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Preface

Exercises in the collectiont of all exercises are included for one of the following reasons:

• to allow to practice course material,

• to give applications of the course material,

• to provide more details on results discussed in the lectures,

• to give details on side remarks in the lectures,

• to provide details on results that are useful for the final assignment.

For each lecture you are supposed to do a few selected exercises from this collection.

Most chapters (titled ‘Lecture n - . . . ’ in this collection) start with a brief intro-
duction. This text is included in order to give a context for the exercises, i.e., to settle
notation, to provide a brief review of the required theory and a motivation for the
exercises. The text is not meant as an easy introduction to the theory; for this, please
consult the lectures, the transparencies or text books. Nevertheless, if you understand
the theory, the text may provide a convenient summary.

The exercises in Lecture 0.
The set of exercises in this preliminary chapter forms an overview of the Linear Alge-
bra material from bachelor courses, material that will be used during this Numerical
Linear Algebra course (in the lectures, exercises, assignments or final report) and that
is supposed to be known. This set also fixes the notation. A few items, as Schur de-
composition, might not have been discussed (or only briefly) in a standard bachelor
course. They are included since this overview seems to be the appropriate place for
them. But, they will be introduced properly in the lectures, when needed.

0



Lecture 0 – Preliminaries

Scalars in C and R are denoted by lower Greek letters, as λ.

High dimensional vectors and matrices are denoted by bold face letters, lower case letters
are used for vectors and capitals for matrices. If, for instance, n is large (high), then x,y, . . . are
vectors in C

n (or Rn) and A,V, . . . are n× k matrices. Low dimensional vectors and matrices
are denoted by standard letters: x, y, . . . or ~x, ~y, . . . are k-vectors for small (low) k, A,S, . . . are
k× ℓ matrices, with ℓ small as well. In many of our applications, n ∈ N will be large, and k ∈ N

will be modest.1

Spaces are denoted with calligraphic capitals, as V .
We view an n-vector as a column vector, that is, as an n × 1 matrix. Our notation is

column vector oriented, that is, we denote row vectors (1×n matrices) as x∗, with x a column
vector.

(i.e., all matrix entries are in R),

Let A = (Aij) be an n × k matrix: A = (Aij) indicates that Aij is the (i, j)-entry of
A. The matrix A is said te be real if all entries Aij ∈ R. With A = [a1, a2, . . . , ak] or
A = [a1 a2 . . . ak] we settle the notation for the columns of A: the jth column equals aj .
The absolute value and the complex conjugate are entry-wise operations: |A| ≡ (|Aij |) and
Ā ≡ (Āij). The transpose AT of the matrix A is the k × n matrix with (i, j)-entry Aji:
AT ≡ (Aji). AH is the adjoint or Hermitian conjugate of A: AH ≡ ĀT. We will also use
the notation A∗ for AH: A∗ = AH.2

We follow Matlab’s notation to describe matrices that are formed from other matrices:
consider an n × k matrix A = (Aij) and an m × l matrix B = (Bij). If m = n, then [A,B]
is the n × (k + l) matrix with (i, j) entry equal to Ai,j if j ≤ k and Bi,j−k if j > k: A is
extended with the columns from B. If k = l, then [A;B] is the (n+m)× k matrix with (i, j)
entry equal to Ai,j if i ≤ n and Bi−n,j if i > n: A is extended with the rows from B. Note
that [A;B] = [AT BT]T. If I = (i1, i2, . . . , ip) is a sequence of numbers ir ∈ {1, 2, . . . , n} and
J = (j1, j2, . . . , jq) is a sequence of numbers js in {1, 2, . . . , k}, then A(I, J) is the p× q matrix
with (r, s) entry equal to Air ,js . Note that entries of A can be used more than once.

Below, we collect a number of standard results in Linear Algebra that will be frequently
used. The statements are left to the reader as an exercise.

A Spaces

Let V and W be linear subspace of Cn.

Then V +W is the subspace V +W ≡ {x+ y x ∈ V ,y ∈ W}.
We put V ⊕W for the subspace V +W if V ∩W = {0}.

1We distinguish high and low dimensionality to indicate differences in efficiency. A dimension k is
‘low’, if the solution of k-dimensional problems of a type that we want to solve numerically can be
computed in a split second with a computer and standard software. The dimension is ‘high’ if more
computational time is required or non-standard software has to be used. For linear systems, that is,

solve Ax = b for x, where A is a given k × k matrix and b is a given k-vector,

k small is like k ≤ 1000. For eigenvalue problems, that is,
find a non-trivial vector x and a scalar λ such that Ax = λx, where A a given k × k matrix,

k small is like k ≤ 100. From a pure mathematical point of view ‘low’ and ‘high’ dimensionality does
not have a meaning (in pure mathematics, ‘low’ would mean finite, while ‘high’ would be infinitely
dimensional. The problems that we will solve are all finite dimensional). In a mathematical statement
the difference between low and high dimensionality does not play a role. But in its interpretation for
practical use, it does.

2Formally, A∗ is defined with respect to inner products: if (·, ·)X and (·, ·)Y are inner product on
a linear space X and on a linear space Y, respectively, and A linearly maps X to Y , then A∗ is the
linear map from Y to X for which (Ax,y)Y = (x,A∗y)X for all x ∈ X and y ∈ Y. With respect
to the standard inner product (x, y) ≡ yHx on X ≡ C

k and on (x,y) ≡ yHx on Y ≡ C
n, we have

that A∗ = AH. With A∗, we will (implicitly) refer to standard inner product, unless explicitly stated
otherwise.
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Exercise 0.1.

(a) V +W is a linear subspace.

(b) Suppose V ∩W = {0}. Then dim(V) + dim(W) = dim(V ⊕W)

(c) Suppose V ∩W = {0}. Then V ⊕W = C
n if and only if dim(V) + dim(W) = n.

(d) If dim(V) + dim(W) > n, then V ∩W 6= {0}.

If x and y are n-vectors (i.e., in C
n), then we put ‖x‖2 ≡

√
x∗x and y ⊥ x if y∗x = 0.

Exercise 0.2.

(a) The map (x,y) y∗x from C
n × C

n to C defines an inner product on C
n:

1) x∗x ≥ 0 and x∗x = 0 if and only if x = 0 (x ∈ C
n),

2) x y∗x is a linear map from C
n to C for all y ∈ C

n,
3) (y∗x)¯ = x∗y (x,y ∈ C

n).

