
Scientific Computing, Utrecht, March 24, 2014

Fourier Transforms

Wavelets

Theory and Applications

Gerard Sleijpen
Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

1

Program

• Computing Fourier Coefficients

• Discrete Fourier Transform

• Discrete Cosine Transform

• Fast Fourier Transform

• Computing Fourier Integrals

2

Fourier coefficients

Let f : R → C be T -periodic and sufficiently smooth.

γk(f) =
1

T

∫ T

0
f(t) e−2πit k

T dt, f(t) =
∑

k∈Z

γk(f) e2πit k
T

Suppose f is sampled at tn with tn ≡ n∆t and ∆t ≡ T
N .

γ̃k ≡ ∆t

T

N−1∑

n=0

f(tn) e−2πitn
k
T =

1

N

N−1∑

n=0

fne−2πink
N

γ̃k = γ̃k+jN (k, j ∈ Z).

fn =
∑

k∈Z

µk e2πink
N , where µk ≡

∑

j∈Z

γk+jN(f).

Theorem. γ̃k = µk = γk(f) +
∑

j 6=0

γk+jN(f).

Proof. Apply next theorem. 3

Discrete Fourier Transform

Theorem. Let (f0, f1, . . . , fN−1) be a sequence of complex

numbers. Define the sequence (γ̃0, . . . , γ̃N−1) by

γ̃k ≡ 1

N

N−1∑

n=0

fn e−2πink
N (k = 0, . . . , N − 1).

Then fn =
N−1∑

k=0

γ̃k e2πikn
N (n = 0, . . . , N − 1).

Note. Except for the minus-sign in the exponential and

the scaling 1
N in the definition of the γ̃k, the formulae are

the same. Some text books scale both formulae with 1√
N

.

The sequence (γ̃k) is the Discrete Fourier Transform of

the sequence (fn). The theorem gives the inverse DFT.

4

Discrete Fourier Transform

Theorem. γ̃k ≡ 1

N

N−1∑

n=0

fn e−2πink
N ⇒ fn =

N−1∑

k=0

γ̃k e2πikn
N .

Proof. Let ℓ(N) be the space of sequences f ≡ (f0, . . . , fN−1)

of N complex numbers with inner product

<f,g>≡ 1

N

N−1∑

n=0

fn gn (f,g ∈ ℓ(N)).

For each k = 0, . . . , N − 1, consider

φk(n) ≡ e2πikn
N (n = 0, . . . , N − 1).

The collection of φk forms an orthonormal basis of ℓ(N).

In particular, f =
N−1∑

k=0

<f, φk > φk

The def. of the inner product reveals that γ̃k =<f, φk >. 5

Discrete Cosine Transform

Similarly, if f ∈ ℓ(N), then complex arithmetic is avoided

and at the same time faster decreasing discrete Fourier

coefficients γ̃k are obtained by extending f first to an even

function before extending to a periodic function.

For ease of notation, we put γk instead of γ̃k.

6

Discrete Cosine Transform

Example. Suppose f = (f0, . . . , fN) ∈ ℓ(N + 1).

Extend f to an function that is even (around n = N):

g ≡ (f0,f1,. . . ,fN−1,fN ,fN−1, . . . , f2, f1)

= (g0,g1,. . . ,gN−1,gN ,gN+1,. . . , g2N−2,g2N−1)

The DFT of g is

γk =
1

2N
[f0 + (−1)kfN] +

1

N

N−1∑

n=1

fn cos(2πkn
N)

Note that, as g, (γk) is even around k = 0 and k = N .

Therefore, the inverse DFT, for n = 0, . . . , N , is

gn = fn = [γ0 + (−1)nγN] + 2
N−1∑

k=1

γk cos(2πkn
N)

7

Discrete Cosine Transform

There are a number of ways to extend a finite sequence to

a sequence of length 2N that is even.

Example. Suppose f = (f0, . . . , fN−1) ∈ ℓ(N).

Then the extension

g ≡ (f, fT) with fT ≡ (fN−1, fN−2, . . . , f1, f0)

leads to an 2N-periodic function g that is even around

n = −1
2 and n = N − 1

2.

This leads to the so-called DCT-II transform:

DCT-II. With φn,k ≡ cos
(
π(n + 1

2)
k
N

)
,

γk = 1
N

N−1∑

n=0

fn φn,k, fn = γ0 + 2
N−1∑

k=1

γk φn,k

8

Discrete Cosine Transform

There are a number of ways to extend a finite sequence to

a sequence of length 2N that is even. The first extension

that we considered (even around 0 and N) is called DCT-

I, the second (even around −1
2, N − 1

2) is DCT-II. The

DCT-II seems to be the most popular one in practice and

is often simple called the DCT.

