
Exploiting sparsity; An explanation of the code for Lecture 5 and 6

In practise, high dimensional matrices are usually sparse, that is, the number of non
zero entries in each row is small. Iterative solvers require preconditioning to be fast:
rather then solving

Ax = b, (5.1)

the preconditioned system

M−1Ax = M−1b (5.2)

is solved. Here, M approximates A in some (weak) sense and systems Mu = r can
efficiently be solved. Preconditioners M are often of the form M = LU with L and U
sparse non-singular triangular matrices, L lower and U upper triangular. Via Lu′ = r
and Uu = u′, the system Mu = r can efficiently be solved for u.

Now suppose we have a (file with the) Matlab subroutine, say

function [x,hist,t]=gcr(A,b,x0,kmax,tol);,

that solves (5.1) iteratively. Here,
at the input side

• A is the matrix A,
• b is the vector b,
• x0 is the initial guess x0 (often x0 = 0, x0=0*b in Matlab),
• kmax is the maximum number of iteration steps that is allowed and
• tol is the required reduction of the residual norm,

that is, stop the iteration if ‖rk‖2/‖r0‖2 <tol.
At the output site

• x is the solution as computed by the subroutine at termination
(i.e., x= xk with k=kmax or ‖rk‖2/‖r0‖2 <tol),

• hist is the convergence history,
that is, the sequence (‖rj‖2/‖r0‖2)

k
j=0

of intermediate residual norm reductions,
• t is the time the routine needed.
To use this routine we have to form the vector M−1b, which is not a problem. But,

we also either have
1) to form the matrix M−1A or
2) to adapt the code gcr.m to compute the vector c = M−1Ar from r.

Discussion.
1) To focus the discussion, assume that M = LD−1U with D diagonal, and L and U
sparse triangular matrices that are explicitly available. Generally, the matrices L−1,
U−1 will be full (check that L−1 is a full matrix if, for instance, L has all ones on the
main diagonal and on the first lower co-diagonal and zeros elsewhere). Therefore, the
matrix M−1A will generally be full as well. Forming the matrix M−1A explicitly is
extremely expensive (in, both computational costs as in memory and is often even not
possible). And even if the matrix Ã ≡ M−1A would be available, the computation
of c = Ãr from r by multiplication by Ã (at 2n2 flop) is much more expensive than
obtaining c by performing the following four steps

c′ = Ar, solve Lc′′ = c′ for c′′, c′′′ = Dc′′, solve Uc = c′′′ for c, (5.3)

(at 2 kn flop with k the sum of the maximum number of non-zeros in each row of L, U
and A plus 1. If the matrices are sparse k will be ≪ n).
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2) Adapting the code gcr.m to perform the steps in (5.3) is not attractive for several
reasons:
a) the code has to be adapted at several places (to be explicit: (i) in the input list of
gcr, ‘A’ has to be extended to ‘A,L,D,U’, and (ii) whenever the command c=A*u is used
in gcr, it has to be replaced by a coding of the steps in (5.3)),
b) other types of preconditioning would require similar but new adaptations, and
c) if you want to exploit other solvers (as GMRES), the code for these solvers has to
be adapted as well.
Of course, each adaptation caries the danger of introducing errors in the code.

Defining the action of a matrix by means of a function

An efficient way out is to call a function subroutine, say MyPreMV, in the gcr code
whenever a matrix-vector multiplication is required. For instance,

function [x,hist,t]=gcr(MV,b,x0,kmax,tol),

where now MV is a handle of this function, as MV=@MyPreMV,1 and, at each occurrence, in
the gcr code the command c=A*u; is to be replaced by c=feval(MV,u);. For instance,
MyPreMV.m could be (a file of) the function subroutine

function c=MyPreMV(u)

c1=A*u; c2=L\c1; c3=D*c2; c=U\c3;

return

(5.4)

We can make the routine MyPreMV as efficient as possible without fiddling with the
routine gcr (for instance, we can allow old ‘c-values’ to be replaced by new ones as

function c=MyPreMV(u)

c=A*u; c=L\c; c=D*c; c=U\c;

return

(5.5)

thus saving memory). Now, we can call gcr in the command window, by first executing
the command MV=@MyPreMV;, followed by

x=gcr(MV,b,0*b,500,1.e-6); (5.6)

If another type of preconditioning is required, we can make another function sub-
routine, say MyPreMV2, to handle this new matrix vector product. Then, redefining MV

to MV=@MyPreMV2; allows us to use the command (5.6) again.

This subroutine approach for incorporating the MV is also useful if, for instance,
c is the solution at time T , c = Y(T ), of a high dimensional time dependent linear
differential equation Y′(t) = HY(t) with initial condition Y(0) = u: in this case, c
depends linearly on u. Then a subroutine that solves the differential equation defines
the action of the matrix (A = exp(TH)) while the matrix itself is not available.

