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Larger examples in computer chips, with up to 5 108 elec-
tronic components (2011: Intel’s dual-core i5).
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Definition. A directed graph is a collection of vertices
(v;) (points) and edges (e;) (lines) with a direction.

An electronic network can be described by a directed graph,
where each edge contains exactly one electronic compo-
nent, as a resistor, capacitor, inductor, etc.. At vertex v;
we have Voltage V;, in edge €j is an electrical current ij,
with ij positive if the current is in line with the direction
of edge €j and negative if it is in opposite direction.

One way of describing a directed graph is by an
Definition. Incidence matrix G:

e the ith row of G corresponds to the ith vertex v;;

e the jth column of G corresponds to the jth edge e;;

e if edge i; connects v, and v, with v, first, then G has
value +1 at entry (k,7) and —1 at (4,5), while all other
entries in the jth column have value O.

We collect the voltages in a vector V, and the currents in
a vector i, with vector indices corresponding to the index
of the vertices and edges, respectively.
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The size of the incidence matrix is k x n, where k is the
number of vertices and n the number of edges, that is, of
electronic components. £k = 4 and n = 6 in the present
example. n~5 108 in Intels dual-core i5.

Note that GTV is the vector of Voltage differences across
the edges.
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Note. G is not of full rank: rank(G) = k— 1. This follows
from the fact that GT1 = 0: The value of GV does not

change by adding the same constant to all V;.
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Kirchhoff’s laws

Gi = 0 expresses Kirchhoff’s law of currents stating that
the inflow of the currents at a vertex equals the outflow
at that vertex.

Kirchhoff’s law of voltages is automatically fulfilled.
This law states that in any closed loop (sub-circuit) the
sum of the voltage differences is 0.
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(V1 —=V2)+ (Vo =V3) + (V3 —Va) + (V4 —V1) =0,
(Vo-V3)+(Vz3-V2) =0, ...

Note that GTV is the vector of Voltage differences across
the edges.
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Note that GTV is the vector of Voltage differences across
the edges.
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GV =RI'+CI+LI"4+eu, where
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The currents and the voltages in the electronic network
satisfy the relation

/

0 G O0]|[v 00 0][v] [o
G" -R -L||i|=|0CO||i|+]|e|u
0 1 0]|J 00 1]|J 0

Uniqueness. If we have a solution, then adding a constant
to the Voltages at all vertices (the same constant) is also
a solution. We therefore, fix one of the Voltages to O (i.e.,

connect that vertex to the earth).
We incorporate this scaling into the model by replacing the

k x k left upper block of O in the matrix at the left by E, a
k x k matrix of zeros except at the diagonal position (¥,£)

where E has entry 1. This means that we fix V; to 0.
Note that this does not affect the values of the ij: because,

since G does not have full rank, the other rows (other than
the /th) determine the values of the ij.
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The currents and the voltages in the electronic network
satisfy the relations

Gi=0

G'V=Ri+Ci+Li"+eu
or, with J = i/, we can turn the second order differential
equation into two coupled first order differential equations:

Gi'=0
GV -Ri-LJY=Ci+eu
i'=J
Combine these three relations into one first order diff.eq.

0 G o0][v]” [0 0 0][V 0
GT -R —L||i|=|0CoO||i|+]|e|lu
0 1 0] [J 00 I1][J 0

Here, a 0 in the block matrices represent a matrix of zeros
of matching size, a 0 in the block vector is a vector of 10
appropriate size, I is the n x n identity matrix.

The currents and the voltages in the electronic network

satisfy the relation Bx = AXx+ bu, where
E G O 000 \V/ 0
B=|G" - R -L|,A=|0C O0|,x=]|i|,b=|e
0 I O 0 01 J 0
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With ¢c" = (0,1,-1,0,07,0™)T we have that
c™x = Vo — V3 12

Here O is the n-vector of zeros.



Dynamical system

We have to solve a control system (dynamical system)

{ Bx/'(t) = Ax(t) + bu(t),
Vout (1) = y(t) = cTx(1).

k + 2n is the number of states or order of the system,
t ~ X(t) is the state of the system,

b is the input or control vector, c is the output vector,
t ~ u(t) is the control function,

t ~ y(t) is the output of the system.