(b) The map x ‖x‖2 from C
n to C defines an norm on C

n:
1) ‖x‖2 ≥ 0 and ‖x‖2 = 0 if and only if x = 0 (x ∈ C

n),
2) ‖αx‖2 = |α| ‖x‖2 (α ∈ C,x ∈ C

n),
3) ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 (x,y ∈ C

n).

(c) |y∗x| ≤ ‖x‖2 ‖y‖2 (x,y ∈ C
n) (Cauchy–Schwartz).

(d) If x ⊥ y then ‖x+ y‖22 = ‖x‖22 + ‖y‖22 (x,y ∈ C
n) (Pythagoras).

We put

v ⊥ W if v ⊥ w (w ∈ W), V ⊥ W if v ⊥W (v ∈ V), and V⊥ ≡ {y ∈ C
n y ⊥ V}.

Let V = [v1, . . . ,vk] be a n× k matrix with columns v1, . . . ,vk. Then

span(V) ≡ span(v1, . . . ,vk) ≡





k∑

j=1

αjvj αj ∈ C



 .

We put x ⊥ V if x ⊥ span(V). Moreover, V⊥ ≡ {y ∈ C
n y ⊥ V}.

Exercise 0.3.

(a) dim(V) = n− dim(V⊥).

(b) x ⊥ V ⇔ x ⊥ vi for all i = 1, . . . , k ⇔ V∗x = 0.

(c) dim(span(V)) ≤ k.

The angle ∠(x,y) between two non-trivial n-vectors x and y is in [0, 12π] such that

cos∠(x,y) =
|y∗x|

‖y‖2 ‖x‖2
.

B Matrices.

Let A = (Aij) be an n× k matrix. We will view the matrix A as map from C
k to C

n defined

by the matrix-vector multiplication: x  Ax (x ∈ C
k). Note that A is real if and only of

matrix-vector multiplication maps Rk to R
n.

The column (row) rank of A is the maximum number of linearly independent columns (rows)
of the matrix A.

Theorem 0.1 The row rank of a matrix is equal to the column rank.

The above theorem allows us to talk about the rank of a matrix.

The range R(A) of A is {Ay y ∈ C
k}.

The null space N (A) or kernel of A is {x ∈ C
k Ax = 0}.
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Theorem 0.2 N (A) = R(A∗)⊥.

Exercise 0.4.

(a) R(A) = span(A).

(b) the rank of A equals dim(R(A)).

(c) Prove Theorem 0.2: N (A) = R(A∗)⊥.

(d) dim(R(A)) = n− dim(N (A)).

Exercise 0.5.

(a) A : Ck → C
n is a linear map ⇔

for some n× k matrix A we have that A(x) = Ax for all x ∈ C
k.

A is the matrix of A with respect to the standard basis in C
k and C

n.

(b) Let v1, . . . , vk be a basis of Ck and w1, . . . ,wn a basis of Cn. Let V ≡ [v1, . . . , vk] and
W ≡ [w1, . . . ,wn]. Then V and W are non-singular and W−1AV is the matrix of the map
x Ax from C

k to C
n with respect to the V and W basis.

Exercise 0.6. Let A = [a1, . . . , ak] be an n × k matrix and B = [b1, . . . ,bk] and m × k
matrix. Let D ≡ diag(λ1, . . . , λk) be an k × k diagonal matrix with diagonal entries λj .

(a) A∗∗ = A.

(b) (BA∗)∗ = AB∗.

(c) If x = (x1, . . . , xk)
T, then Ax =

∑k
j=1 ajxj = (

∑k
j=1 aje

∗
j )x, whence A =

∑k
j=1 aje

∗
j .

Here, ej is the jth standard basis vector in C
k (e1 ≡ (1, 0, 0, . . . , 0)T, e2 ≡ (0, 1, 0, . . . , 0)T,

etc.).

(d) AB∗ =
∑k

j=1 ajb
∗
j .

(e) ajb
∗
j are n×m rank one matrices.

(f) ADB∗ =
∑k

j=1 λjajb
∗
j .

Exercise 0.7. Let the n× n matrix U = (uij) be upper triangular, i.e., uij = 0 if i > j.

(a) U−1 is upper triangular and U∗ is lower triangular.

(b) If in addition the diagonal of U is the identity matrix, then the diagonal of U−1 is the
identity matrix as well.

(c) The product of upper triangular matrices is upper triangular as well.

If A is an n× n matrix, then the determinant det(A) is the volume of the ‘block’

{Ax x = (x1, . . . , xn)
T, xi ∈ [0, 1]}. The trace trace(A) of A is the sum of its diagonal entries.

Theorem 0.3 If A is n× k and B is k × n, then trace(AB) = trace(BA).
If n = k, then det(AB) = det(A)det(B).

Exercise 0.8. Let A be an n× n matrix.

(a) Prove that the following properties are equivalent:

• det(A) 6= 0.

• A had full rank.

• A has a trivial null space: N (A) = {0}.
• The range of A is Cn: R(A) = C

n.

• A : Cn → C
n is invertible.

• There is an n× n matrix, denoted by A−1, for which A−1A = I.

A is non-singular if A has one of these properties. A−1 is the inverse of A.
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(b) AA−1 = I. If B is n× n and BA = I or AB = I, then B = A−1.

(c) With Cramer’s rule, the inverse of a matrix can be expressed in terms of determinants of
submatrices. However, this approach for finding inverses is extremely inefficient and, except for
very low dimensions, it is never used in practice. Cramer’s rule for n = 2:

[
α β

γ δ

]−1

=
1

αδ − βγ

[
δ −β
−γ α

]
.

Exercise 0.9.

(a) Let A, L and U be n× n matrices such that A = LU, L lower triangular with diagonal I
and U upper triangular. Let µj be the (j, j)-entry of U. det(A) = det(U) = µ1 · . . . · µn.

Exercise 0.10. Let A be an n× n non-singular matrix.

(a) Prove that (AT)−1 = (A−1)T and (AH)−1 = (A−1)H.
We will put A−T instead of (AT)−1 and A−H instead of (AH)−1.

C Orthonormal matrices.

