
March 26, 2018

Lecture 10 – Preconditioning, Software, Parallelisation

A Incorporating a preconditioner

We are interested in solving
Ax = b (10.1)

for x. Here, A is an n × n non-singular matrix and b is a n-vector. Both A and b are given.
Often convergence of iterative solvers improves dramatically by solving an alternative system
as

M−1Ax = M−1b. (10.2)

Here, M is a carefully selected n × n non-singular matrix. Systems for M should be easily
solvable. In Lecture 6.B, we learnt that the conditioning of the matrix A, nor the distribution
of the eigenvalues determine the convergence of an iterative method: GMRES may converge
arbitrarily slowly even for unitary matrices A and also for matrices A with all eigenvalues
clustered around 1. On the other hand GMRES may converge quickly for matrices with some
eigenvalue (relatively) close to 0, in particular, for matrices that are ill-conditioned. However,
the examples that illustrate these observations are rather academical. In practice, iterative
methods often converge well for well-conditioned systems. Therefore, the traditional point of
view on the idea of applying an iterative method to (10.2) rather than to (10.1) is that the mul-
tiplication by M−1 improves the conditioning of the linear matrix. Therefore, (10.2) is referred
to as the preconditioned linear system and M (or M−1) is called the preconditioner of
A.

If the idea is the improve the condition number, then it may be useful to realise that, in
case A is ill-conditioned, a preconditioned matrix M−1A can be well-conditioned only if M is
ill-conditioned as well, because

C2(A)

C2(M)
≤ C2(M

−1A) ≤ C2(M)C2(A).

(Check this and conclude that C2(M) is large whenever C2(A) is large and C2(M
−1A) is of

modest size).
We observe that in practice, the distribution of the eigenvalues of the matrix is a better

indication on the succes of iterative solvers than the condition number. The eigenvalues should
cluster away form 0 for fast convergence. We rather like to view preconditioning as a mean to
improve the distribution of eigenvalues

In (10.2), the system is obtained by multiplying (10.1) from the left by M−1. Therefore,
this way of preconditioning is called left preconditioning. Right preconditioning,

AM−1y = b and x = M−1y (10.3)

and two-sided preconditioning, with M = M1M2,

M−1

1 AM−1

2 y = M−1

1 b and x = M−1

2 y (10.4)

is also possible and may have advantages. As we will see in the next exercise, concerning
the distribution of the eigenvalues, it does not matter whether we use left, right or two-sided
preconditioning. Although preconditioning is essential for the success of iterative methods, in
practice, the way the preconditioner is used does not play a role in the speed of convergence:
except for one or two steps, an iterative method needs the same number of steps for left, as for
right and two-sided preconditioning (assuming the same initial guess).

Exercise 10.1.

(a) Show that the eigenvalues of the preconditioned matrix M−1A are solutions of the gener-
alised eigenvalue problem Ax = λMx.

1

(b) Show that the preconditioned matrices M−1A, M−1
1 AM−1

2 with M ≡ M1M2, and AM−1

have the same spectrum. Often, in applications, M1 is lower triangular and M2 is upper
triangular.

Exercise 10.2. Consider the GCR method. We take the trivial vector 0 as initial guess.
The extension vector uk in standard GCR is selected as uk = rk.

1

(a) Show that if the extension vector uk is selected to satisfy Auk = rk, then rk+1 = 0, that
is, xk+1 solves Ax = b.

(b) Let M be a preconditioner. Let the extension vector uk be the solution of Muk = rk
(implicit preconditioning). Show that the kth residuals of this version of GCR (called
PGCR) equals the kth residual of standard GCR (GCR) applied to the right preconditioned
problem AM−1y = b. Show also that, if yk is the kth approximate solution computed in this
method, then xk = M−1

k yk is the kth approximate of PGCR: GCR for AM−1y = b computes
“preconditioned approximates”.

(c) Consider the left preconditioned problem M−1Ax = M−1b. Show that GCR applied to
this preconditioned problem computes ‘preconditioned residuals’ and ‘unpreconditioned approx-
imates’. Discuss the relation of the kth true residual of GCR for M−1Ax = M−1b and the kth
residual of PGCR (see also (b) of Exercise 10.1).

Exercise 10.3. Let A be n × n Hermitian. Let M be an Hermitian preconditioner for the
problem Ax = b. CG allows implicit preconditioning (PCG); see Exercise 7.2.

(a) Is AM−1 Hermitian (with respect to the standard inner product)? Disprove (give a 2 × 2
counter example) or prove the claim “there is a decomposition M = M1M2 of M such that
M−1

1 AM−1

2 is Hermitian”.

Assume M is positive definite.

(b) Show that M−1A is self adjoint (Hermitian) with respect to the M-inner product and
AM−1 is self adjoint with respect to the M−1-inner product.

(c) Prove that CG with implicit preconditioning (PCG) is standard CG for the right (or left?)
preconditioned problem AM−1x = b, but with respect to the M−1-inner product (or M-inner
product?) instead of the standard inner product.

(d) If M = (L+D)D−1(D+L∗) is a preconditioner for some positive definite diagonal matrix

D, then we need D
1
2 if we want to apply CG (with standard inner product) to an explicitly

preconditioned system. Why? Do we need D
1
2 for PCG?

(e) What form of preconditioning is used in the Matlab code pcg.m for CG? (Hint: perform
in Matlab the command type pcg and inspect the code.)

The following exercise (Exercise 10.4(b)-(c)) explains how to incorporate a Hermitian posi-
tive definite preconditionerM in a symmetric solver as MINRES. The approach exploitsM, but
is (mathematically) equivalent to applying standard MINRES to (7.1) (see Exercise 10.4(e). It
relies on the fact thatM−1A is self adjoint with respect to theM-inner product (see Exercise 7.2
and Exercise 10.3).