Dynamical system

We have to solve a control system (dynamical system)

{ Bx/(t) = Ax(t) + bu(t),
Vout(t) = y(t) = ¢"x(¢).

Theorem. If u € L2(R), then y(t) = [ H(w) t(w)e?™ dw
with H(w) =c" (A - 271iwB) " 'b
H is the response or transfer function.

The graph of w ~ |H(w)| (w € [0,00) along the horizontal
axis, |H(w)| along the vertical axis on Decibel scale (Db),
i.e., 20logip-scale) is called the Bode plot of the transfer
function.

The curve in the complex plain described by w ~~ H(w) also
gives useful information. Note that a point on this curve 15
does not reveal the corresponding value of w: it relates

|H(w)| to ¢(w).

Dynamical system

We have to solve a control system (dynamical system)

Bx/'(t) = Ax(t) + bu(t),
{ Vout(t) = y(t) = cTx(t).

Theorem. If v € L2(R), then y(t) = [ H(w) ti(w)e?™ dw
with H(w) =c"(A - 21iwB) " 'b

H is the response or transfer function. It describes the
response of the system to an harmonic oscillation (at the
input). The amplitude (at the output) of such an oscil-

lation with frequency w is amplified with |H(w)| and the
phase is shifted by ¢(w) with ¢(w) € [0,27) such that

H(w) = |H(w)| e,

14
Stability of dynamical system
We have to solve a control system (dynamical system)
{ Bx/'(t) = Ax(t) + bu(t),
Vout(t) = y(t) = c™x(¢)
Consider an eigenpair (\,v) of the matrix pair (A,B):
Av = \Bv.
Suppose that at time tg the solution X is perturbed by ev,
i.e., X satisfies
Bx'(t) = Ax(t) + bu(t),
x(t) = x for t < tg,
X(tg) = X(tg) +ev.
Then, the error e = X — X satisfies
A —
Be' = Ae and e(ig) =ev 16

Hence, e(t) = eev for t > tg.



Stability of dynamical system

We have to solve a control system (dynamical system)
{ Bx/'(t) = Ax(t) + bu(t),
Vout (t) = y(t) = c"x(t)

Consider an eigenpair (\,v) of the matrix pair (A,B):

Av = \Bv.

The system is stable if all eigenvalues of (A,B) are in
C™ = {X € C| Re(N\) < 0}, the left half of the complex
plane.

Then, all singularities of A ~ cT(A —AB) b are in C™.
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The transfer function
The transfer function of the dynamical system

{ Bx/(t) = Ax(t) + bu(t),

Vout(t) = y(t) = ¢"x(¢).

is given by H(w) =cT(A — 2miwB) " 1b (w €R).
Computational challenges ¢ N = k+ 2n is huge (» 109).
e H(w) has to be computed for a large range of w.
e The transfer function has to be computed for several
(related) matrices (A, B) (in the design stage).
e Practical systems contain not only passive elements, like
resistors, capacitors, and inductors, but also many active
components (doides), which turn the problem into a non-
linear one.
e Practical system do not have only one Single Input vector
and a Single Output vector (SISO system), but they have 19

multiple inputs and multiple outputs (MIMO):
bis Nx#¢ cis N x/.

The transfer function

The transfer function of the dynamical system

{ Bx/'(t) = Ax(t) + bu(t),
Vout(t) = y(t) = cTx(t).
is given by H(w) =cT(A — 2miwB) b (w €R).

Properties.

e k+ 2n is huge

e A and B are sparse (only a few non-zeros in all rows).
e A and B are general matrices (not symmetric, ...).

e The differences in the coefficients R;, C; and L; can be
many order of magnitudes.
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Computerised Tomography
X-rays are transmitted from a straight line (the red beam
in the picture) through an object, a slab of material (the
yellow and black figure). The material partly ‘absorbs’ the
x-rays. The intensity of the x-rays is measured at the de-
tector (the green line parallel to the red line).
The detector is constructed to measure the intensity of
those beams that pass straight through the object (scat-
tered beams will not be detected).
The absorption depends on the kind of material and on
the thickness of the slab of material.
If a x-ray with initial intensity Ig travels through d cm of
homogeneous material with absorption coefficient x, then
the measured intensity I equals
I =1Ige "
20



Computerised Tomography

Use Cartesian coordinates (z,y) to describe the scanner.

