
September 13, 2017

Matlab Assignments – Lecture 2, Fall 2016

In these assignments we will investigate how the performance of Matlab’s LU-de-
composition can be improved by applying a suitable reordering scheme. We will also
investigate the effect of pivoting on the final accuracy.

Download the files ocean.m, topo.mat and ocean.mat from the course webpage.
The file ocean.mat contains the matrix A, the right-hand side vector b and a matrix
P. These files define an ocean circulation model on a grid with a resolution of 30. P

maps every entry in the solution vector x onto a corresponding gridpoint on the map
of the world.

Assignment 2.1. In this assignment you will device a renumbering scheme to min-
imise the fill in of the matrix of the ocean problem.

(a) Run the script ocean. You will see the nonzero structure of the matrix A. De-
termine the percentage of nonzero elements in A. The matrix A is banded, except
for a few arrows. These arrows are related to circulation conditions around islands
and continents, hence each arrow in A corresponds to a continent. Notice that A is
stored using Matlab’s sparse matrix storage. Only the nonzero elements of A and the
corresponding indices are stored.

(b) Make an LU-decomposition of A using the commands
thresh = 0; LU = lu(A,thresh);.

The parameter thresh determines a pivoting threshold (help lu). Since in the first
assignment we only study reordering of the equations to minimise fill in, we suppress
reordering of the equation to enhance numerical stability by putting thresh = 0;.
Check the nonzero pattern in the LU-decomposition of A. Determine the percentage
of nonzero elements.

(c) Clearly, the ‘arrows’ in the matrix cause a lot of fill in. A simple idea to overcome
this problem is to change the direction of the arrows. This comes down to eliminating
the unknowns in reverse order.
Reorder the matrix in this way. To reorder you can define an index vector I with entries
I(i)=j in which i is the original number of the unknown and j the new number
of the unknown after reordering. The statement B = A(I,:) reorders the rows of
the matrix, the statement B = A(:,I), and B = A(I,I) reorders both the rows and
the columns and preserves the symmetric structure of the matrix. Note that this is
much cheaper than defining a permutation matrix, and multiplying with it! Check the
sparsity pattern of the permuted matrix. Compute its LU-decomposition and check
the resulting nonzero pattern. What is the percentage of the nonzeros in the L and U

factors?

(d) Row with many zeros cause a lot of fill in (why?). It is therefore a good idea
to permute the rows with the most nonzeros to the bottom of the matrix. Make an
algorithm that constructs an index vector I that permutes the rows with the most
nonzero elements to the bottom of the matrix. Apply this permutation symmetrically
to preserve the symmetric structure in the matrix. Check the sparsity pattern of the
permuted matrix. Compute its LU-decomposition and check the resulting nonzero
pattern. What is the percentage of the nonzeros in the L and U factors?

1

(e) The Reverse Cuthill–McKee algorithm aims to minimise the bandwidth of the
matrix. A Reverse Cuthill–McKee ordering can be computed with the command I =

symrcm(A). Apply this permutation, check the resulting sparsity pattern of the per-
muted matrix and of the LU-factorisation of this matrix. What is the percentage of
the nonzeros in the L and U factors?

(f) The minimum degree ordering aims to minimise the fill in. This ordering can be
computed with the command I = realmmd(A) (see also Matlab’s command amd and
symamd). Apply this permutation, check the resulting sparsity pattern of the permuted
matrix and of the LU-factorisation of this matrix. What is the percentage of the
nonzeros in the L and U factors?

(g) You have used different permutation strategies. Which one worked best for our
problem?

Assignment 2.2. In this assignment you will investigate the effect of pivoting on the
fill in and on the accuracy of the solution.

(a) Use the Reverse Cuthill-McKee algorithm. Make an LU-decomposition while you
suppress pivoting thresh = 0. Calculate the solution of the system using this LU-
decomposition. Check the term |L̂| |Û|. Solve the system using this decomposition.
Permute your solution back to the original ordering and compare it with the solution
that you get with Matlab’s backslash command \. Repeat this assignment, but now
perform partial pivoting by setting thresh = 1. Does partial pivoting cause consider-
able additional fill in in this case?

(b) Same assignment, but now use the minimum degree ordering.

2