Exercise 10.4. Preconditioned MINRES.

(a) Show that Lanczos applied to M−1A with respect to the M-inner product and v1 a
multiple of M−1b (and v0 = 0) produces a sequence (vj) of n-vectors such that

βk+1vk+1 = M−1Avk − αkvk − βkvk−1 (10.5)

1We refer to the vector uk in GCR before the orthogonalisation of ck ≡ Auk as the extension

vector. This is the vector by which the search subspace is extended. We call the vector uk after the
orthogonalisation loop, the update vector. It is the vector from the search subspace that is used for
updating xk.

2

with scalars αk and βk such that

v∗

kMvj (j 6= k) and v∗

kMvk = 1 (k = 0, 1, 2, . . .). (10.6)

(b) Generate two sequences (uk) and (vk) of n-vectors with u1 a multiple of b (u0 = 0) such
that

βk+1uk+1 = Avk − αkuk − βkuk−1 and Mvk+1 = uk+1,

with scalars αk and βk such that

v∗

kuj (j 6= k) and v∗

kuk = 1 (k = 0, 1, 2, . . .).

Prove that the vectors vj and the scalars are the same as produced in (a). Conclude that

AVk = Uk+1Tk with Uk = MVk,

where Vk and Uk are the n× k matrices with columns the first k vj and uj , respectively. Tk

is the (k + 1)× k tri-diagonal matrix with entries the αj and βj .

(c) Let Tk = Q
k
Rk be the QR-decomposition of Tk. Take

xk ≡ x0 + ρ0(VkR
−1

k)(Q
k

∗e1) with ρ0 ≡
√
b∗Mb. (10.7)

Show that xk minimises ‖M−1(b−Ax̃)‖M over all x̃ in x0+span(Vk), span(Vk) = Kk(M
−1A,M−1b).

That is, the residual rk = b−Axk is minimal with respect to the M−1-norm.

(d) Modify Alg. 7.3 to include preconditioning following the suggestions in (b) and (c).

(e) Take w1 a multiple of L−1b (and w0 = 0). Apply Lanczos to the problem in (7.1) to find
a sequence wj or orthonormal vectors and a tri-diagonal matrix Sk such that

(L−1AL−∗)Wk = Wk+1Sk

Show that
Sk = Tk and Wk = L∗Vk = L−1U.

Show, if zk = argmin‖L−1b− (L−1AL−∗)z̃‖2 where we minimise over all z̃ ∈ span(Wk), then
xk = L−∗zk.

(f) What form of preconditioning is used in the Matlab code minres.m?

Note that the preconditioner here is required to be positive definite. As explained in Ex-
ercise 7.3, it suffices for preconditioned CG to have an Hermitian preconditioner. The above
approach, or to be more precise, the above version of Lanczos, also may work ofM is Hermitian,
but indefinite (check that the “M-orthogonality” conditions in can be fulfilled with the three
term recurrence of Exercise 10.4(a)). However, as for CG with such a general preconditioner,
the process may break down (“v∗

kMvk can be zero”) and residuals are not minimized with
respect to some norm.2

Consider the decomposition A = LA+DA+UA of A into a strictly lower triangular matrix
LA, a diagonal matrix DA and a strictly upper triangular matrix UA. This leads to so-called
D-ILU preconditioners:

M ≡ (LA +D)D−1(D+UA). (10.8)

Here, D is some suitable non-singular diagonal matrix as D = DA. In §B.3, we will suggest
other, more effective choices for D. For the Eisenstat trick, to be discussed in the next exercise,
Exercise 10.5, it suffices to know that D is non-singular. This trick is an efficient implementation
of the action of D-ILU preconditioners. This trick combines a preconditioning step with a matrix
vector multiplication essentially at the same cost as a matrix-vector multiplication only.

2Actually, the PCG version of Alg. 7.1 is an efficient variant of Bi-CG (the shadow system is not
explicitly needed). Similarly, this MINRES version can be viewed as an efficient variant of QMR.

3

Exercise 10.5. Eisenstat trick. With D and M as in (10.8), consider the problem

(I+ L̃)−1Ã(I+ Ũ)−1y = b̃, (10.9)

where

L̃ ≡ D−1LA, Ã ≡ D−1A, Ũ ≡ D−1UA, and b̃ ≡ (I+ L̃)−1D−1b. (10.10)

(a) Suppose y solves (10.9). Show that the solution x of (I+ Ũ)x = y solves Ax = b.

(b) Show that the spectrum ofM−1A and the operator (I+L̃)−1Ã(I+Ũ)−1 are the same: (10.9)
uses a two-sided preconditioning of A with M. Discuss the consequences for convergence.

To compute c ≡ (I+ L̃)−1Ã(I + Ũ)−1u for a given vector u, introduce ∆ ≡ D−1DA − 2I
and proceed as follows:

Solve u′ from (I+ Ũ)u′ = u

Solve u′′ from (I+ L̃)u′′ = ∆u′ + u

Compute c̃ = u′ + u′′

(10.11)

(c) Write Ã = ∆+ I+ L̃+ I+ Ũ and show that c̃ = c.

Approach (10.11) for computing c ≡ (I + L̃)−1Ã(I + Ũ)−1u is known as the Eisenstat
trick. Note that this trick is not a preconditioner: it is a way of implementing the preconditioner
of (10.8).

(d) Recall that we are interested in the case where A is sparse.

Show that solving Mc̃ = (LA + D)(I + Ũ)c̃ = c for c̃ is exactly as expensive (in terms of
flops) as a matrix-vector multiplication c = Au.
Show that (10.11) is only 2n flop more expensive than a matrix-vector multiplication c = Au,

assuming the matrices L̃, Ũ and ∆ are available.

(e) How do you incorporate the Eisenstat trick in an Krylov subspace method (How and where

in the code do you compute L̃, Ũ, ∆, b̃, x)?