Suppose the absorption coefficient at point (z,y) of the
object to be scanned is f(z,y). The value of f at (z,v)
depends on the (concentration of the) material at (z,y) of
which the object is composed.

Consider an x-ray that travels along a line orthogonal to
the detector: this is a line of points (z,y) with

z = z(n) = {cos(p)—nsin(¢p), y=y(n) =¢sin(¢p)+ncos(¢)

with ¢ fixed and ¢ the angle of the detector with z-axis
(the dashed line in the picture).

We therefore, can measure

pe(&) = [ £(a(n),y(n) di.

To obtain a sharp reconstruction,
we use Fourier transforms.

Computerised Tomography

Put ¢4 = cos(¢) and s4; = sin(¢). With

z(n) =&cy—nsy, Yy =Esp+ncy

we obtain the value ps(§) from measurements, where

o= [ S(a)y(m)dn

Assignment.
Given p,(&) for all £ € R and all ¢ € [0,27), compute f.

With p(§, ¢) = pg(),
the map f ~» p is the Radon transformation of f,

the graph of p as a 2-d picture is the sinogram of f.

Fwriwo) = [[ f(a,y) e 2milatun) dzay.

Rotate the coordinates in both (z,y)-plane as well as in

(w1,wn)-plane:

Then

z=E8cy— My, Y=ESstTMcy
W1 = P1Cy — P2Sps W2 = P1Sy T+ P2Ce.

F(p1cy — P25y, P15 + P2Cy)
= // f(€cy — sy, Esy + ncy) e—2mi(§p1+np2) dn dé.
In particular, if po = 0 and putting p = pq

Flpcy: psg)

[f f(gc(j) — NSes §s¢ + nC¢) 6_27”5[’ dfr] dé‘
[([ f(€C¢ — NS¢ §S¢ —+ ’)’]C¢) d’)’]) e—27ri§p de¢
I py(&) e72m6P dg = py(p).



Theorem. f(pcy,psy) =Ds(p) (pER,¢€[0,7)).

Note. The point (pc¢,ps¢) represents an arbitrary point in
(w1,ws)-plane in polar coordinates.

We therefore express the Fourier back transform

fzy) = // Fwr, wp) 2™ @11892) 4y duss.
into polar coordinates:
(@,y) = (rcp; rsp)
{ (w1,w2) = (pcg, psg)
Then

m oo .
SGegrs)) = [ [ Fpey,psg) 2000 ) dpdo

T r+oo .
= [ [ pae) 200 gl dpag 25

CT and Fourier transforms

Theorem. With jy(€) = /|p|ﬁ¢(p) 27 dp. we have that

f(reg,rsg) = /O7T Py(reg—g) do

Summary.

The statement in the theorem involves

1) a 1-dimensional Fourier transform (FT) (to make py),
2) a filter operation in frequency space,

3) a 1-d inverse FT and

4) BP.

The proof exploits 2-d FT, switching between
Cartesian coordinates,
rotated Cartesian coordinates, and
polar coordinates.

With
{ (z,y) = (rcy,rsp)
(w1,w2) = (pcg, psg)
we have

Theorem. With p4(¢) = /|p|ﬁ¢(p) e2™P¢ dp, we have that

J(reg,rse) = [ Bp(reg- ) do

Interpretation. The multiplication of pg(p) by |p| act as
a filter, damping low frequency components (p ~ 0) and
amplifying high frequency ones.

f is obtained as a filtered back-projection, i.e., the BP
of the filtered Fourier transform of the Radon transformed p,.

Recall that the BP without filtering (i.e., BP of pg, rather

than of ]5¢) leads to a blurred version of f. This can be 26
viewed as an over estimation of low frequency components.

The filtering by |p| seems to correct this.



