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Program

• Electronic Circuits

• MRI

• Diffraction

• CT
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Electronic circuits

Example.
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Larger examples in computer chips, with up to 5108 elec-

tronic components (2011: Intel’s dual-core i5).
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Definition. A directed graph is a collection of vertices

(vi) (points) and edges (ej) (lines) with a direction.

An electronic network can be described by a directed graph,

where each edge contains exactly one electronic compo-

nent, as a resistor, capacitor, inductor, etc.. At vertex vi

we have Voltage Vi, in edge ej is an electrical current ij,

with ij positive if the current is in line with the direction

of edge ej and negative if it is in opposite direction.

One way of describing a directed graph is by an

Definition. Incidence matrix G:

• the ith row of G corresponds to the ith vertex vi;

• the jth column of G corresponds to the jth edge ej;

• if edge ij connects vk and vℓ with vk first, then G has

value +1 at entry (k, j) and −1 at (ℓ, j), while all other

entries in the jth column have value 0.

We collect the voltages in a vector V, and the currents in

a vector i, with vector indices corresponding to the index

of the vertices and edges, respectively.
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G =




1 0 0 0 0 −1
−1 1 1 1 0 0

0 −1 −1 −1 1 0
0 0 0 0 −1 1


 , V =




V1
V2
V3
V4


 , I =




i1
i2
i3
i4
i5
i6




The size of the incidence matrix is k × n, where k is the

number of vertices and n the number of edges, that is, of

electronic components. k = 4 and n = 6 in the present

example. n ≈ 5108 in Intels dual-core i5. 5

Kirchhoff’s laws

Gi = 0 expresses Kirchhoff’s law of currents stating that

the inflow of the currents at a vertex equals the outflow

at that vertex.

Kirchhoff’s law of voltages is automatically fulfilled.

This law states that in any closed loop (sub-circuit) the

sum of the voltage differences is 0.

Example.
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(V1 − V2) + (V2 − V3) + (V3 − V4) + (V4 − V1) = 0,

(V2 − V3) + (V3 − V2) = 0, . . .
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Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GTV =




1 −1 0 0
0 1 −1 0
0 1 −1 0
0 1 −1 0
0 0 1 −1

−1 0 0 1







V1
V2
V3
V4


 =




V1 − V2
V2 − V3
V2 − V3
V2 − V3
V3 − V4
V4 − V1




.

Note. G is not of full rank: rank(G) = k−1. This follows

from the fact that GT1 = 0: The value of GTV does not

change by adding the same constant to all Vi.
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Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GTV′ =




V ′
1 − V ′

2

V ′
2 − V ′

3

V ′
2 − V ′

3

V ′
2 − V ′

3

V ′
3 − V ′

4

V ′
4 − V ′

1




=




R1 i′1

L2 i′′2
1

C3
i3

R4 i′4

R5 i′5

R6 i′6




+




0

0

0

0

0

V ′
in



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Note that GTV is the vector of Voltage differences across

the edges.

Example.
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GT V′ = RI′ + C̃ I + L I′′ + eu, where

R ≡




R1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 R4 0 0
0 0 0 0 R5 0
0 0 0 0 0 R6



, C̃ ≡




0 0 0 0 0 0
0 0 0 0 0 0

0 0 1
C3

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, L = . . .
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The currents and the voltages in the electronic network

satisfy the relations




Gi = 0

GT V′ = Ri′ + C̃ i + L i′′ + eu

or, with J ≡ i′, we can turn the second order differential

equation into two coupled first order differential equations:




Gi′ = 0

GT V′ −Ri′ − LJ′ = C̃ i + eu

i′ = J

Combine these three relations into one first order diff.eq.


0 G 0

GT −R −L

0 I 0






V

i

J




′

=



0 0 0

0 C̃ 0

0 0 I






V

i

J


 +



0

e

0


 u

Here, a 0 in the block matrices represent a matrix of zeros

of matching size, a 0 in the block vector is a vector of

appropriate size, I is the n × n identity matrix.
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The currents and the voltages in the electronic network

satisfy the relation


0 G 0

GT −R −L

0 I 0






V

i

J




′

=



0 0 0

0 C̃ 0

0 0 I






V

i

J


 +



0

e

0


 u

Uniqueness. If we have a solution, then adding a constant

to the Voltages at all vertices (the same constant) is also

a solution. We therefore, fix one of the Voltages to 0 (i.e.,

connect that vertex to the earth).
We incorporate this scaling into the model by replacing the

k× k left upper block of 0 in the matrix at the left by E, a

k × k matrix of zeros except at the diagonal position (ℓ, ℓ)

where E has entry 1. This means that we fix Vℓ to 0.
Note that this does not affect the values of the ij: because,

since G does not have full rank, the other rows (other than

the ℓth) determine the values of the ij. 11

The currents and the voltages in the electronic network

satisfy the relation Bx′ = Ax + bu, where

B ≡



E G 0

GT −R −L

0 I 0


 , A ≡



0 0 0

0 C̃ 0

0 0 I


 , x ≡



V

i

J


 , b ≡



0

e

0


 .