Odd extensions lead to sines rather than cosines. However,

sinus are cosines up to some phase shift and with some sim-

ple manipulation, odd extensions also lead to transforms

involving cosines only, to the so called DCT-III and DCT-

IV. DCT-IV is the standard DCT in Matlab:

DCT-IV. With φn,k ≡ cos
(

π
N(n + 1

2)(k + 1
2)

)
,

γk = 1
N

N−1∑

n=0

fn φn,k, fn = 2
N−1∑

k=0

γk φn,k.

9

Applications of DCT

• Image compression.

Goal. Compression.

2-dimensional (and 3-d) DCT-II is used with N low.

JPEG, MJPEG, MPEG use DCT-II on 8 × 8 blocks

• Audio compression.

Goal. Compression and spectral information: the tech-

niques in audio compression exploit psygological facts on

how we hear combinations of harmonic oscillations, that

is, compression depends on the distribution of frequencies.

A related transform, Modified DCT, is used in

AAC, Vorbis, MP3.

• Partial Differential Equations. DCTs are used for

solving PDEs, where the variants of DCT correspond to

(slightly) different boundary conditions. 10

Fast Fourier Transform

Suppose the sequence γ ≡ (γ0, . . . , γN−1) ∈ ℓ(N) is avail-

able. The naive way of computing the DFT

F(γ)n ≡ fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

requires more than 2N2 floating point operations (addi-

tions, multiplications): for each of the N ns, 2N flop.

In practice N is huge.

N of the order of 106 ∼ 108 is not exceptional.

Gauss [first half of the 19th century], Runge [1903] and

Cooley & Tukey [1965] in the most cited mathematical

paper ever, proposed a computational scheme, FFT, that

reduces the computational costs to 2N log2(N) flop.

For, e.g., n = 220 ≈ 106, this makes a difference with 2N2

of 1 sec versus 3:30 hours.

11

Fast Fourier Transform

Suppose N = 2ℓ for some ℓ ∈ N. Put M = 2ℓ−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Let κℓ be the number of flop required to compute the

DFT of length M = 2ℓ. Then, the above implies that

κℓ = 2κℓ−1 + 1.5N.

We need N additions (subtractions), M multiplications;

For now, we neglected the costs for computing eπi n
M .

We can repeat the partitioning trick to fe,n and fo,n.

12

Fast Fourier Transform

Suppose N = 2ℓ for some ℓ ∈ N. Put M = 2ℓ−1 = 1
2N .

fn =
N−1∑

k=0

γk e2πikn
N (n = 0, . . . , N − 1).

With fe,n ≡
∑

2k<N

γ2k e2πikn
M , fo,n ≡

∑

2k+1<N

γ2k+1 e2πikn
M ,

we have fn = fe,n + fo,n eπi n
M (n = 0, . . . , M − 1),

fn+M = fe,n − fo,n eπi n
M (n = 0, . . . , M − 1).

Repeating this partitioning trick recursively down to level

ℓ = 0 is Fast Fourier Transform.

Theorem. FFT requires (1.5 ℓ + 0.5)N flop.

Proof. The 0.5N comes from the computation of eπi n
M ,

which can be computed as ζn = ζn−1ζ with ζ = eπi 1
M .

Note that, eπin2−ℓ+j
= eπi(2jn)2−ℓ

.

13

DFT & FFT as matrix multiplication

Let f = (f0, . . . , fN−1)
T and γ = (γ0, . . . , γN−1)

T be such

that fn =
N − 1∑

k = 0

γk e2πikn
N (n = 0, . . . , N − 1).

Let F be the N × N matrix with (n, k)-entry e2πikn
N . Then

f = Fγ

FFT. Now suppose N = 2ℓ. Put M ≡ 2ℓ−1.

Let Fℓ ≡ F be the DFT for level ℓ, i.e., for N = 2ℓ.

The first step in FFT can be written as

f =

[
Iℓ−1 +Dℓ−1
Iℓ−1 −Dℓ−1

] [
fe
fo

]
=

[
Iℓ−1 +Dℓ−1
Iℓ−1 −Dℓ−1

] [
Fℓ−1 0
0 Fℓ−1

] [
γe

γo

]

where γe = (γ0, γ2, . . .)T , γo = (γ1, γ3, . . .)T .

