
March 26, 2018

Lecture 11 – Advanced topics

A Induced Dimension Reduction

Let A be a n× n matrix and let R be a full rank n× s matrix: R is the so-called IDR test

matrix. R⊥ is the subspace of all vectors v that are orthogonal to all column vectors of R.
The following ‘IDR theorem’ indicates a way to ‘reduce’ the dimension of a subspace.

Theorem 11.1 Let (ωk) be a sequence of non-zero scalars. With G0 ≡ C
n (or a subspace of

C
n that is invariant under multiplication by A), let the sequence (Gk) of subspace be defined by

G′

k ≡ Gk ∩R⊥, Gk+1 ≡ (I− ωkA)G′

k. (11.1)

Then we have that
Gk+1 ⊂ Gk, and AG′

k ⊂ Gk. (11.2)

If the subspace R⊥ does not contain an eigenvector of A, then we have

Gk+1 = Gk ⇔ Gk = {0}. (11.3)

By selecting R randomly, the probability that R⊥ contains an eigenvector is 0.
The formulae in (11.1) define a chain of IDR subspaces with strictly decreasing dimension

(according to (11.2) and (11.3)). In particular Gk = {0} for k at most n. IDR methods (in-
duced dimension reduction) iteratively solve linear equations Ax = b by constructing residuals
rk in Gk. Then rk = 0 for some k ≤ n. In practice ‖rk‖2 ≪ ‖r0‖2 often already for modest
values of k (k ≪ n).

In the basic IDR method, ωk is selected as in Bi-CGSTAB to minimise the residual norm
ωk = argminω‖r′k−ωAr′k‖2. For s = 1, this method is mathematically (as well as computation-
ally) equivalent to Bi-CGSTAB. Actually IDR(s) (for s > 1) can be viewed as a Bi-CGSTAB
version where the initial shadow residual r̃0 is replaced by an n × s matrix R, that is a one
dimensional space by an s-dimensional one (the vectors are not of importance, but space that
they span).

Exercise 11.1. Proof of Theorem 11.1. Let µ0 ∈ C. For a subspace S0 of Cn, put

S ′

0 ≡ S0 ∩R⊥ ≡ {v ∈ S0 v ⊥ R}, S1 ≡ (A− µ0 I)S ′

0.

(a) Show that S1 ⊂ S0 implies that (A− µ1I)(S1 ∩R⊥) ⊂ S1 for all µ1 ∈ C.

(b) Prove that S ′

0 contains an eigenvector of A if S1 = S0 6= {0}.
(Hint: Prove that dim(S0) = dim(S0 ∩R⊥).)

(c) Prove that Gk+1 ⊂ Gk and Gk+1 = Gk ⇔ Gk = {0}.
(d) Prove that AG′

k ⊂ Gk.

The IDR spaces are related to Krylov and block Krylov subspaces. This relation explains
how IDR methods and Bi-CGSTAB are related.

Consider the block Krylov subspace generated by A∗ and R

Kk(A
∗,R) ≡





k−1∑

j=0

(A∗)j R~γj ~γj ∈ C
k



 .

Note that in standard Krylov subspace R is 1-dimensional.
For a polynomial q we define the Sonneveld subspace

S(q,A,R) ≡ {q(A)v v ∈ G0, v ⊥ Kk(A
∗,R)}, where k is the degree of q.

The IDR spaces of Theorem 11.1 are Sonneveld subspaces.
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Theorem 11.2 With (ωk) and (Gk) as in Theorem 11.1 and polynomials pk defined by

p0(ζ) ≡ 1, pk(ζ) ≡ (1 − ωk−1ζ) pk−1(ζ) (ζ ∈ C, k = 0, 1, 2, . . .)

we have that
Gk = S(pk,A,R). (11.4)

Exercise 11.2. Prove Theorem 11.2.

As mentioned, IDR methods construct the residual rk in Gk. In this context, the polynomial
pk of (11.4) is called the stabilisation polynomial.

The following exercise explains how Sonneveld subspaces are related to block rational Krylov
subspaces. This insight may help to understand the excellent convergence properties of IDR
methods.

Exercise 11.3. Sonneveld subspaces and rational Krylov subspaces. Let (ωj), (Gk)
and pk be as defined in Theorem 11.2. Assume that none of the 1/ωj is an eigenvalue of A.
Consider the block rational Krylov subspace

Kk(A
∗, p̄k(A

∗)−1R). (11.5)

(a) Show that this is the orthogonal complement of the space in (11.4):

Gk = (Kk(A
∗, p̄k(A

∗)−1R))⊥.