V = [v1, . . . ,vk] is orthogonal if vi ⊥ vj for all i, j = 1, . . . , k, i 6= j.
If V is orthogonal and, in addition, ‖vj‖2 = 1 (j = 1, . . . , k), then V is orthonormal.
In some textbooks, V is called orthogonal if multiplication by V preserves orthogonality (see
Exercise 1.10.C).

If V is square and orthonormal, then is said to be unitary.

To be able to ‘work’ with a linear (sub)space V a basis is needed. For stability reasons,
it is preferred to have an orthonormal basis, v1, . . . ,vk, say. Then, V ≡ [v1, . . . ,vk] is an
orthonormal matrix. Conversely, the columns of an orthonormal matrix V form an orthonormal
basis (of span(V)). Orthonormal basis of Cn correspond to unitary matrices.

Exercise 0.11. Let V be an n× k matrix.

(a) If V is orthonormal, then k = dim(span(V)). Note that k ≤ n.

(b) V is orthonormal ⇔ V∗V = Ik the k × k identity matrix.

(c) If, with m ≤ k, W is an k ×m orthonormal matrix, then VW is an n ×m orthonormal
matrix. In particular the product of unitary matrices of the same dimension is unitary.

Let a1, . . . , ak be non-trivial n-vectors.
The Gram–Schmidt process in Alg. 0.1 (see also Exercise 0.12(a)) constructs orthonormal
n-vectors q1, . . . ,qℓ that span the same space as a1, . . . , ak. The qj form the columns of an
n × ℓ orthonormal matrix Q. Note that ℓ ≤ k and ℓ ≤ n, while ℓ < k only if the vectors
a1, . . . , ak are linearly dependent. Let R be the ℓ × k matrix with ij entry rij as computed in
the algorithm and 0 if not computed. Then A = QR. The following theorem highlights this
result.

Theorem 0.4 Let A = [a1, . . . , ak] be an n× k matrix.
Let Q and R be as produced by the Gram–Schmidt process applied to the columns of A.
Then Q is orthonormal, span(A) = span(Q), R is upper triangular, and A = QR.

Exercise 0.12. Proof of Theorem 0.4. Let A = [a1, . . . , ak] be an n× k matrix.

(a) Suppose q1, . . . ,qℓ is an orthonormal system, ℓ < k. For aj ∈ C
n, consider

rij = q∗
i aj (i = 1, . . . , ℓ), v = aj −

ℓ∑

j=1

qi rij , (0.1)
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Gram–Schmidt orthonormalisation

r11 = ‖a1‖2, q1 = a1/r11, ℓ = 1.

for j = 2, . . . , k

Orthogonalise:

v = aj

for i = 1, . . . , ℓ

rij = q∗

i aj, v← v − qi rij

end for

Normalise:

rℓ+1,j = ‖v‖2
If rℓ+1,j 6= 0

ℓ← ℓ+ 1, qℓ = v/rℓj

end if

end for

Algorithm 0.1. The Gram–Schmidt process constructs an orthonormal basis q1, . . . ,qℓ for the space

spanned by a1, . . . , ak. Here ← indicates that the new quantity replaces the old one. If aj is in the span of

a1, . . . ,aj−1, then, aj is in the span of q1, . . . ,qℓ−1, rℓ j = 0 and no new orthonormal vector qℓ is formed.

If the vectors a1, . . . ,ak are linearly independent then ℓ at the end of each loop equals j.

and, if ‖v‖2 6= 0,

rℓ+1,j = ‖v‖2, qℓ+1 ≡
v

rℓ+1,j
. (0.2)

Then, qℓ+1 ⊥ span(q1, . . . ,qℓ), and

aj =

ℓ+1∑

i=1

qi rij = Qℓ+1 rj ,

where Qℓ+1 = [q1, . . . ,qℓ+1 ] and rj ∈ C
ℓ+1 has ith entry rij as described above in (0.1) and

(0.2). In particular, Qℓ+1 is orthonormal and aj ∈ span(Qℓ+1).
In (0.1), the vector aj is orthogonalised against q1, . . . ,qℓ, while in (0.2) the vector v is

normalised.

(b) Show that (0.1) can be expressed as

v = aj −Qℓ(Q
∗
ℓaj), (0.3)

(c) If ‖v‖2 = 0, then a = Qℓr
′
j , where r′j is the ℓ upper part of rj .

(d) Prove Theorem 0.4: there is an n × ℓ orthonormal matrix Q, with ℓ ≤ min(k, n), and an
ℓ× k upper triangular matrix R such that

A = QR. (0.4)

(e) There is an n× n unitary matrix Q̃ and an n× k upper triangular matrix R̃ such that

A = Q̃R̃ (0.5)

(f) Relate Q and Q̃ and R and R̃.

The relation in (0.5) is the QR-decomposition or QR-factorisation of A. The relation
in (0.4) is the economical form of the QR-decomposition.
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Plane rotations and basic reflections are simple instances of unitary matrices: a two-
dimensional plane rotation is given by

[
c −s
s c

]
with c ∈ [−1,+1], s ∈ C, c2 + |s|2 = 1. (0.6)

Note that c and s can be viewed as c = cos(φ) and s = sin(φ) ζ for some φ ∈ R and some sign
ζ, that is, ζ ∈ C, |ζ| = 1. An n× n plane rotation G, also called Givens rotations, rotates in
some (i, j)-plane, that is, G is the n×n identity except at the four entries (i, i), (i, j), (j, i), (j, j),
where it is a two dimensional plane rotation. A basic reflection is a diagonal matrix with all
diagonal entries +1, except for one that equals some sign.

Since the product of n× n unitary matrices is unitary, the product of plane rotations and
basic reflections is unitary. The converse is true as well: any unitary matrix Q can be expressed
as a product of Givens rotations and one basic reflections. Hence (discarding the one reflection),
the columns of a unitary matrix Q can be viewed as a ‘rotated’ basis of Cn, i.e., as a rotated
version of the standard basis e1, . . . , en.

Theorem 0.5 Let V be a k-dimensional linear subspace of Cn. Let b ∈ C
n.

For a b0 ∈ V, the following two properties are equivalent:

(i) ‖b− b0‖2 ≤ ‖b− v‖2 for all v ∈ V .
(ii) b− b0 ⊥ V .