14

FFT for sequences of any length?

Suppose N = qℓ for some q ∈ N, q > 2.

Then we can design a FFT algorithm similar to the one

for q = 2. For instance, if q = 3, and (γ0, . . . , γN−1) is a

sequence of length N , then we can group the coefficients

in three classes (γ3k), (γ3k+1) and (γ3k+2) instead of the

two as for q = 2 (the one with even indices and one with

odd indices) and we can decompose the fn accordingly.

q is the radix of the FFT.

The computational costs are in the order of N log3 N :

Comp. Costs ≈ Cq N log3 N for some Cq > 0.

Property. FFT with radix 4 allows the most efficient

implementation (i.e., 4 = argminq Cq N logq N).

15

FFT for sequences of any length?

We can factorise any N ∈ N, that is, we can decompose

any N into a product of prime factors and we can design a

FFT for sequences of length N that is a mixture of FFTs

of radix pj with pj the primes that occur in the factors.

However, computationally, this approach is not attractive:

• we have to factorise N

• coding of such a FFT with a mixture of FFTs with

different radixes is messy

• if the primes are large (with the extremal situation where

N itself is prime), then the FFT is not faster.

16

FFT for sequences of any length?

If, for instance, we have to compute Fourier coefficients

of a T -periodic function f : R → C, then we can select the

sample frequency 1/∆t as we like (with the only restriction

that it is sufficiently large), for instance,

∆t = T/N with N = 2ℓ.

Conclusion.

Some application allow to select N to be a power of 2.

17

FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length
M to be extended to sequences of length 2ℓ (with ℓ such

that 2ℓ−1 < M ≤ 2ℓ) by appending with zeros.

Example. The convolution product α⋆β of the sequence

α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ⋆ β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Assume that the length of α and β is M = 2ℓ. Append α
and β with zeros to sequences of length N ≡ 2ℓ+1. Next,

extend α and β periodically (period N) and define ⋆N :

(α ⋆N β)k ≡
N−1∑

j=0

αj βk−j (k = 0, . . . , N − 1).

Note that the definitions of α ⋆ β are consistent (lead to

the same values for k < N).

18

Discrete Convolution Products

Definition. For α, β ∈ ℓ(N), let

(α ⋆N β)k ≡
N−1∑

j=0

αj βk−j (k = 0, . . . , N − 1),

where βk−j ≡ βN+k−j if k − j < 0 (periodic extension).

Theorem. FN(α ∗N β) = FN(α) · FN(β), where

the ·-product is coordinate wise (the Hadamard product).

Suppose 2ℓ−1 < N < 2ℓ. Put L ≡ 22ℓ.

Form β̃ ≡ (β,0, β) to a sequence of length L.

Form α̃ ≡ (α,0,0) to a sequence of length L.

Property. (α ⋆N β)k = (α̃ ⋆L β̃)k for k = 0, . . . , N − 1.

Corollary. (α ∗N β)k = (F−1
L [FL(α̃) · FL(β̃)])k (k < N).

α ⋆L β can be computed with three DFT of radix 2 plus L

mult.. Costs: ≤ 24N(ℓ + 2) flop rather than 0.5N2. 19

FFT for sequences of any length?

Some application allow sequences (γ0, . . . , γM−1) of length

M to be extended to sequences of length 2ℓ (with ℓ such

that 2ℓ−1 < M ≤ 2ℓ) by appending with zeros.

Example. The convolution product α⋆β of the sequence

α = (γ0, . . . , αM−1) and β = (β0, . . . , βM−1) is defined by

(α ⋆ β)k ≡
∑

j

αj βk−j (k = 0, . . . ,2M − 2).

Conclusion. In these applications the FFT is nothing more

than an efficient computational tool. The quantities to be

computed are in same domain as the inputs (time-domain

rather than in frequency domain).

20

Appending with zeros

Consider γ = (γ0, . . . , γM−1) ∈ ℓ(M) with 2ℓ−1 < M < N ≡ 2ℓ.

Append γ with zeros to a sequence γ+ of length N :

γ+ ≡ (γ0, . . . , γM−1,0, . . . ,0).

Observe that FM(γ) 6= FN(γ+), because

M−1∑

k=0

γk e2πikn
M =

N−1∑

k=0

γ+
k e2πikn

M 6=
N−1∑

k=0

γ+
k e2πikn

N .

Conclusion. If the quantities of interest are in the ‘dual’

domain (frequency rather than time, or time rather than

frequency), then appending zeros is not allowed.