(f) We want to use the preconditionerM from (10.8). We consider to incorporate it in a straight
forward way as M−1A, or (D + LA)

−1A(D + UA)
−1D, or with the Eisenstat trick. Do you

expect a gain in computational time by incorporating the Eisenstat trick in a long recurrence
type of Krylov subspace method (as GMRES and GCR)? What about short recurrence methods
(as Bi-CGSTAB)?

AssumeA is Hermitian positive definite. Work with Ã = D−
1
2AD−

1
2 to obtain a symmetric

variant.

(g) How much faster do you expect the CG code to be with this symmetric variant of the
Eisenstat trick as compared to using M as an implicit preconditioner (you may use that A has
[on average] nnz non-zeros in each row and take, for instance, nnz = 7).

B Preconditioners

Let A = (Aij) be an n× n matrix.
Let I be the set of all matrix indices (i, j) (i, j = 1, . . . , n).

In this subsection, we discuss some specific types of preconditioners. The general rule is
that the more effective the preconditioner is in reducing the number of iterations steps of a
(Krylov) subspace method, the more costly it is to construct the preconditioner (that is, the
preprocess stage will be more expensive) and the more expensive it is to solve preconditioned
systems (the steps of the iterative process get more expensive): less steps, but slower steps.
What the most effective preconditioner is (in terms of overall computational time) depends on

4

the problem3 (even on the problem size)4 and also on the architecture of the computer that is
to be used.

B.1 Incomplete LU-decompositions
An important class of preconditioners is based on sparse approximations of A that are easy

to invert. More specifically, these preconditioners M are obtained in factorized form, M = LU,
with sparse factors L and U of lower and upper triangular matrices, respectively, that approxi-
mate the corresponding factors of the complete LU-decomposition of A. In this subsubsection,
we explain the general ideas behind these so-called incomplete LU preconditioners. Then,
in §§B.2-B.3, we discuss some more specific examples.

Complete LU-decompositions. The LU-decomposition process (Gaussian elimination) con-
structs a sequence (Aj) of n× n matrices as follows.

A1 ≡ A

for j = 1, . . . , n− 1

1) νj ≡ e∗jAjej (the jth pivot)

2) ℓj be the n-vector defined by

e∗i ℓj = 0 if i ≤ j, e∗i ℓj =
e∗iAjej

νj
if i > j

(νjℓj coincides with the jth column of Aj below its diagonal)

3) Aj+1 = (I− ℓje
∗

j)Aj

Put U ≡ An, L̃ ≡ [ℓ1, . . . , ℓn−1,0], L ≡ I+ L̃.

Then, L̃ is strictly lower triangular,U is upper triangular, andA = LU is the LU-decomposition
of A, in the context of preconditioners, also called complete LU-decomposition of A.
Note that we did not incorporate a pivoting strategy, i.e., we implicitly assumed that all pivots
νj are non-zero.

The matrix A of interest will be sparse. Efficiency requires a careful implementation of the
above elimination process: multiplications by 0 result in 0 and should not be included in the
computational steps. A similar remark applies to the incomplete elimination processes that we
discuss below. Even if such trivial multiplications are excluded from the computational process,
and even if A is sparse, the computation of the L and U-factors L = (Lij) and U = (Uij) of
A can be unacceptable expensive, due to fill, also called fill-in, that is, there are locations
(i, j) ∈ I for which the matrix entry Aij = 0, while Lij or Uij is non-zero. In formula, if

S(B) ≡ {(i, j) ∈ I Bij 6= 0}

is the sparsity pattern or sparsity set of the n × n matrix B = (Bij), then the fill-in of
the LU-decomposition of A equals S(|L| + |U|)\S(A). Reordering equations and unknowns
(pivoting) (that is, replace A by A(Jr, Jc) for some permutations Jr and Jc of (1, 2, . . . , n)
of rows and columns, respectively) may reduce fill. But often not enough to obtain a feasible
decomposition process. Nevertheless, reordering can be an effective strategy also for incomplete
elimination processes (as we learnt in b) of Exercise 8.6. See also, for instance, §B.6).
Incomplete LU-decompositions. An ILU (incomplete LU) decomposition ofA consists of
a sparse lower triangular matrix L and a sparse upper triangular matrix U that, in some sense,
approximate the complete L and U-factors of A: both L and U are non-singular n×n matrices.
The idea is that the construction of these sparse L and U-factors is cheap (as compared to the

3If, for instance, the system Ax = b has to be solved for the same matrix, but many right-hand
side vectors b, then the costs of the preprocess stage may get less dominant.

4Often the number of iteration steps increases if the problem size grows. With the ideal precon-
ditioner, the total costs should be proportional to the problem size (proportional to the number of
unknowns).

5

costs of computing the complete LU-decomposition; recall that trivial multiplications should be
excluded from the computational process), and solving systems involving these sparse matrices
L andU is also cheap (with costs similar to, or a modest multiple of, the costs of a multiplication
byA). ThenM ≡ LU will be the preconditioner. Of course the preconditionerM will be stored
in factorized form, and ‘Solve Mu = r for u’ will be implemented as first ‘solve Mũ = r for ũ’,
followed by ‘Mu = ũ for u’ (see also Exercise 10.5).

Dropping strategies. Often5 incomplete LU-decompositions are constructed using a drop-
ping strategy or dropping operator, that is, a map Π that maps n×n matrices B to n×n
matrices Π(B) where Π(B) equals B at certain (i, j)-entries and 0 at the other entries. Though
Π need not be linear on the space of all n× n matrices, it ‘projects’: Π(Π(B)) = Π(B). What
entries are put to zero (are dropped) depends on the dropping strategy (and can also depend on
the matrix B). Once a dropping strategy has been selected an incomplete LU-decomposition is
obtained by by extending line 3) in the above scheme for obtaining complete L and U-factors
to

3′) Ãj+1 = (I− ℓje
∗

j)Aj , Aj+1 = Π(Ãj+1).