1For information, search Matlab’s documentation for ‘function handle’. Matlab allows calling a

function inside another function by handle as well as by name. To be more specific, we could also

take MV=’MyPreMV’. Here, we focus on function handles for passing functions, rather than on strings of

function names. The approach with function handles is more elegant in Matlab. The approach with

function names will require the use of global variables as we will explain in the subsection below on

global variables.
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Incorporating the action of the matrix in a function

Note that, in order to be able to use the subroutine MyPreMV of (5.4), we have to get
the matrices A, L and U ‘known’ to this subroutine. We do not want to do that by
explicitly passing these quantities, that is, via an input argument of the form

function c=MyPreMV(u,A,L,D,U). (5.7)

Because, we then have to include these quantities also in the input list of gcr, which
we were trying to avoid. The alternative of defining these quantities inside the sub-
routine MyPreMV is even more undesirable, since then the quantities would be defined
again and again in each iterative step of gcr in which the routine MyPreMV is called
(by c=feval(MV,u);, here MV=@MyPreMV). This is where function handles can be con-
veniently exploited.2 In a function, say, DefineMatrixAction, we can define the quan-
tities as L, D and U, depending on a given matrix A, as well as the function MyPreMV.
By means of a function handle we can make this function MyPreMV available outside
DefineMatrixAction. In the following, as an example, we take L to be the lower tri-
angular part of A, U the upper triangular part, both including the diagonal of A, and
D the diagonal of A.

function [MV,bt]=DefineMatrixAction(A,b)

L=tril(A); U=triu(A); D=diag(diag(A));

function c=MyPreMV(u)

c=A*u; c=L\c; c=D*c; c=U\c;

end

MV=@MyPreMV;

bt=L\b; bt=D*bt; bt=U\bt;

end

(5.8)

This function DefineMatrixAction defines the preconditioned matrix-vector multipli-
cation MyPreMV. Via the list of ouput arguments, the function handle in MV=@MyPreMV;,
allows to make the preconditioned matrix-vector multiplication MyPreMV available out-
side DefineMatrixAction. Note that DefineMatrixAction also computes the precon-
ditioned right-hand side vector b̃ ≡ U−1DL−1b.

Since the function MyPreMV is defined inside the function DefineMatrixAction, the
quantities as L and U that are ‘known’ inside DefineMatrixAction are also ‘known’ to
MyPreMV. In particular, the undesirable explicit passing of quantities as L to MyPreMV

(as in (5.7)) is not required now.3

Before executing the command (5.6) in Matlab’s command window, execute a
command as DefineMatrixAction:

[MV,bt]=DefineMatrixAction(A,b);

x=gcr(MV,bt,0*b,500,1.e-6);

2For an alternative approach, using global variables, see the next subsection.
3If you are familiar to C++ programming, then the observation that the function handle @MyPreMV

actually is a pointer to the function MyPreMV might be illuminating.
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Matrix actions using global variables

In this subsection, we suggest the use of global variables as an alternative to the use
of function handles. If you are comfortable with function handles, you can skip this
subsection.

If the matrix vector multiplications c = Au have been defined in gcr as c=feval(MV,u),
then, as an alternative to function handles, as MV=@MyPreMV, the name of a function
can be used: with MyPreMV as in (5.4), command (5.6) with MV=@MyPreMV or with
MV=’MyPreMV’ leads to the same result.

However, calling a function by name rather than by handle, makes it more tricky
to get the quantities A, L, . . . ‘known’ to MyPreMV without explicitly passing them (see
the discussion in the preceding subsection).

The problem is that, if MyPreMV has been defined as in (5.8), then MyPreMV is a local
function and the string ’MyPreMV’ is recognised as the name of a function only inside the
function DefineMatrixAction. Defining MV=’MyPreMV’ inside DefineMatrixAction

(instead of MV=@MyPreMV as in (5.8)) with MV in the output list turns MV outside
DefineMatrixAction into the string ’MyPreMV’ but the string has now further mean-
ing (it will not be recognised as the name of a function). In summary, in contrast to
function handles, strings as ‘MyPreMV’ are recognised as the name of a function only
if the function MyPreMV is not defined inside another function (i.e., the file MyPreMV.m

should only consist of the function MyPreMV): MyPreMV should be a global function.

If MyPreMV is a global function, global variables can be used to get the quantities A,
L, . . . ‘known’ to MyPreMV without explicitly passing them:

function c=MyPreMV(u)

global A L D U

c1=A*u; c2=L\c1; c3=D*c2; c=U\c3;

return

(5.9)

Matlab (help global): “If several functions, all declare a particular name as GLOBAL,
then they all share a single copy of that variable. Any assignment to that variable, in
any function, is available to all the other functions declaring it GLOBAL”. Global vari-
ables are ‘known’ also in other function subroutines in which they have been declared
global, whereas the other type of variables, so-called local variables, are known only
inside the function subroutine in which they are used. Before executing the command
(5.6) in the commandwindowexecute a command like MakeMatrix,

MakeMatrix(A);

MV=’MyPreMV’;

x=gcr(MV,b,0*b,500,1.e-6);

where MakeMatrix is a function subroutine in which A, L, D, and U are defined and
declared to be global. For instance,

function MakeMatrix(A)

global A L D U

L=tril(A); U=triu(A); D=diag(diag(A));

return

(5.10)
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Note. To make sure that global variables do not accidentally get mixed up with local
ones, global variables are usually given long complicated names, so rather MyMATRIX

than A.