The output

Example.
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With cT ≡ (0,1,−1,0,0T,0T)T we have that

cTx = V2 − V3

Here 0 is the n-vector of zeros.
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Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

k + 2n is the number of states or order of the system,

t x(t) is the state of the system,

b is the input or control vector, c is the output vector,

t u(t) is the control function,

t y(t) is the output of the system.
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Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function. It describes the

response of the system to an harmonic oscillation (at the

input). The amplitude (at the output) of such an oscil-

lation with frequency ω is amplified with |H(ω)| and the

phase is shifted by φ(ω) with φ(ω) ∈ [0,2π) such that

H(ω) = |H(ω)| eiφ(ω).
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Dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

Theorem. If u ∈ L2(R), then y(t) =
∫

H(ω) û(ω)e2πiωt dω

with H(ω) ≡ cT(A− 2πiωB)−1b

H is the response or transfer function.

The graph of ω  |H(ω)| (ω ∈ [0,∞) along the horizontal

axis, |H(ω)| along the vertical axis on Decibel scale (Db),

i.e., 20 log10-scale) is called the Bode plot of the transfer

function.

The curve in the complex plain described by ω  H(ω) also

gives useful information. Note that a point on this curve

does not reveal the corresponding value of ω: it relates

|H(ω)| to φ(ω).
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Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ, v) of the matrix pair (A,B):

Av = λBv.

Suppose that at time t0 the solution x is perturbed by εv,

i.e., x̃ satisfies




Bx̃
′(t) = Ax̃(t) + bu(t),

x̃(t) = x for t < t0,

x̃(t0) = x(t0) + εv.

Then, the error e ≡ x̃− x satisfies

Be′ = Ae and e(t0) = εv

Hence, e(t) = εeλtv for t ≥ t0.
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Stability of dynamical system

We have to solve a control system (dynamical system)
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t)

Consider an eigenpair (λ, v) of the matrix pair (A,B):

Av = λBv.

The system is stable if all eigenvalues of (A,B) are in

C
− ≡ {λ ∈ C | Re(λ) < 0}, the left half of the complex

plane.

Then, all singularities of λ cT(A− λB)−1b are in C
−.
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The transfer function

The transfer function of the dynamical system
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

is given by H(ω) ≡ cT(A− 2πiωB)−1b (ω ∈ R).

Properties.

• k + 2n is huge

• A and B are sparse (only a few non-zeros in all rows).

• A and B are general matrices (not symmetric, . . . ).

• The differences in the coefficients Ri, Ci and Li can be

many order of magnitudes.
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The transfer function

The transfer function of the dynamical system
{

Bx′(t) = Ax(t) + bu(t),

Vout(t) = y(t) ≡ cTx(t).

is given by H(ω) ≡ cT(A− 2πiωB)−1b (ω ∈ R).

Computational challenges • N ≡ k+2n is huge (≈ 109).
• H(ω) has to be computed for a large range of ω.
• The transfer function has to be computed for several

(related) matrices (A,B) (in the design stage).
• Practical systems contain not only passive elements, like

resistors, capacitors, and inductors, but also many active

components (doides), which turn the problem into a non-

linear one.
• Practical system do not have only one Single Input vector

and a Single Output vector (SISO system), but they have

multiple inputs and multiple outputs (MIMO):
b is N × ℓ, c is N × ℓ′.
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Computerised Tomography

X-rays are transmitted from a straight line (the red beam

in the picture) through an object, a slab of material (the

yellow and black figure). The material partly ‘absorbs’ the

x-rays. The intensity of the x-rays is measured at the de-

tector (the green line parallel to the red line).

The detector is constructed to measure the intensity of

those beams that pass straight through the object (scat-

tered beams will not be detected).

The absorption depends on the kind of material and on

the thickness of the slab of material.

If a x-ray with initial intensity I0 travels through d cm of

homogeneous material with absorption coefficient κ, then

the measured intensity I equals

I = I0 e−κd.