There is exactly one b0 ∈ V with one of these equivalent properties.

Exercise 0.13. Let V be a k-dimensional linear subspace of Cn. Let b ∈ C
n.

(a) There is an n× k orthonormal matrix V such that V = span (V).

(b) We have that b0 ≡ V(V∗b) ∈ V and b− b0 ⊥ V.
(c) If x = y + z for some y ∈ V and z ⊥ V , then y = x0 ≡ V(V∗x).

(d) C
n = V ⊕ V⊥.

(e) Prove Theorem 0.5.

Exercise 0.14. Let A be an n× k matrix.

(a) R(A) = {Ax x ⊥ N (A)}.
(b) For an x ∈ C

k, let x1 ∈ C
k be such that x1 ⊥ N (A) and x− x1 ∈ N (A).

There is precisely one k × n matrix, denoted by A†, for which

A†y = 0 if y ⊥ R(A) and A†(Ax) = x1 (x ∈ C
k).

A† is the inverse of A as a map from N (A)⊥ to R(A) with null-space equal to R(A)⊥.
A† is the Moore–Penrose pseudo inverse or generalised inverse of A.

(c) The following four properties do not involve the notion of orthogonality. They characterise
the Moore–Penrose pseudo inverse.

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

D Eigenvalues.

Let A be an n× n matrix. Let λ ∈ C.
If x ∈ C

n, then (λ,x) is an eigenpair of the matrix A if Ax = λx and x 6= 0, λ is an
eigenvalue and x is an eigenvector associated to the eigenvalue λ.

V(λ) ≡ {x ∈ C
n Ax = λx} is the eigenspace associated to λ. The dimension of V(λ) is the
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geometric multiplicity of the eigenvalue λ.
The characteristic polynomial PA is defined by

PA(ζ) ≡ det(ζI −A) (ζ ∈ C).

Exercise 0.15.

(a) λ ∈ C is an eigenvalue of A if and only if λ is a root of PA, i.e., PA(λ) = 0.

(b) If PA has k mutually different complex roots, then A has at least k eigenvalues.

(c) If A is real, and (λ,x) is an eigenpair of A, then (λ̄, x̄) is an eigenpair of A.

The algebraic multiplicity of the eigenvalue λ is the multiplicity of the root λ of PA.
λ is a simple eigenvalue of A if its algebraic multiplicity is one. An eigenvalue λ of A is
semi-simple if the algebraic multiplicity equals the geometric multiplicity. The matrix A is
semi-simple if all of its eigenvalues are semi-simple. If all eigenvalues are simple, then A is
said to be simple.

Exercise 0.16.

(a) Any simple eigenvalue is semi-simple.

(b) Counted according to algebraic multiplicity,3 A has n eigenvalues.

(c) Give an example of a 2 × 2 matrix with an eigenvalue with algebraic multiplicity 2 and
geometric multiplicity 1.

(d) For any n × n matrix B, the two matrices AB and BA have the same eigenvalues with
equal multiplicity (algebraic, as well as geometric).
The same statement also holds for the non-zero eigenvalues in case A is n× k and B is k × n.

(e) Actually, whether (λ, x), with λ ∈ C and x ∈ C
n, is an eigenpair depends on the linear map

A : Cn → C
n, Ax = λx, and not on the basis that is used to describe vectors in the space.

In particular, the value of an eigenvalue does not change if another basis is selected, nor the
eigenvector. However, the representation of the vector does change. More specific, if T is a
non-singular n× n matrix, then A and Ã ≡ T−1AT (that is, the matrix A of A with respect

to the standard basis, and the matrix Ã of A with respect to the basis of columns of T) have
the same eigenvalues with equal multiplicity (algebraic, as well as geometric). If x represents
x with respect to the standard basis, then x̃ ≡ T−1x represents x with respect to the basis of
columns of T:

Ax = λx ⇔ Ax = λx ⇔ Ãx̃ = λ x̃.

(f) If A = (Aij) is a triangular matrix, the diagonal elements A11, A22, . . . , Ann are the eigen-
values of A counted according to multiplicity.

(g) Any non-trivial linear subspace V of Cn that is invariant under multiplication by A
(i.e., Ax ∈ V for all x ∈ V) contains at least one eigenvector of A.

(h) V(λ) ⊂ W(λ) ≡ {w ∈ C
n (A− λI)kw = 0 for some k ∈ N}

(i) Both V(λ) and W(λ) are linear subspaces of Cn invariant under multiplication by A.

(j) The dimension of W(λ) equals the algebraic multiplicity of the eigenvalue λ.

(k) To simplify notation, assume 0 is an eigenvalue of A (otherwise, replace A by A− λI).
Let x be a non-trivial vector in W(0). Let k ∈ N be the smallest number for which Akx = 0.
Assume αmAmx+ . . .+ α1Ax+ α0x = 0 for some αj ∈ C. Prove that α0 = . . . = αk−1 = 0.
Prove that x ∈ W(µ) ⇔ µ = 0. In particular, W(λ) ∩W(µ) = {0} if λ 6= µ.

(l) C
n =

⊕W(λ), where we sum over all different eigenvalues λ of A.

3that is, if an eigenvalue has algebraic multiplicity k then this eigenvalue is counted k times. Below,
if list the eigenvalues ‘counted according to multiplicity’, we mean that an eigenvalue with algebraic
multiplicity k is listed k times.
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If Q is n× k orthonormal with k ≤ n and S is k × k upper triangular such that

AQ = QS, (0.7)

then (0.7) is a partial Schur decomposition (or partial Schur form) of A (of order k). If
k = n, then (0.7) is a Schur decomposition of Schur form.

Note that, if (0.7) is a partial Schur decomposition, then the space Q spanned by the
columns q1, . . . ,qk is invariant under multiplication by A and, restricted to Q, S is the matrix
of A with respect to the basis of qi. In particular, if Sy = λ y and x ≡ Qy than Ax = λx and
the diagonal elements of S are k eigenvalues of A.

Exercise 0.17. Suppose we have a partial Schur decomposition (0.7).

(a) The diagonal entries of S are eigenvalues of S and of A.

(b) If Sy = λy, then (λ,Qy) is an eigenpair of A

(c) The computation of y with Sy = λy requires the solution of an upper triangular system.