(b) Prove that

Kk(A
∗, (p̄k(A

∗))−1R) = span ((I− ω̄0A)−1R, . . . , (p̄k−1(A
∗))−1R, (p̄k(A

∗))−1R).

(c) Assume that, in addition, the ωj are mutually different. Show that

Kk(A
∗, (p̄k(A

∗))−1R) = span ((I− ω̄0A
∗)−1R, . . . , (I− ω̄k−2A

∗)−1R, (I− ω̄k−1A
∗)−1R).

(d) Prove that Kk+1(A
∗,R) = span (R, p̄1(A

∗)R, . . . , p̄k−1(A
∗)R, p̄k(A

∗)R). The Krylov sub-
space does not depend on the shifts. Does a similar statement hold for rational Krylov sub-
spaces?

Basically, IDR methods proceed as follows.
Assume the vectors rk,xk and n× s matrices ck,uk are available with

rk, ck ∈ Gk and rk = b−Axk, ck = Auk.

Here, with ck ∈ Gk, we mean that the columns of ck are vectors in Gk. To construct a residual
rk+1 and a matrix ck+1 in Gk+1, consider the skew projections

Π1 ≡ I− ckσ
−1R∗ with σ ≡ R∗ck, Π0 = I− ukσ

−1R∗A. (11.6)

Π1 projects along span(ck) orthogonal to R. Then, following the definitions in (11.1), we have

r′k ≡ Π1rk = rk − ckσ
−1R∗rk ∈ G′

k and rk+1 ≡ (I− ωkA)r′k ∈ Gk+1. (11.7)

Updating xk is easy. We simply update x̃ by +u if we update r̃ by −c and c = Au:

x′

k ≡ xk + ukσ
−1R∗rk and xk+1 ≡ x′

k + ωkr
′

k.

Then, we have that rk+1 = b−Axk+1. Note that σ−1(R∗rk) has to be computed only once.
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Since Π1ck = 0 (why?) we can not use the ‘lifting technique’ in(11.7) for constructing rk+1

to obtain ck+1. However, for the columns of c′k, we can take a(ny) basis of Π1AKs(Π1A, r′k)
(for details, see Exercise 11.5). Then ck+1 = (I− ωkA)c′k. Since

Π1A = Π0A

we have that Π1AKs(Π1A, r′k) = AΠ0Ks(Π1A, r′k) which shows that there is a u′

k such that
c′k = Au′

k: the columns of u′

k span Π0Ks(Π1A, r′k).
There is a lot of freedom in constructing a basis of Π1AKs(Π1A, r′k). This freedom can be

exploited to improve efficiency and to enhance stability. The original IDR(s) method uses the
residual updates that appear when using s-steps of Richardson (with parameter α = ωk) for
solving Π1Az = r′k with z0 = xk.

The initial matrix u0 (and c0 = Au0) can be generated in a similar way, with columns span-
ning Ks(A, r0). With this choice, the residuals rk will be in the Krylov subspace Kk(s+1)(A, r0).
Although the approach sketched above allows u0 to be any n× s matrix, the Krylov subspace
start seems to lead to the best convergence results.

The following exercises discusses the details for the above approach in case the IDR test
matrix R = [r̃0] is 1-dimensional. In the subsequent exercise, we consider a general IDR test
matrix R

Exercise 11.4. IDR methods. In this exercise, we assume that R = [ r̃0 ], i.e., s = 1. We
construct residuals rk in Gk for the equation Ax = b.

Assume the vectors rk,xk, ck,uk are available with

rk, ck ∈ Gk and rk = b−Axk, ck = Auk.

We construct a residual rk+1 and a vector ck+1 in Gk+1. Let Π1 and Π0 be defined as in (11.6).
Note that now σ ≡ r̃

∗

0ck.

(a) Put

r′k ≡ rk − ckσ
−1ρ, where ρ ≡ R∗rk = r̃

∗

0rk and rk+1 ≡ r′k − ωkAr′k.

Prove that
i) r′k = Π1rk = b−Ax′

k ∈ G′

k, where x′

k ≡ xk + ukσ
−1ρ,

ii) rk+1 = (I− ωkA)r′k = b−Axk+1 ∈ Gk+1, where xk+1 ≡ x′

k + ωkr
′

k

(b) Why can we not construct a c′k in G′

k as c′k = Π1ck, analogue to the construction of r′k?

(c) Show that v ≡ Ar′k ∈ Gk. Let

c′k ≡ v − ckσ
−1µ with µ ≡ R∗v = r̃

∗

0v, ck+1 ≡ c′k − ωkAc′k.