20



Computerised Tomography

Use Cartesian coordinates (x, y) to describe the scanner.

Suppose the absorption coefficient at point (x, y) of the

object to be scanned is f(x, y). The value of f at (x, y)

depends on the (concentration of the) material at (x, y) of

which the object is composed.

Consider an x-ray that travels along a line orthogonal to

the detector: this is a line of points (x, y) with

x = x(η) = ξ cos(φ)−η sin(φ), y = y(η) = ξ sin(φ)+η cos(φ)

with ξ fixed and φ the angle of the detector with x-axis

(the dashed line in the picture).

We therefore, can measure

pφ(ξ) ≡
∫

f(x(η), y(η)) dη.

21

Computerised Tomography

Put cφ ≡ cos(φ) and sφ = sin(φ). With

x(η) ≡ ξ cφ − η sφ, y(η) ≡ ξ sφ + η cφ

we obtain the value pφ(ξ) from measurements, where

pφ(ξ) ≡
∫ +∞

−∞
f(x(η), y(η)) dη (ξ ∈ R).

Assignment.

Given pφ(ξ) for all ξ ∈ R and all φ ∈ [0,2π), compute f .

With p(ξ, φ) ≡ pφ(ξ),

the map f  p is the Radon transformation of f ,

the graph of p as a 2-d picture is the sinogram of f .

22

To obtain a sharp reconstruction,

we use Fourier transforms.
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f̂(ω1, ω2) =

∫∫
f(x, y) e−2πi(xω1+yω2) dx dy.

Rotate the coordinates in both (x, y)-plane as well as in

(ω1, ω2)-plane:




x = ξ cφ − η sφ, y = ξ sφ + η cφ

ω1 = ρ1cφ − ρ2sφ, ω2 = ρ1sφ + ρ2cφ.

Then

f̂(ρ1cφ − ρ2sφ, ρ1sφ + ρ2cφ)

=

∫∫
f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πi(ξρ1+ηρ2) dη dξ.

In particular, if ρ2 = 0 and putting ρ ≡ ρ1

f̂(ρcφ, ρsφ) =
∫ ∫

f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πiξρ dη dξ

=
∫ (∫

f(ξcφ − ηsφ, ξsφ + ηcφ) dη
)

e−2πiξρ dξ

=
∫

pφ(ξ) e−2πiξρ dξ = p̂φ(ρ).

24



Theorem. f̂(ρcφ, ρsφ) = p̂φ(ρ) (ρ ∈ R, φ ∈ [0, π)).

Note. The point (ρcφ, ρsφ) represents an arbitrary point in

(ω1, ω2)-plane in polar coordinates.

We therefore express the Fourier back transform

f(x, y) =

∫∫
f̂(ω1, ω2) e2πi(xω1+yω2) dω1 dω2.

into polar coordinates:




(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

Then

f(rcθ, rsθ) =

∫ π

0

∫ +∞

−∞
f̂(ρcφ, ρsφ) e2πiρ(rcθ−φ)|ρ|dρdφ

=

∫ π

0

∫ +∞

−∞
p̂φ(ρ) e2πiρ(rcθ−φ)|ρ|dρdφ 25

With 



(x, y) = (rcθ, rsθ)

(ω1, ω2) = (ρcφ, ρsφ)

we have

Theorem. With p̃φ(ξ) ≡
∫

|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =

∫ π

0
p̃φ(rcθ−φ) dφ

Interpretation. The multiplication of p̂φ(ρ) by |ρ| act as

a filter, damping low frequency components (ρ ≈ 0) and

amplifying high frequency ones.

f is obtained as a filtered back-projection, i.e., the BP

of the filtered Fourier transform of the Radon transformed pφ.

Recall that the BP without filtering (i.e., BP of pφ, rather

than of p̃φ) leads to a blurred version of f . This can be

viewed as an over estimation of low frequency components.

The filtering by |ρ| seems to correct this.
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CT and Fourier transforms

Theorem. With p̃φ(ξ) ≡
∫

|ρ| p̂φ(ρ) e2πiρξ dρ, we have that

f(rcθ, rsθ) =
∫ π

0
p̃φ(rcθ−φ) dφ

Summary.

The statement in the theorem involves

1) a 1-dimensional Fourier transform (FT) (to make p̂φ),

2) a filter operation in frequency space,

3) a 1-d inverse FT and

4) BP.

The proof exploits 2-d FT, switching between

Cartesian coordinates,
rotated Cartesian coordinates, and
polar coordinates.
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