Note that, in the computation of Ãj+1, only the rows of Aj change that correspond to non-zero
coordinates of ℓj . The standard dropping operators will require an update only of these rows,
also in cases where the operator is not linear.

ILU. An important class of incomplete decompositions is obtained by first fixing a sparsity
set, that is, a (sparse) subset F of I. Then drop matrix entries outside F, that is, the dropping
operator Π is defined by

Π(B)ij ≡ Bij if (i, j) ∈ F and Π(B)ij ≡ 0 if (i, j) 6∈ F.

Note that this operator Π is linear. F is known before the start of the incomplete elimination
process. It may depend on the matrix A for which preconditioning is required, but not on the
intermediate matrices (as Ãj+1) of the incomplete elimination process. F limits the set of

entries at which fill is permitted. Therefore, the computations of the (k,m)-entries of Ãj+1 in
step 3′) can be skipped for the (k,m) not in this set (and for k < j,m < j).

A popular choice for F is F ≡ S(A) ≡ {(i, j) Ai,j 6= 0} (for other related choices of F, see
§B.2 below). Note that with this choice, the dropping strategy leads to incomplete L and U
factors with (in lower and upper triangular part) the same (or smaller) sparsity pattern as A
and the combination of ‘solve Lũ = r for ũ’ and ‘solve Uu = ũ for u’ is more or less as costly
as ‘computing c = Au’ by matrix-vector multiplication.

The first incomplete LU-decompositions in literature relied on this dropping operator and
sparsity set. The name ‘ILU preconditioner’ often refers to this specific incomplete decomposi-
tion.

Drop tolerance. Another popular strategy drops small matrix entries. A drop tolerance
parameter τ > 0 is fixed and all matrix entries below this value are dropped: Π(B)ij = 0
whenever |Bij | < τ , else Π(B)ij = Bij . Smallness can also be measured in some relative sense:

|Bij | < τ‖B‖M rather than |Bij | < τ (or |Bij | < τ‖e∗iB‖2 or |Bij | < τ
√

|BiiBjj |).
Note that now the fill pattern is not known in advance, which makes coding a bit more

tricky. Moreover, the resulting incomplete factors need not be sparse. Therefore, this drop
tolerance strategy is usually used in combination with a fixed sparsity set (see also §B.4).

Exercise 10.6. Incomplete LU. Costs (flops en memory)

(a) ...

Modified ILU-decompositions. Let Π be a dropping operator. A modified variant is
obtained by adding (also called lumping) the dropped elements to the diagonal: Πm(B) equals

5For other constructions that lead to ILU-decompositions, see, for instance, §B.3.

6

Π(B) except at the diagonal entries, the ith diagonal entry of Πm(B) equals Bii+
∑

j Bij , where
we sum over all j for which Π(B)ij = 0 (and Bij 6= 0). Note that

Πm(B)1 = B1.

Here 1 is the n-vector with all coordinates equal to 1.
This last property implies that LU1 = A1 for MILU-decompositions (modified ILU-

decompositions; see, Exercise 10.7).
The vector 1 forms the ultimate smooth vector. The idea of MILU is that for ‘smooth’

vectors the action of the preconditioner is close to the action the matrix, that is, if the solution
u of Au = r is ‘smooth’, then the solution u′ of LUu′ = r is close to u: with respect to smooth
solutions MILU forms good preconditioners, often much better than its ILU variant.

Exercise 10.7.

(a) Prove that L = [(I− ℓn−1e
∗
n−1) . . . (I− ℓ1e

∗
1)]

−1 = (I+ ℓ1e
∗
1) . . . (I+ ℓn−1e

∗
n−1).

(b) Prove that LU1 = A1 if the L and U factors are constructed with a modified dropping
strategy.

RILU(ω)-decompositions. In practise lumping the dropped elements to the diagonal (as in
MILU) may lead to diagonal elements that are very small in absolute value, whence to absolute
small pivots. This would make the U factors unstable. To avoid this instability, but still profit
from a better preconditioner, relaxed variants have been introduced.

Select an ω ∈ [0, 1]. Then Πω(B) equals Π(B) except at the diagonal entries: the ith
diagonal entry of Πω(B) is equal to Bi,i + ω(

∑
j Bij), where we sum over all j for which

Π(B)ij = 0.
Note that, if Π does not drop diagonal entries (which is usually the case), RILU equals ILU

for ω = 0 and equals MILU for ω = 1. For discretised Laplacian type of operators ω = 0.95 is
a popular choice. The optimal choice of ω is very much problem dependent.

Exercise 10.8. RILU.

(a) ...

B.2 ILU(k). For subsets F of I, define F
+ by

F
+ ≡ F ∪ {(i, j) ∈ I (i, k), (k, j) ∈ F for some k < min(i, j)}.

Recursive application of this definition, Fj+1 ≡ F
+

j , starting with some subset F0 of I, leads to
the sequence F0 ⊂ F1 ⊂ F2, . . . of subsets of I.

The set Fj(A) ≡ Fj obtained in this way starting with F0 ≡ S(A) ≡ {(i, j) Ai,j 6= 0} is
called the fill pattern of A of level j. In particular S(A) is the full pattern of level 0. If we
take F = Fk (A) as dropping set, that is, as fill-pattern, then we obtain level k ILU: ILU(k).

Note that the set Fk (A) can be determined without floating point operations. It is actually
a computation of graphs, starting with the graph of the matrix A.6 If a k is fixed, then the
set Fk(A) is determined (without using the actual values of the matrix entries) before the
incomplete elimination process is started.