Theorem 0.6 Let A be an n× n matrix.
1) A has a Schur decomposition, say A = QSQ∗. Put λi ≡ Sii (i = 1, . . . , n).
2) λ1, λ2, . . . , λn are the eigenvalues of A (and of S) counted according to multiplicity. In
particular,

det(A) = det(S) =

n∏

j=1

λj and trace(A) = trace(S) =

n∑

j=1

λj .

3) For any given ordering λ1, . . . , λn of the eigenvalues of A, counted according to multiplicity,
there is a Schur decomposition A = QSQ∗ such that Sii = λi for i = 1, . . . , n.

Proof. We leave the proof of 2) as an exercise. For the proof of 3), we refer to Lecture 13.
We apply induction to prove 1) of the theorem.
There is a normalised eigenvector q1 of A (cf., Exercise 0.16.(g)). Note that Aq1 = q1λ1

is a partial Schur decomposition of order 1.
Suppose we have a partial Schur decomposition AQk = QkSk of order k. Note that

Q⊥
k is a linear subspace of Cn that is invariant under multiplication by the deflated matrix

Ã ≡ (I−QkQ
∗
k)A(I −QkQ

∗
k). Therefore (again by (g) of Exercise 0.16), Ã has a normalised

eigenvector in Q⊥
k , say qk+1 with eigenvalue, say λk+1. Expanding Qk to Qk+1 and Sk to Sk+1,

Qk+1 ≡ [Qk,qk+1] and Sk+1 ≡
[

Sk Q∗
kAqk+1

~0∗ λk+1

]
,

leads to the partial Schur decomposition AQk+1 = Qk+1Sk+1 of order k + 1.

As observed in Exercise 0.17, eigenvectors of S, whence of S, lead to eigenvectors of A. In
particular if all eigenvalues are semi-simple, then there is an upper triangular matrix X with
diagonal I such that SX = XΛ with Λ a diagonal matrix with the λi on the diagonal: the
columns of X are eigenvectors of S. Moreover, the columns of QX are eigenvectors of A.

Let A : Cn → C
n be the linear map with matrix A w.r.t. the standard basis. Note that S

can be viewed as the matrix of A with respect to the ‘rotated basis’ q1, . . . ,qn of columns of
Q: the existence of a Schur decomposition reveals that, with respect to some appropriate (map
dependent) orthonormal basis, any linear map with image space equal to domain space can
be represented as an upper-triangular matrix. The following theorem states that there exists
a basis that gives an even simpler matrix (Jordan form), and in many cases even a diagonal
one (if A is semi-simple). However, for stability reason, the Schur form is often preferred in
practise. Moreover, many theoretical results can be as easily proved using a Schur form as using
a Jordan form. In practise, the Jordan form is computed from the Schur form.

Without proof, we mention:
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Theorem 0.7 There is a non-singular n × n matrix T such that AT = TJ, where J is a
matrix on Jordan normal form, i.e., J is a block diagonal matrix with Jordan blocks on the

diagonal. A Jordan block is a square matrix of the form Jλ =




λ 1

λ
. . .

. . . 1

λ



.

A is diagonalizable if J is diagonal (i.e., all Jordan blocks in J are 1× 1).

Theorem 0.8 Let A be an n× n matrix.
The following two statements are equivalent for any eigenvalue λ of A:

i) λ is not semi-simple.
ii) Ay = λy + x for some vector y 6= 0 and some eigenvector x with eigenvalue λ.

The following three properties are equivalent for A:
1) A is semi-simple.
2) A is diagonalizable.
3) There is a basis of eigenvector of A, i.e., there is a basis v1, . . . ,vn of Cn such that vi is

an eigenvector of A for all i.

Exercise 0.18. Proof of Theorem 0.8.

(a) If an eigenvalue λ of A shows up in exactly p Jordan blocks in the Jordan normal form,
then p is the geometric multiplicity of λ.

(b) Suppose J is on Jordan normal form. Describe V(λ) and W(λ) in terms of the standard
basis vectors ei.

(c) A is semi-simple ⇔ A is diagonalizable.

(d) Prove Theorem 0.8.

Theorem 0.9 (Cayley-Hamilton)
Let PA(ζ) = ζn + αn−1ζ

n−1 + . . .+ α0 (ζ ∈ C) be the characteristic polynomial of A. Then

PA(A) ≡ An + αn−1A
n−1 + . . .+ α0I = 0. (0.8)

The minimal polynomial QA of A is the monic non-trivial polynomial Q of minimal degree
for which Q(A) = 0. Q is monic if Q(ζ) = ζk + terms of degree < k. The minimal polynomial
factorises PA, i.e., PA = QAR for some polynomial R (R might be constant 1).

Exercise 0.19. Proof of Theorem 0.9. Let λ1, . . . , λn be the eigenvalues of A counted
according to algebraic multiplicity.

(a) If T is a non-singular n×n matrix and P is a polynomial, then P (T−1AT) = T−1P (A)T.

(b) Let p be a polynomial. Show that

p(J) =




p(λ) p′(λ) p′′(λ)
2!

p(3)(λ)
3!

0 p(λ) p′(λ) p′′(λ)
2!

0 0 p(λ) p′(λ)

0 0 0 p(λ)




if J =




λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ


 . (0.9)

(Hint: first consider polynomials of the form p(ζ) = ζk (ζ ∈ C) for k = 1, 2, . . ..)
Generalise this result to Jordan blocks of higher dimension.

(c) If Jλ is a Jordan block of size ℓ × ℓ, then P (Jλ) = 0 for any polynomial P of the form
P (ζ) = (λ− ζ)ℓQ(ζ) (ζ ∈ C), with Q a polynomial.
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(d) Use Theorem 0.7 to prove (0.8).

(e) Show that the minimal polynomial factorises the characteristic polynomial.

(f) Show that the degree of the minimal polynomial is at least equal to the number of different
eigenvalues of A, with equality if and only if A is semi-simple. The degree of the minimal
polynomial is also called the degree of A.

Exercise 0.20. Consider the situation of Theorem 0.9.

(a) Prove that

α0 = det(A) =

n∏

j=1

λj , αn−1 = trace(A) =

n∑

j=1

λj .

(b) Suppose A is non-singular. Note that then α0 6= 0. Consider the linear system Ax = b.
Show that

x = q(A)b for some polynomial q of degree < n.

