*:

it tests how much h is correlated to a shifted variant of f.

Note that the correlation product is the *adjoint* of the convolution product:

$$(f * g, h) = (g, f^{\mathsf{T}} * h).$$

Wiener-Khintchini Theorem.

$$(f \odot h)^{\widehat{}} = \widehat{h} \,\overline{\widehat{f}}, \qquad (f \odot f)^{\widehat{}} = |\widehat{f}|^2$$

<u>6</u>