Exercise 10.9. Fill-patterns. Let us call non-zero entries at location (i, j) ∈ F0(A) a
matrix entries of level 0. If, in the (full) Gaussian elimination process, a non-zero arises by a
combination of level 0 matrix entries, then we call that entry an entry of level 1, combinations
of level 1 entries are level 2 entries, etc.

(a) Show that the set of locations (i, j) of the matrix entries of level k is contained in Fk (A).

6The graph of the matrix A consists set of vertices V ≡ {1, . . . , n} and the set of edges E ≡

{(i, j) Ai,j 6= 0}: F0(A) = S(A) is (equivalent to) the set of edges of this graph. The next level graph,
corresponding to F1 (A), arises by adding an edge between two vertices if there is a path length of 2
between these vertices.

7

Theorem 10.1 Assume the incomplete decompositions are based on a fixed fill-pattern
F that contains S(A).
1) If L and U are the obtained (incomplete) factors and M is the product M = LU, then the
(i, j)-entries of A and M coincide at (i, j) ∈ F, i 6= j, for ILU, MILU and RILU.
For ILU, we have that diag(A) = diag(M), and for MILU, M1 = A1.
2) Let L and U be lower- and upper triangular matrices, respectively, with diag(L) = I and
with fill-pattern contained in F such that the entries of the product matrix M = LU coincide
with those of A at the (i, j) ∈ F, i 6= j.
If diag(A) = diag(M), then L and U are the L and U factors as obtained with ILU.
If M1 = A1, then L and U are the L and U factors as obtained with MILU.

Exercise 10.10. Proof of Theorem 10.1.

(a) Prove the theorem (Hint. It suffices to check the correctness of the theorem only for step
3’) of the algorithm and only for j = 1. Why?).

B.3 D-ILU preconditioners. To keep the fill-pattern simple and the costs for con-
structing the incomplete factors low, the D-ILU variants of (10.8) have been considered.

Note that, for any non-singular diagonalD,M of (10.8) is an incomplete ILU preconditioner,
where the fill-pattern of the L and U factors of M are the same as the fill-pattern of A.

With (the cheap choice) D = ωDA for some parameter ω ∈ (0, 1) we have the so-called
SSOR preconditioner.
Other popular (slighly more expensive) choices are obtained by determining D such that

• diag(M−A) = 0 (D-ILU),
• M1 = A1 (D-MILU), or
• some combination (D-RILU(ω)).

As compared to symmetric Gauss-Seidel (D = DA), SSOR requires the determination of one
scalar only (namely, ω), while the three other variants require the computation of n scalars. For
ILU(0), the number of scalars to be computed equals the number of non-zeros of A. Generally,
the more costly the construction of the preconditioner is, the better it reduces iteration steps.
However, the action of better preconditioners is generally also more expensive, with an exception
of the D-ILU preconditioners: the Eisenstat trick allows to use them for free. As a consequence,
D-ILU preconditioners are often more efficient (lead to less total costs) than more powerful ILU-
preconditioners (even if they are less successful in reducing the number of iteration steps).

Exercise 10.11. Suppose A has non-zeros at the main diagonal or at the pth if |p| is in some
subset E of {1, . . . , n}: Ai,j 6= 0, i 6= j, then |i− j| ∈ E. Suppose that

for each pi, pj ∈ E we have that pi − pj 6∈ E. (10.12)

(a) Show that, in case A is the discretized Laplacian on a 2-d. unit square, E = {1, nx, nxny}
satisfies this condition (10.12) if nx, ny > 2. Here, nx, ny is the number of gridpoints in x-,
y-direction, respectively.

(b) Conclude that the namings D-ILU and D-MILU are justified (Hint: use Theorem 10.1).

B.4 ILUT(p,τ). The strategies in the ILU(k) preconditioners of §B.2 are ‘static’: the fill-
pattern that is allowed for the L and U factors is determined before the incomplete elimination
process starts. A ‘dynamic’ strategy that drops all entries that are small (in some relative
sense), may lead to non-sparse L and U factors. The ILUT(p,τ) preconditioner is dynamic: it
incorporates a drop tolerance strategy. But it also preserves sparsity simply by only preserving
the p most significant values per row outside the fixed sparsity set S(A). Here, p is a modest

number in N. To be more precise, for each i, it selects from {j (i, j) 6∈ S(A), |Bi,j | > τ‖e∗iA‖2}
the p j’s with largest |Bij | and sets Π(B)ij = Bij for these j and for the j with (i, j) ∈ S(A).
For the other values of j, Π(B)ij = 0.

8

B.5 Block ILU. The above forms of incomplete LU-decomposition have block variants,
where the matrix entries are replaced by block matrices.

Suppose A is partioned into p×p blocks with diagonal blocks Ai,i of size (ji, ji) with other
blocks Ai,j of mathing dimension: n = j1 + . . .+ jp and

A =




A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

...

Ap,1 Ap,2 . . . Ap,p




The diagonal block matrix with diagonal blocks Ai,i is often used (called block Jacobi precon-
ditioner), or an incomplete preconditioner arising by forming an incomplete LU decomposition
of each of the diagonal blocks Ai,j .

Such a partitioning into blocks arises in applications as Domain Decompositions. The
partitioning can be induces by a natural partitioning of the domain of an underlying partial
differential equation that defines A or can be the result of an allocation of parts of the matrix
to certain processors in a multiple core computer.

B.6 Multilevel ILU. More advanced preconditioners, as MILU (multilevel ILU), AMG
(algebraic multigrid), etc., rely on blocks with sizes that decrease during process of forming
the decomposition, use a reordering (pivoting) strategy, and use a threshold parameter τ for
dropping that may be determined dynamically (where “smallness’ depends on the computed
matrices).