Actually, one can take q(ζ) = − 1
α0

(ζn−1 + αn−1ζ
n−2 + . . .+ α1). Give also an expression for q

in terms of the minimal polynomial.

Exercise 0.21. Let B be an n× n matrix that commutes with A, i.e., BA = AB.

(a) Both space V(λ) and W(λ) (w.r.t. A) are invariant under multiplication by B.

(b) The space V(λ) contains an eigenvector of B.

If y ∈ C
n,y 6= 0 and y∗A = µy∗, then y is a left eigenvector of A associated to the

(left) eigenvalue µ. If we discuss left eigenvectors, then we refer to non-trivial vectors x for
which Ax = λx as right eigenvectors. Left and right eigenvectors with different eigenvalues
are mutual orthogonal (for a proof, see Exercise 0.22):

Theorem 0.10 Let A be an n× n matrix.
1) λ ∈ C is a left eigenvalue of A if and only if λ is a right eigenvalue of A.
2) If x is a right eigenvector with eigenvalue λ and y be a left eigenvector with eigenvalue µ 6= λ,
then y ⊥ x.

Corollary 0.11 Let A be an n× n matrix.
Suppose u is in the span of right eigenvectors xi of A with eigenvalue λi: u =

∑
αixi.

If λi is simple and yi is the left eigenvector of A associated with λi scaled such that y∗x = 1,
then αi = y∗

i u.

Exercise 0.22. Let y be a left eigenvector with eigenvalue µ.

(a) For λ ∈ C , λ left eigenvalue ⇔ PA(λ) = 0 ⇔ λ is a right eigenvalue.

(b) If x is a right eigenvector with eigenvalue λ and λ 6= µ, then y ⊥ x.

(c) If x is a right eigenvector with eigenvalue µ and there is an n-vector z such that Az = µz+x
(x is associated with a non-trivial Jordan block Jµ), then y ⊥ x.

(d) The subspace y⊥ is invariant under multiplication by A.

(e) If µ is simple, then y⊥ =
⊕W(λ), where we sum over all eigenvalues λ of A, λ 6= µ.

(f) {y (A∗ − µ̄I)ℓy = 0 for some ℓ ∈ N} ⊥ W(λ) if λ 6= µ.

(g) Give an example of a matrix A with left and right eigenvector y and x, respectively, both
associated to the same eigenvalue λ such that y ⊥ x. (Hint: you can find a 2 × 2 matrix A
with λ = 0 with this property.)

The spectrum Λ(A) of A is the set of all eigenvalues of A.
The spectral radius ρ(A) of A is the absolute largest eigenvalue of A:

ρ(A) = {|λ| λ ∈ Λ(A)}.
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For complex numbers x with |x| < 1 we have that xk → 0 (k →∞) and (geometric series)

(1− x)−1 = 1 + x+ x2 + x3 + . . . .

For matrices A, ρ(A) < 1 implies Ak → 0 (k →∞) and (Neumann series)

(I−A)−1 = I+A+A2 +A3 + . . . . (0.10)

Theorem 0.12
1) Akx→ 0 (k →∞) for all x ∈ C

n ⇔ ρ(A) < 1.
2) If 1 6∈ Λ(A), then I−A is non-singular.
3) If ρ(A) < 1, then I+A+ . . .+Ak converges to (I−A)−1.

Exercise 0.23. Proof of Theorem 0.12.

(a) Prove the first statement of the theorem in case A is a Jordan block Jλ. (Hint: J
k
λ is upper

triangular with entries λk, kλk−1, 1
2!k(k− 1)λk−2, . . . , on the main diagonal, first co-diagonal,

second co-diagonal, . . . , respectively, see (0.9))

(b) Prove the first statement of the theorem for the general case.

(c) Prove the third statement. (Hint: check that (I−A)(I+A+ . . .+Ak) = I−Ak+1.)

An eigenvalue λ of A is dominant if it is simple and |λ| > |λj | for all other eigenvalues λj

of A. An eigenvector associated to a dominant eigenvalue is said to be dominant.

Convention 0.13 Below, inequalities, as V ≤W, for matrices, assume V = (Vij) and W =
(Wij) to be of the same dimension and refer to a matrix entry-wise inequality, i.e., Vij ≤ Wij

for all i, j. The matrix |V| has |Vij | as (i, j)th entry, that is, the absolute value is also matrix
entry-wise. We follow the same convention for vector inequalities and absolute value. Note that
v > 0 is not the same as v ≥ 0, v 6= 0: we have that v = (v1, . . . , vk)

T > 0 if vi > 0 for all i,
whereas, v ≥ 0, v 6= 0 only implies that vi > 0 for some i.

If A ≥ 0, then ρ(A) ∈ Λ(A), that is, the eigenvalue of A with largest absolute value is in
[0,∞) (cf., the first claim of the Perron–Frobenius Theorem below). According to the second
and third claim of the Perron-Frobenius theorem below, inspection of the graph4 of A with
A ≥ 0, may reveal that ρ(A) is dominant. Irreducibility and a-periodicity play a role.5

Theorem 0.14 (Perron–Frobenius) Let A ≥ 0.
1) Then ρ(A) is an eigenvalue with an eigenvector v ≥ 0.
2) If A ≥ 0 is irreducible, then v > 0 and ρ(A) is a simple eigenvalue.
3) If A ≥ 0 is irreducible and a-periodic, then ρ(A) is a dominant eigenvalue.

Exercise 0.24. Proof of Theorem 0.14. Let A ≥ 0. To ease notation (slightly), we
assume that ρ(A) = 1 (why is this not a restriction on the generality?).

(a) Put νk = 1− 1/k. Select an u with u 6= 0, u ≥ 0. Show that

vk ≡ [I+ (νkA) + (νkA)2 + (νkA)3 + . . .]u

exists and conclude that νkAvk = vk − u. Show that u ≤ vk ≤ vk+1 for all k = 1, 2, . . ..

Put φk ≡ ‖vk‖2. Distinguish two cases: i) φk →∞ for k →∞ and ii) supk φk <∞.

4The directed graph associated to the matrix A consists of vertices 1, . . . , n and there is an edge
from i to j iff Aij 6= 0.