Note. The ‘declaring’ subroutine MakeMatrix and the ‘matrix-vector subroutine’
MyPreMV go together: if you want another matrix-vector multiplication (MV) (or an-
other preconditioner), then you have to write a new declaring subroutine, MakeMatrix2
say, and a new MV subroutine, MyPreMV2 say. In order to keep things together that go
together, I placed these two related subroutines in the same file as MyPReMV.m. How-
ever, a second routine in a file can only be called from routines in the file and not
from routines outside this file nor from the command window. I solved this obstacle by
letting MakeMatrix be executed whenever MyPreMV was called by an empty argument:

MyPreMV([]);

x=gcr(’MyPreMV’,b,0*b,500,1.e-6);

,

where the file MyPreMV.m contains two function subroutines and looks like

function c=MyPreMV(u)

global MyMATRIX MyLOWER MyDIAGONAL MyUPPER

if isempty(u), MakeMatrix(); c=size(MyMATRIX,1); return, end

c=MyMATRIX*u; c=MyLOWER\c; c=MyDIAGONAL*c; c=MyUPPER\c;

return

function MakeMatrix()

global MyMATRIX MyLOWER MyDIAGONAL MyUPPER

MyMATRIX=...; MyLOWER=tril(MyMATRIX);

MyDIAGONAL=diag(diag(MyMATRIX); MyUPPER=triu(MyMATRIX);

return

(5.11)
If u is empty (u=[]), then the global variables MyMATRIX, . . . , are created. If u is a
non-empty vector (as it will be when called by gcr.m), then the ‘MakeMatrix line’ is
skipped in MyPreMV and the the preconditioned MV is performed.

Note. If the matrix is not available, but only its action via a subroutine as MyPreMV,
then Matlab’s command size can not be applied to A to find the dimension. With
n=MyPreMV([]);, tha above routine returns the dimension.

Note. If you want to have a global variables as MyMATRIX also available in the command
window or the workspace, then you have to declare it global in the command window
(or in an M-file, not being a function subroutine, as main.m) as well.

Note. The routines for iterative solvers of the Matlab company (as gmres.m and
bicgstab.m) take a matrix as input as well as a function subroutine (either known by
its name or by its handle) that performes the MV.

The folder structure (Code with Lecture 6).

The folder Problems contains the files, as problem0.m, that define the matrix A, say,
and the function routine that performs the matrix-vector multiplication (MV), c = Au,
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(of the type MyPreMV). This MV is passed as first argument in the output list by a
function handle as

function [MV,b]=problem0(n).

The second argument in the output list contains the right-hand side vector b. The n

in the input of this example function problem0 specifies the required dimension of the
matrix. Some problems functions can provide a third output argument Lambda. This
is a vector of all eigenvalues of the matrix.

problem1b.m relies on the use of global variables, as explained in the preceding
subsection. The other routines use function handles.

The folder Solvers contains the files with codes of iterative solver as LMR, Richard-
son (polynomialsolver.m), GCR (gcr.m), etc.

The folder Subroutines contains miscellanuous subroutines (for orthogonalisation
—Gram-Schmidt variants—, etc.).

Before running main, run install. This subroutine sets the path for Matlab (tells
Matlab also to ‘look’ in the folders Problems, Solvers, Subroutines for subroutines).

Example. In the first assignment of Lecture 5 you are asked to explore the significants
of exploiting sparsity. You are asked to experiment with a diagonal matrix in several
formats. You can use the routine problem1.m as provided in Lecture 5’s Matlab

package. You can also write your own brand. For instance, you can create a file
MakeDiagonal.m with a routine like

function [MV,b]=MakeDiagonal()

n=10000;

MyDIAGONAL=sqrt(1:n)’;

function c=MyDiagMV(u)

c=MyDIAGONAL.*u;

end

MV=@MyDiagMV;

xe=ones(n,1); b=MyDiagMV(xe);

end

and in the command window you can call these routines like

[MV,b]=MakeDiagonal();

tic, x=polynomialsolver(MV,b,0*b,500,1.e-6,(1+n)/2); toc

The routine polynomialsolver.m multiplies the residual in each step by (I− 1

µ
A) with

A as, in this case, defined by MyDiagMV.m and µ =(1+n)/2 (Note that this puts µ in
the center of the spectrum). It stops the iteration when the residual is reduced by
1.e-6 or when more than 500 steps were required. x is the approximate solution at
termination.
The choice b=MyDiagMV(xe)makes sure that the exact solution is known, which may be
convenient in an experimental stage, since it gives access to the error (norm(x-xe,2)).
With x=polynomialsolver(’MyDiagMV’,b,0*b,500,1.e-6); α = 1/µ is computed in
each step, to minimize the norm of the new residual (then polynomialsolver is LMR).
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The tic toc commands give the time that Matlab spent in between the tic-toc. clock
and etime can do this as well. With

profile on, x=polynomialsolver(. . .); profile viewer

Matlab gives a very detailed report on timings.
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