The construction procedure of a multilevel ILU of A first determines a reordering Jr and
a reordening Jc (permutations of (1, 2, 3, . . . , n)) of the rows and of the columns of A0 ≡ A.
Then it partitions the reordered matrix A0(Jr, Jc) into an 2 × 2 block matrix and computes
the block LU-decomposition as indicated in (10.13), where the matrix at the left is the 2 × 2
block matrix representation of A0(Jr, Jc).

[
D E

F B

]
=

[
I 0

FD−1 I

][
D E

0 Ã1

]
with Ã1 ≡ B− FD−1E. (10.13)

Ã1 is the so-called Schur complement (of D for the matrix A0(Jr, Jc)). Then, the multilevel

procedure sparsifies the Schur complement Ã1 to a matrix A1, by dropping (or lumping to the

diagonal) matrix entries of Ã1 that are small in some sense. Reordering and partioning schould
be such that

(i) D is easily invertible, for instance, a diagonal matrix,

(ii) if Ã1 is n1 ×n1, then the dimension n1 should be considerable smaller than n0 ≡ n, for
instance, n1 ≤ 1

2
n0,

(iii) Ã1 allows sparsification.
If A0(Jr, Jc) is sparse and D is diagonal, then the Schur complement is also sparse (if E

and F contain at most p non-zeros per row as well as per column, then Ã1 contains at most
p2 non-zeros per row and per column. If p ≪ n, then p2 is still small). But in view of the next
steps in the construction, it might not be sparse enough. Note that it is the sparsification of
the Schur complement that turns the LU-decomposition into an incomplete one.

Now this procedure is repeated with A1 instead of A0, leading to an Ã2, and so on. The
procedure is stopped when sparsification is not possible anymore, say ending with Ãm. Then a
complete LU-decomposition of Ãm is computed to complete the computation of the incomplete
L and U factors of (a reordered version of) A. These factors appear as a product of (lower and
upper, respectively) block matrices.

The idea is that, with nm×nm the dimension of Ãm, nm is small enough to allow complete
LU-factorisation: if nj+1 ≤ 1

2
nj then nm ≤ 2−mn (the dimension of the Ãj blocks decreases

exponentially with increasing j).

9

Note that reordering and partitioning also determines the succes of sparsification. The pro-
cedures for the construction of the most succesful multilevel ILU preconditioners let smallness
in each sparsification step depend on the effect of dropping onto the next step (the procedure
“looks ahead” for one step).

B.7 Sparse approximate inverses. ILU-preconditioners M can be viewed as approx-
imations of A that allow efficient inversion (or, to be more precise, systems involving the
preconditioner can efficiently be solved).7 Another class of preconditioners arise from attempts
to approximate A−1 by sparse matrices. If V is such a SPAI (sparse approximate inverse)
preconditioner then the action of the preconditioner is simply multiplication by V: rather than,
‘solve Mc = r for c’, we have ‘compute c = Vr by matrix-vector multiplication’.
Generally, ILU-preconditioners are more successful in reducing the number of iterations steps
as well as in reducing the total number of floating point operations than SPAI-preconditioners.
However, solving systems involving L and U factors are hard to parallelise (systems with L
factors have to be solved from top to bottom and are intrinsically sequential), whereas mul-
tiplications with sparse factors are relatively easy to parallelise. Depending on the computer
architecture and properties of the linear systems that are to be solved, SPAI-preconditioners
may lead to faster (in real time) solution processes than ILU-preconditioners on multicore
computers.

C Deflation

The purpose of preconditioning is to cluster the eigenvalues away form 0. The deflation tech-
nique, to be discussed below, aims to remove absolute small eigenvalues, without touching (too
much) the other eigenvalues.

Let A be a non-singular n× n matrix.
Let U be an n×ℓmatrix. Put V ≡ AU. Let M ≡ U∗AU = U∗V be the interaction matrix.
Put

Π1 ≡ I−VM−1U∗, Π0 ≡ I−UM−1U∗A, and A′ ≡ Π1A. (10.14)

For an n-vector b let x′ be the n-vector that solves the projection of the problem Ax = b:

A′x′ = b′ ≡ Π1b and x′ ⊥ span (U). (10.15)

Then the solution x of Ax = b is given by

x = U~β +Π0x
′ = x′ +UM−1U∗(b−Ax′) where ~β ≡ M−1U∗b. (10.16)

Note that b′ = b−V~β.
A′ maps U⊥ to U⊥. Therefore, Krylov subspace methods (started with a vector as b′ [i.e.,

x′
0 = 0] that is orthogonal to U) can safely be applied for solving (10.15). A′ restricted to U⊥

is the deflated matrix: span (U) is ‘deflated’ from its domain and range.
If span (U) contains a left eigenvector, then the associated eigenvalue is “replaced” by 0 inA′

and it is ‘removed’ inA′ as a map fromU⊥ toU⊥. If the other eigenvalues are not much affected
by the deflation, then we the deflation reduces the condition number (C2(A) < C2(A

′

U⊥

)) and

Krylov subspace methods may expected to converge faster

Exercise 10.12.

(a) Prove that Π1 is a skew projection that projects onto U⊥ with kernel span(V).

(b) Prove that Π0 is a skew projection that projects onto (A∗U)⊥ with kernel span(U).

(c) Show that A′ = Π1A = Π0A.

(d) Prove that b′ ⊥ U, and A′ maps U⊥ to U⊥. In particular, Kk(A
′,b′) ⊂ U⊥.

7Or, if one wishes, as approximations of a product of the L- and U-factors of the complete LU-
decomposition of A

10

(e) Prove (10.16).

(f) Assume A is Hermitian. Prove that Π∗
1 = Π0 and that A′ is Hermitian.

Exercise 10.13. Deflation. Suppose U spans a space spanned by left eigenvectors.

(a) Show that A maps U⊥ to U⊥.