21

FFT for sequences of any length?

Consider γ = (γ0, . . . , γM−1) ∈ ℓ(M) with 2ℓ−1 < M < N ≡ 2ℓ.

Property. With βk ≡ e−πik2

M , we have that

FM(γ) = µ β with µ ≡ (γ β) ⋆M β

As we saw before, the convolution product can be com-

puted with three DFT of radix 2 (and length L ≡ 2N), plus

L multiplications. The multiplications γβ and µβ require

an additional 2M multiplications.

22

Computing Fourier integrals

f sampled at tn = t0 + n∆t. 1/∆t sample frequency.

For ease of notation, take t0 = 0 (otherwise shift by t0).

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt ≈ ∆t

N−1∑

n=0

fn e−2πi n∆t ω

Here, T = N∆t and fn = f(tn).

Of interest for ω = k
T (k = 0, . . . , N − 1).

f̂(ω) to be computed by DFT.

Two ‘discretizations’ ! How accurate is this?

23

Windowing

f̂(ω)≈
∫ t0+T

t0
f(t) e−2πitω dt

Actually, we are computing the Fourier transform of

fWt0, where W (t) = 1 if 1 ≤ t ≤ T , and
W (t) = 0 elsewhere

and Wt0(t) ≡ W (t − t0).

W is a time-window.

Of interest: the difference between f̂(ω) and ̂(fWt0)(ω).

Φ(t, ω) ≡ (̂fWt)(ω) is called a spectogram of f .

24

Discretization

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω

Relation f̂(ω) and F (ω)? Does this depend on ω?

Bf ≡ {ω ∈ R | |f̂(ω)| 6= 0} is the frequency band of f .

f is of bounded bandwidth if Bf ⊂ [−Ω,+Ω]

for some Ω > 0: smallest Ω is the bandwidth.

Suppose f is of bandwidth ≤ Ω.

25

f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒

f(t) =

∫ ∞

−∞
f̂(ω) e2πi t ω dω =

∫ Ω

−Ω
f̂(ω) e2πi t ω dω

In particular, fn = f(tn) =
∫ Ω

−Ω
f̂(ω) e2πi n ω

2Ω dω.

26

f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒
∫ Ω

−Ω
[f̂(ω)− F (ω)]e2πi n ω

2Ω dω = 0 ∀n ∈ Z.

27

f(t) =
∞∑

k=−∞
γk e2πi t

T k ⇔ γk =
1

T

∫ T/2

−T/2
f(t) e−2πi t

T k dt

Take ∆t = 1
2Ω, change −t ↔ ω, T ↔ 2Ω, n ↔ k . . .

F (ω) ≡ ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ⇔ fn =

∫ Ω

−Ω
F (ω) e2πi ω

2Ωn dω

f of bandwidth ≤ Ω ⇒

f̂(ω) = ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ∀ω ∈ [−Ω,+Ω].

∆t = 1
2Ω is the Nyquist rate.

28

Theorem.

f of bandwidth ≤ Ω & sample frequency 1/∆t ≥ 2Ω ⇒

f̂(ω) = ∆t
∞∑

n=−∞
fn e−2πi n∆t ω ∀ω ∈ [−Ω,+Ω]

The discretization is exact if the bandwidth ≤ Ω and the sample fre-

quency ≥ 2Ω (∆t ≤ 1/(2Ω)). Fourier transform of this result leads

to

The Shannon–Whittakker Theorem.

f of bandwidth ≤ Ω & sample frequency 1/∆t ≥ 2Ω ⇒

f(t) =
∞∑

n=−∞
fn sinc

(
t − tn

∆t

)
∀t ∈ R.

29

Discussion. The Shannon–Whittakker theorem tells us

that f can be reconstructed from its sample values, if f is

of bounded bandwidth and the sample frequency is at least

twice the maximal frequency of f . However, reconstruction

requires values fn from the (far) future as well as from the

(far) past.

Application. Resampling (sampling at another sampling

rate) is possible.

If the new sample rate is p
q times the old sample rate ∆t,

then, in practice, resampling is achieved by

1) upsampling by p

2) filtering to get rid of frequencies > Ω

3) downsampling by q.

(Details later)

30

Conclusions

• Discretization is fine provided f is of bounded bandwidth

and the sample frequency is high enough.

• Perturbations by windowing can not be avoided. Effects

include smearing and leakage. Effects can be diminished

by a larger time-window. One effect can be diminished at

the cost of others (by other time-windows).

31