5A matrix is irreducible if for all i, j there is a path in its graph from vertex i to vertex j. The
matrix is a-periodic if the greatest common divisor of the length of circular paths is 1.
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(b) Assume φk → ∞. Use an compactness argument to conclude that some subsequence of
(vk/φk) converges so some vector v, say. Prove that ‖v‖2 = 1, v ≥ 0 and Av = v.

We will now argue that, for u > 0, case ii) does not occur.

(c) Assume supk φk < ∞. Use an compactness argument to conclude that some subsequence
of (vn) converges so some vector v, say. Show that Av = v − u and v ≥ 0.

Let w be some left eigenvector of A with eigenvalue λ, |λ| = 1: w∗A = λw∗. Note that
such a vector exists. Assume y ≥ 0 and z are vectors for which Ay = y − z. Show that

|w|∗ ≤ |w|∗A and |w|∗y ≤ |w|∗Ay = |w|∗y − |w|∗z. (0.11)

Take y = v and z = u > 0 and conclude that there is a v 6= 0 such that Av = v and v ≥ 0.
Use (0.11) also to prove the following two statements.

A) 1 is a semi-simple eigenvalue of A if v > 0 (if not semi-simple, take z = v),
B) |w|∗ = |w|∗A if v > 0 (if |w|∗ 6= |w|∗A, take y = v, z = 0).

Now, assume that A is also irreducible.

(d) Prove that v > 0 and that 1 is semi-simple.

(e) To prove simplicity of the eigenvalue 1, assume Aṽ = ṽ for some vector ṽ 6= 0. First prove
that ṽ is a scalar multiple of v if ṽ is real. (Hint, for some α ∈ R, v − αṽ ≥ 0, while at least
one coordinate of this vector equals 0.) Now observe that, also Aṽ = ṽ and conclude that ṽ is
a scalar multiple of v. In particular, we see that the eigenvalue 1 has geometric multiplicity 1,
and therefore algebraic multiplicity 1: 1 is a simple eigenvalue.

Now, assume Ax = λx for some λ with |λ| = 1 and x 6= 0.

(f) Show that |x| is a multiple of v. (Hint: cf., B).) In particular, xi 6= 0 for all i.

Express x as a ‘minimal’ sum of ‘disjoint’ non-trivial vectors of ‘constant sign’, that is,
x = x̂1 + . . .+ x̂m with, for each i = 1, . . . , n, e∗i x̂p 6= 0 for exactly one p (disjoint), for each q,
ζq x̂q ≥ 0 for some sign ζq, i.e., ζq ∈ C, |ζq| = 1 (constant sign), and ζq 6= ζp if q 6= p (minimal).
Here, and below, p, q ∈ {1, . . . ,m}.
(g) Show that e∗iAx̂q = 0 for all q 6= p if e∗iAx̂p 6= 0. (Hint: if e∗iAx̂p 6= 0 for two ps, then
|e∗iAx| < e∗iA|x|, whence |x| = |Ax| 6= A|x|). Hence, for any sign ζ, ζ x̂p ≥ 0 if and only if
ζAx̂p ≥ 0. Prove that, for some permutation π of 1, . . . ,m, Ax̂p = λ x̂π(p) for all p.
Use the irreducibility of A to prove that the permutation π is circular.6

Finally, assume that A is a-periodic.

(h) Conclude that m = 1, λ = 1, and 1 is a dominant eigenvalue of A.

(i) Discuss properties of the absolute largest eigenvalue of the following two matrices

[
1 1

0 1

]
,




0 0 6
1
2 0 0

0 1
3 0


 .

Note that the last matrix maps e1 to 1
2e2. Then to 1

6e3 and then back to e1. In particular, the
sequence (‖Aku0‖2) does not need to be monotonic, even not for k ≥ k0, k0 large.

A characteristic polynomial is monic: the leading coefficient is one. Conversely, any monic
polynomial is a characteristic polynomial of some suitable matrix. This statement is obvious if
the zeros of the polynomial are available: then, we can take the diagonal matrix with the zeros
on the diagonal. However, for a suitable matrix, we do not need the zeros.

6that is, all values π(1), π2(1), . . . , πm−1(1) are different
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Let p(ζ) = ζn − (αn−1ζ
n−1 + . . . + α1ζ + α0) (ζ ∈ C) be a polynomial (with αj ∈ C).

Then

H




λn−1

λn−2

...

...

1




= λ




λn−1

λn−2

...

...

1




, where H ≡




αn−1 αn−2 . . . α1 α0

1 0 . . . 0 0

0 1
. . .

...
. . .

. . .
. . .

...

1 0




, (0.12)

for all zeros λ of p. In particular, the zeros of p are eigenvalues of H and p is the characteristic
polynomial of H. H is the companion matrix of p. Modern software packages as Matlab

compute zeros of polynomials, by forming the companion matrix and applying modern numer-
ical techniques for computing eigenvalues of matrices (as the QR-algorithm, to be discussed in
Lecture 4).

Exercise 0.25. Let p a polynomial with companion matrix H (cf., (0.12)).
Let x(ζ) be the vector with coordinates ζn−1, ζn−2, . . . , ζ, 1 (ζ ∈ C).

(a) Prove that Hx(λ) = λx(λ) ⇔ p(λ) = 0.

(b) Prove that p is the characteristic polynomial of H in case all zeros of p are mutually
different.

(c) Suppose p(λ) = p′(λ) = 0. Show that Hx′(λ) = λx′(λ) + x and conclude that λ is an
eigenvalue of H of algebraic multiplicity at least 2. and that the associated Jordan block Jλ is
at least 2× 2.

(d) Prove that p is the characteristic polynomial of H regardless the multiplicity of the zeros.

E Special matrices.

A is an n× n matrix.
A is Hermitian (or self adjoined) if A∗ = A. A is symmetric if AT = A.

Note hat for a real matrix A, A is symmetric if and only of A is Hermitian. Often, if a matrix
is said to be symmetric, it is implicitly assumed that the matrix is real. If that is not case, the
matrix is referred to as a complex symmetric matrix, i.e., the possibility that matrix entries are
non-real is explicitly mentioned.

A matrix A is anti-Hermitian if A∗ = −A. Sometimes it is convenient to split a (general
square) matrix A into a Hermitian and an anti-Hermitian part:

A = Ah +Aa, with Aa ≡ 1
2 (A+A∗) and Aa ≡

1

2
(A−A∗) (0.13)

(check this), as a complex number α can be split onto a real and an imaginary part: α = αr+iαi

with αr = Re(α) and αi = Im(α). Here i is the complex number
√
−1.