(b) Show that, for b′ ⊥ U, the problem “Solve Ax′ = b′ for x′ ⊥ U” has a unique solution.
Show that this solution also solves (10.19).

Suppose we have methods that solve any Au = c approximately for u:

u = Mi(A, c),

i.e., the ith method produces and approximate solution u for the problem Au = c. Then,
these methods can be combined to solve Ax = b by subsequently applying the methods to the
problem shifted by the previous residual: with x0 = 0 and r0 = b,

ui = Mi(A, ri−1), xi = xi−1 + ui, ri = ri−1 −Aui (i = 1, 2, . . . , k).

Upon termination, b−Axk = rk.
The idea is that each methods produces efficiently good approximations for certain compo-

nents of the solution vector x and are inefficient with respect to other components, components
for which another method (or combination of) is efficient.

The deflation technique in (10.14)-(10.16) can be viewed as being of this type as we will
learn in Exercise 10.14.

M1: Solve for u ∈ span(U) such that c−Au ⊥ U.

M2: Solve for u ⊥ U such that c−Au ∈ span(V).

M3 = M1.

(10.17)

Then, (10.15) is a representation of M2 with c ⊥ U and with x′ as in (10.15), we have (cf.,
(10.16))

x = u1 + u2 + u3 with u1 = UM−1U∗b, u2 = x′, u3 = UM−1U∗(b′ −Ax′).

Note that, replacing the third method by

M3: Solve for u ∈ span (U) such that c−Au ⊥ V (10.18)

also leads to the exact solution if all solutions are exact.

Exercise 10.14.

(a) With u1 ≡ UM−1U∗b, we have u1 ∈ span (U) and b′ ≡ Π1b = b−Au1 ⊥ U.

(b) Prove that (10.15) represents

with b′ ⊥ U, solve b′ −Ax′ ∈ span (V) for x′ ⊥ U. (10.19)

(c) b′′ ≡ b′ −Ax′ ∈ span (V) ⇔ Π1(b
′′) = Π1(b

′ −Ax′) = b′ −A′x′ = 0

(d) With u3 ≡ UM−1U∗b′′, we have u3 ∈ span (U) and Π1(b
′′) = b′′ −Au3 ⊥ U.

(e) Since Π1(b
′′) = 0, we have that x = u1 + x′ + u3.

In (10.14)–(10.16), we assumed that M1 and M2 solve the problem exactly. There are vari-
ants possible (and often used) where the methods (or one of the methods) produce an approxi-
mate solution. Then, the methods can be applied in a cyclic fashion: M1,M2,M1,M1,M2,
In GCRO (GCR orthogonalised), (10.15) is solved with (i.e., M2 is) ℓ steps of GMRES for

11

some fixed ℓ and for the next cycle ofM1,M2,M1, the matrix U is expanded with the GMRES
solution.8

If the projected problem (cf., (10.20) below) that is to be solved by M1 is still high dimen-
sional, the approach can be nested (as is the standard strategy in multigrid).

Note that M1 for Aui = ri−1 reads as, find y ∈ C
s such that

U∗AUy = U∗ri−1 and ui = Uy. (10.20)

In some applications (in multigrid [MG] and domain decomposition [DD]), the map U is
viewed as a restriction operator (restricting to a courser grid) and U∗ as a prolongation (to
the fine grid). Then (10.20) is the course grid problem with course grid operator M ≡ U∗AU.
When solved for ui followed by xi = xi−1 + ui a course grid correction has been applied. In
standard multigrid, the second method is an application of a fixed finite number of steps with
a classical iteration method for solving Aui = ri−1. In particular, no deflation is applied to
A (there is only deflation in the right-hand side vector ri). In domain decomposition, V and

U are both replaced in (10.19) by some (the same) Ũ. MG nor DD find an exact solution of
(10.19) and require recycling of the methods. However convergence is very fast.

Exercise 10.15. Restarted GMRES and FOM. For some n × n matrix A and an n-
vector b, consider the problem Ax = b.
Let U span the Krylov subspace Kℓ(A,b). Consider the situation in (10.14)–(10.16).

(a) Prove that

Kk(A
′,b′)⊕ span (U) = Kℓ+k(A,b) and A′ Kk(A

′,b′)⊕ span (V) = AKℓ+k(A,b).

(b) Suppose we solve the problem (10.15) with k steps of FOM (i.e., inexact M2 of (10.17)).
Then, we (exactly) correct the resulting residual shifted problem with M3 = M1 of (10.17)
and initial guess 0. Prove that in this way we obtain the same result (the same residual) as
with ℓ+ k steps of FOM for Ax = b and initial guess 0.

(c) Suppose we solve the problem (10.15) with k steps of GMRES (i.e., inexact M2 of (10.17)).
Then, we (exactly) correct the resulting residual shifted problem with M3 of (10.18) and initial
guess 0. Prove that in this way we obtain the same result (the same residual) as with ℓ + k
steps of GMRES for the original problem Ax = b and initial guess 0.

(d) Let U′ be an n × ℓ′ matrix with ℓ′ ≤ ℓ and span (U′) ⊂ span (U). Instead of (10.15), or,
equivalently, the second problem in (10.17), we

solve for u ⊥ U′ such that c−Au ∈ span (V′), where V′ ≡ AU′. (10.21)

Show that k steps of FOM or GMRES for an inexact solve of (10.21) with the same preprocess
and postprocess as above, lead to the same result (the same residual as with ℓ+k steps of these
methods for the original problem).

(e) Conclude that after ℓ steps the FOM and GMRES process for solving the original problem
with initial guess x0 = 0 behaves as these processes with a matrix from which Ritz vectors in
Kℓ(A,b) have been deflated.

Exercise 10.16. Let U be orthonormal. Put R ≡ UM −AU and S∗ ≡ MU∗ −U∗A.

