Computer session II: Digital Spectral Analysis

II.A Introduction

For a given signal f, the power spectrum or power spectral density (PSD) gives a plot of the portion of a signal's power (energy per unit time) falling within given frequency intervals

$$\omega_i \rightsquigarrow \int_{\omega_{i-1} \le |\omega| \le \omega_i} |\widehat{f}(\omega)|^2 \, \mathrm{d}\omega, \tag{1}$$

where $\omega_i \equiv i\Delta\omega$ $(i \in \mathbb{Z})$. Matlab represents the energy on dB scale¹ and the energy is given (or, more accurately, estimated) per frequency unit, for instance, per Hertz (dB/Hz). The PSD is a way of measuring the strength of the different frequencies that form the signal. Often, as we will see below, it is not computationally feasible to get access to the spectrum \hat{f} of f. However, in many applications, already an estimate of the PSD gives the information that is needed.

The most common way of generating a power spectrum is by using a discrete Fourier transform (DFT), but there are other techniques as well. DFT assumes that the signal is sampled and concentrates on a part of the signal in time domain.

If f is of bounded bandwidth and sampled at sample frequency $1/\Delta t$, $1/\Delta t \ge 2\Omega$, where Ω is the maximum frequency of f (i.e., $|\hat{f}(\omega)| = 0$ if $|\omega| > \Omega$), then

$$\widehat{f}(\omega) = \Delta t \sum_{n = -\infty}^{\infty} f_n e^{-2\pi i n \,\Delta t \,\omega} \qquad (|\omega| \le \Omega).$$
(2)

Here, $f_n \equiv f(t_n)$, where $t_n \equiv t_0 + n\Delta t$ for some t_0 . Here, for notational convenience, we assume that $t_0 = 0$. Why is this result correct? Is the restriction $|\omega| \leq \Omega$ needed?

Unfortunately, in practise, only a finite sequence of f-values can be used. We are interested in this exercise in the effect of 'finitizing'. Consider the sequence (f_0, \ldots, f_{L-1}) ; L is some positive integer. We will approximate $\hat{f}(\omega)$ by

$$F(\omega) \equiv \Delta t \sum_{n=0}^{L-1} f_n e^{-2\pi i n \,\Delta t \,\omega} \qquad (|\omega| \le \Omega).$$
(3)

We select the frequency intervals of size $\Delta \omega \equiv \frac{1}{L\Delta t}$ around $\omega_i \equiv i\Delta\omega$ to form the PSD and we approximate the PSD by

$$\omega_i \rightsquigarrow \Delta \omega |F(\omega_i)|^2. \tag{4}$$

Why is this a good approach assuming $F(\omega)$ approximates $\hat{f}(\omega)$ well, more specifically, why this $\Delta \omega$?

For computational convenience, we select an $N \ge L$ that is a power of 2 (why?), $N = 2^{\ell}$ $(\ell \in \mathbb{N} \text{ is minimal such that } 2^{\ell} \ge L)$, and we compute $F(\omega)$ as

$$F(\omega) = \Delta t \sum_{n=0}^{N-1} \phi_n \, e^{-2\pi i \, n \, \Delta t \, \omega} \qquad (|\omega| \le \Omega), \tag{5}$$

where $\phi_n \equiv f_n$ for n = 0, ..., L - 1 and $\phi_n \equiv 0$ elsewhere. Check that the equality in (5) is correct. Instead of (4),

$$\widetilde{\omega}_i \equiv \frac{i}{N\Delta t} \rightsquigarrow \Delta \omega \, |F(\widetilde{\omega}_i)|^2. \tag{6}$$

¹i.e., $10 \log_{10} |\hat{f}(\omega)|^2 = 20 \log_{10} |\hat{f}(\omega)|$

is plotted. Why? Note that the $\Delta \omega$ in (6) is the same as the one in (4).

Consider the "time window" W given by $W_n \equiv 1$ if n = 0, ..., L - 1 and $W_n \equiv 0$ elsewhere. Then $F = (\widehat{\mathbf{f}W}) = \widehat{\mathbf{f}} * \widehat{W}$. Here, **f** is the infinite sequence $(..., f_0, f_1, ...)$ of sampled *f*-values.

II.B Exercises

Make notes: insights and results will be used in subsequential exercises.

Computer-exercise II.1.

Consider the function f given by

$$f(t) \equiv \sin(2\pi 150t) + 2\sin(2\pi 140t) \qquad (t \in \mathbb{R}).$$

This is not a signal. Why not? Nevertheless, we can compute the Fourier transform \hat{f} . How does \hat{f} look like?

The matlab command periodegram(fn,[],'twosided',N,fs), produces the PSD in the way as described above. Here, fn is the sequence (f_0, \ldots, f_L) , N is N, and fs is the sample frequency $1/\Delta t$. How do you expect that the PSD of the above function will look like? Does the matlab command produces the expected result? First take $L = N = 2^{10}$ and $1/\Delta t = L^2$ What is the difference between 'twosided' and 'onesided'? can we safely use 'onesided' here? Can you explain the shape of the PSD at -300dB/Hz? The spikes have a certain width. Why is that? Is the height at $\omega = 140$ and 150 as expected?

What is the effect of taking an L that is somewhat smaller than N, say, L = 1000. Are the effects less with a slightly larger L, say L = 1023.³ Explain why we have such a nice picture with L = 1024? Is this because N = L? (Suggestion: change the frequency 140 into 140.5. What is the effect of shifting the original signal in time?)

What is the effect of increasing N ($N = 2^{10}$, $N = 2^{11}$, $N = 2^{12}$, ...)?⁴ Explain your observations. Why is the PSD for smaller N 'part' of the graph for larger N?

What is the effect of increasing T?⁵ Explain your observations.

²Use Ex1a.m.

³Use Ex1b.m.

⁴Use Ex1c.m.

 $^{^{5}}$ Use Ex1d.m.