Theorem 0.15 A = 0 ⇔ x∗Ax = 0 for all x ∈ C
n.

A is Hermitian ⇔ x∗Ax ∈ R for all x ∈ C
n.

Exercise 0.26.

(a) Prove the first statement of Th. 0.15. (Hint: take x = y + z and x = y + iz.)

(b) If A is real, can we conclude that A = 0 whenever x∗Ax = 0 for all x ∈ R
n?

(c) Let A be real. Show that A is anti-Hermitian ⇔ x∗Ax = 0 for all x ∈ R
n

(d) If A and H are Hermitian and α, β ∈ R, then αA+ βH is Hermitian.

(e) If V is an n× k matrix and A is Hermitian, then V∗AV is Hermitian.

(f) If A is anti-Hermitian, then iA is Hermitian.
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(g) Prove the second statement of Th. 0.15:
if x∗Ax ∈ R for all x ∈ C

n ⇔ x∗Aax = 0 for all x ∈ C
n ⇔ A = Ah is Hermitian.

(h) If A = QSQ∗ is the Schur decomposition of an Hermitian matrix A, then S is a real
diagonal. In particular, an Hermitian matrix A is diagonalizable, all eigenvalues are real and
A has an orthonormal basis of eigenvectors, i.e., there is an orthonormal basis of Cn such that
all basis vectors are eigenvectors of V.

A is a normal matrix if AA∗ = A∗A.

Theorem 0.16 Hermitian and anti-Hermitean matrices are normal.
If A is normal, then a vector is a right eigenvector of A if and only if it is a left eigenvector.
The following properties are equivalent voor a square matrix A:

1) A is normal.
2) AaAh = AhAa.

3) There is an orthonormal basis of eigenvector of A.
4) A∗ = p(A) for any polynomial p for which p(λ) = λ for all eigenvalues λ of A.

5) There is a polynomial p with real coefficients for which A∗ = p(A).

Exercise 0.27. Proof of Theorem 0.16.

(a) Prove the first claim of the theorem.

(b) Subsequentially prove the following impications (see the theorem)
1) ⇒ 2), 2) ⇒ 3) (Hint: use (b) of Exercise 0.21),
3) ⇒ 4), 4) ⇒ 5) (Hint: use Lagrange interpolation), 5) ⇒ 1).

(c) Prove that left and right eigenvectors coincide in case A is normal. Does the converse hold?

Assume in the remaining of this exercise that A is normal

(d) Prove that there is a polynomial p as in 5) with degree ≤ #Λ(A), i.e., the number of
different eigenvalues of A. In particular, the degree of the polynomial p is ≤ the degree of the
minimal polynomial of A.

(e) If A∗ = p(A) then p◦p(A) = A, in particular the minimal polynomial of A is a polynomial
factor of the polynomial λ− p(p(λ)).

For a n× n (complex) matrix A the field of values is defined by

F(A) ≡ {x∗Ax x ∈ C
n, ‖x‖2 = 1}.

Note that the vectors x in the definition have norm 1 and do not form a convex set.7 Never-
theless, the field of values is a convex subset of C that contains the eigenvalues of A (see the
theorem below), but can be larger than the convex hull of the eigenvalues.

Theorem 0.17 Let A be an n× n matrix.
The field of values F(A) of A is convex and contains all eigenvalues of A. Further

F(Q∗(A− σI)Q) = F(A) − σ for all n× n unitary matrices Q and σ ∈ C. (0.14)

If A is normal, then, F(A) equals the convex hull of all eigenvalues λj of A, that is,

F(A) =





n∑

j=1

βjλj βj ∈ [0, 1],

n∑

j=1

βj = 1



 . (0.15)

7A subset G of Cn is convex if, with x,y in G, all vectors αx+ (1− α)y are in G for all α ∈ [0, 1].
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Exercise 0.28. Proof of Theorem 0.17.

(a) First assume that A is normal and prove (0.15). (Hint use 3) of Th. 0.16.)

(b) Prove (0.14).

(c) To prove convexity of F(A) for general square matrices A, show that it suffices to show
convexity for 2× 2 matrices.

(d) Show that the field of value of [
1 1

−1 −1

]

equals the unit disc {ζ ∈ C |ζ| ≤ 1}.
(e) Let A be a 2× 2 matrix. For simplicity assume A is real. Select σ to be the trace of A en
Q the orthonormal matrix of eigenvectors of Ah. Show that, for some α, β ∈ R,

Q∗(A− σI)Q =

[
α β

−β −α

]
.

Show that F(A) is convex.

A is (semi-) positive definite if x∗Ax > 0 (x∗Ax ≥ 0, respectively) for all x ∈ C
n,x 6= 0.

Theorem 0.18 The following two properties are equivalent for a square matrix A:
1) A is (semi)-positive definite.
2) A is Hermitian and λ > 0 (λ ≥ 0, respectively) for all eigenvalues λ of A.

Exercise 0.29.

(a) Prove Th. 0.18:
A is positive definite ⇔ A is Hermitian and λ > 0 for all eigenvalues λ of A.
A is semi positive definite ⇔ A is Hermitian and λ ≥ 0 for all eigenvalues λ of A.

(b) A is positive definite ⇔ A = MM∗ for some non-singular n× n matrix M.

(c) A is positive definite ⇔ A = LL∗ for some non-singular n×n lower triangular matrix L.
(Hint: apply (0.5) to M∗).

(d) A is semi positive definite ⇔ A = MM∗ for some n× n matrix M.

In the above statements, it is essential that the positive definiteness is with respect to
complex data: if A is real and xTAx > 0 for all x ∈ R

n, x 6= 0, then, we can not conclude that
A is symmetric.

(e) Give an example of a non-symmetric 2×2 real matrix A for which xTAx > 0 for all x ∈ R
2,

x 6= 0.

F Quiz

Exercise 0.30. Let

A =




0 1 0

−1 0 1

0 −1 0


 .

(a) Wat is the Range of A?

(b) What is the Null space of A?

(c) What is the rank of A?

(d) What are the eigenvalues of A?
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