(a) Show that Π1A = A−UM−1U∗ +US∗ +RU∗ −RM−1S∗ and

Π1A = (I−UU∗)(A−RM−1S∗)(I−UU∗).

The projected matrix Π1A equals a ‘perturbed’ matrix A −RM−1S∗ from which that space
span (U) has been deflated.

8This method was first introduced as a GCR method where the selection of the expansion vector uk

is the approximate solution of (10.15), rather than rk as in standard GCR. Due to the projection Π1

the vector ck ≡ Π1Auk is already orthogonal to c0, . . . , ck−1 and the orthogonalization loop of GCR
can be skipped.

12

(b) If A is Hermitian and U = u is an approximate eigenvector, then r ≡ R is the residual
r = uϑ−Au with ϑ ≡ u∗Au and s = r. Then, RM−1S = 1

ϑ
rr∗ can be viewed as a perturbation

ofA of size ‖r‖22/|ϑ| and Π1(A) is the perturbed matrix from which the approximate eigenvector
u has been deflated.

CG as a deflated process. In methods as Lanczos (and in CG) for Hermitian matrices
A, the expansion vector vk+1 is obtained by orthonormalizingAvk against vk and vk−1. Then,
due to symmetry of A, vk+1 is automatically orthogonal to vj for all j < k. In some sense,
the multiplication by A can be viewed as being a multiplication by a deflated matrix. The
following result (formulated for CG) makes this point of view explicit.

Consider the (unpreconditioned) CG process for solving Ax = b starting with x0 = 0.
Here, A is positive definite. Then r0 = b and, with u0 ≡ 0, the kth step of CG reads as

ρk = r∗krk, βk = ρk

ρk−1
,

uk+1 = rk − βkuk, ck+1 = Auk+1,

σk+1 = u∗

k+1ck+1, αk = ρk

σk+1
,

xk+1 = xk + αkuk+1, rk+1 = rk − αkck+1.

(10.22)

(Note: here we took the scheme from Exercise 7.2, but to ease notation below, that is, to allow
working with index k rather than k + 1, we increased in the above scheme the index of the uk

and ck by 1).

Proposition 10.2 Select a positive integer k. Consider the matrix Ã defined by

Ã ≡ A− 1

σk

ck c
∗

k = A

(
I− 1

σk

uk c
∗

k

)
=

(
I− 1

σk

ck u
∗

k

)
A. (10.23)

Then, Ã is Hermitian and, with K ≡ Kk(A, r0) and r̃0 ≡ rk, we have that

Ã : K → K, Ã : K⊥ → K⊥, and r̃0 ⊥ K.

Moreover, the equation Ãx̃ = r̃0 has exactly one solution x̃ ⊥ K. Solve this equation for x̃ ⊥ K
with CG starting with x̃0 = 0. Then, with CG approximations x̃j and residuals r̃j, we have

rk+j = r̃j , ‖rk+j‖A−1 = ‖r̃j‖Ã−1 , (10.24)

x = xk +

(
I− 1

σk

uk c
∗

k

)
x̃, and xk+j = xk +

(
I− 1

σk

uk c
∗

k

)
x̃j . (10.25)

In Lecture 7 (see the transparancies), we explained superlinear convergence of CG by bound-
ing the CG process by a CG process for a matrix from which converged eigenvectors have been
removed (using the fact that zeros of the CG polynomial are Ritz values, cf., Theorem 6.1).
The explanation assumes that a Ritz value is very close to an (extremal) eigenvalue and relies
on a bounding CG process. The above theorem allows to view the CG process from step k on
as actually being a CG process with a deflated matrix. In Lecture 12, we will see theorems that
allow us the estimate the eigenvalues of Ã and to explain superlinear convergence also in cases
where Ritz values are not very close to eigenvalues.

Exercise 10.17. Proof of Proposition 10.2. Recall that the vectors produced by CG for
solving Ax = r0 have the following properties

xk ∈ K ≡ Kk(A, r0) = span(r0, . . . , rk−1) = span(u1, . . . ,uk)

and

rk ⊥ rj , rk ⊥ uj+1, ck ⊥ uj+1 (j < k).

13

(a) Prove that Ãuk = 0. Hence, Ãy ⊥ uk for all y ∈ C
n.

Prove that, r∗kÃrk−1 = r∗k−1
Ãrk = 0, Ãy ∈ K for all y ∈ K, and Ãy ⊥ K for all y ⊥ K.

(b) For x̃ ⊥ K, put

x ≡ xk +

(
I− 1

σk

uk c
∗

k

)
x̃.

Prove that Ax = r0 iff Ãx̃ = r̃0. Conclude that there is exactly one x̃ ⊥ K that solves Ãx̃ = r̃0.

(c) Prove that Kk+j(A, r0) = K⊕Kj(Ã, r̃0) for all j. Conclude that rk+j and r̃j are co-linear.
Put

y ≡ xk +

(
I− 1

σk

uk c
∗

k

)
x̃j

Show that r0 −Ay = r̃j . Conclude that y = xk+j and rk+j = r̃j .

(d) Prove that

r∗k+jA
−1rk+j = r∗k+j(x − xk+j) = r̃∗j (x̃− x̃j) = r̃∗jÃ

−1

r̃j .

Here Ã is inverted on the space K⊥.

D Parallelisation

Exercise 10.18. On parallel computers we want to have independent computations. Why is
this requirement inherently difficult to combine with a good preconditioner?

Exercise 10.19.

(a) Propose an efficient algorithm to add together the results of the partial inner products
on a distributed memory computer. Your algorithm should require as little communication as
possible (for subsequent computations, the value of the inner product should be available on
all processors involved).

(b) Which orthogonalization scheme (modified, classical Gram-Schmidt, or . . .) should be used
within GMRES on a distributed memory parallel computer? Explain your answer.

14