Show that
i) c′k = Π1v = Au′

k ∈ G′

k, where u′

k ≡ r′k − ukσ
−1µ = Π0r

′

k

ii) ck+1 = Auk+1 ∈ Gk+1, where uk+1 ≡ u′

k − ωkc
′

k.
Note that σ−1µ can be used for the computation of c′k as well as u′

k.

(d) Now take ωk ≡ argminω‖r′k−ωAr′k‖2. Give an (efficient) algorithm for the iterative process
indicated above. How do you initiate the iteration? Compare this algorithm with Bi-CGSTAB
(do the comparison theoretically as well as experimentally).

Exercise 11.5. IDR methods II. We continue Exercise 11.4, now with a general n × s
matrix R.

Assume the vectors rk,xk and n× s matrices ck,uk are available with

rk, ck ∈ Gk and rk = b−Axk, ck = Auk.

We construct a residual rk+1 and a matrix ck+1 in Gk+1.

(a) Adopt (a) of Exercise 11.4 do this situation where s > 1.
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Let v be an n×smatrix such that the columns of v span the Krylov subspaceKs(AΠ1,Ar′k).

(b) Adopt (c) of Exercise 11.4: the n× s matrix c′k spans Ks(Π1A,Π1Ar′k)

(c) We develop an algorithm for v the power basis of Ks(AΠ1,Ar′k), that is, v = [v1, . . . ,vs]
and the column vectors vj = (AΠ1)

j−1v1, with v1 ≡ Ar′k, form the power bases ofKs(AΠ1,Ar′k).
We consider the kth step of the algorithm. For ease of notation we drop the step index k.

Note that this is in line with the implementation of the algorithm, where we allow old quantities
to be replaced by the corresponding new ones. Put c′ = [c′1, . . . , c

′

s] and u = [u′

1, . . . ,u
′

s]. Note
that the computation of the vj as

r′k  v1 = Ar′k  c′1 = Π1v1  v2 ≡ Ac′1  . . . c′s = Π1vs  vs+1 = Ac′s

requires s+ 1 MVs (multiplications of an n-vector by A) and gives both c′ and Ac′ as a side
product. Note that we compute vs+1 as well, since the computation of the next c requires Ac′s.
Show that the u′

j can be computed as

r′k  u′

1 = Π0r
′

k  u′

2 ≡ Π0c
′

1  . . . u′

s = Π0c
′

s−1.

Compare c′j+1 = Π1vj+1 = Π1Ac′j and u′

j+1 = Π0c
′

j . Show that these computations do not
require new inner product, only new vector updates are needed.

Give an algorithm that relies on this power method approach.

(d) Show that if the s columns of the initial u0 (k = 0 here) form a basis of Ks(A, r0) (whence
the columns of c0 span Ks(A,Ar0)), then rk belongs to Kk(s+1)+1(A, r0). In particular, with

rk = pk(A)v, we have that v ∈ Kks+1(A, r0) ∩ (Kk(A
∗,R)⊥. Generally, (Kk(A

∗,R)⊥ has
dimension n− ks, whence, generally, Kks+1(A, r0) ∩ (Kk(A

∗,R)⊥ has dimension one.
Investigate numerically the effect of starting with a Krylov basis for u0 versus a random

n× s matrix u0.

(e) Give also an algorithm for v an orthonormal basis (an Arnoldi basis of Ks(AΠ1,Ar′k)). It
is also possible to orthonormalise c′k (an Arnoldi basis of Ks(Π1A,Π1Ar′k)). Make sure that
you need only s+1 MVs to form rk+1, xk+1, uk+1, ck+1 from rk, xk, uk, ck. Keep the number
of inner products limited.

(f) Compare these variants numerically. What is the effect of increasing s? What is the effect
of a random R (or R = Q with Q the n × s orthonormal component of the economical QR-
decomposition of an n× s random matrix) versus a more structured choice (a Krylov basis for
Ks(A

∗, r̃0))?

B Saddle point problems

Let A be given in block form as

A =

[
F B

B∗ −C

]
, (11.8)

with both F and C Hermitian, F m ×m positive definite and C k × k positive semi-definite.
The matrix B is not square, k ≤ m.

Applications

Matrices of this type show up in many applications. As we learnt in Exercise 9.1, some
formulations of the least square problems lead to these matrices. We now discuss two other
applications.

Exercise 11.6. Quadratic Optimisation. Let f and g1, . . . , gk be real-valued twice con-
tinuously differentiable functions defined on C

n. Here, k ≤ n. We are interested in an n-vector,
say x⋆, that minimises f(x) for all n-vectors x that satisfy gj(x) = 0 for all j = 1, . . . , k. x⋆

solves the minimisation problem

min f(x) such that gj(x) = 0 (j = 1, . . . , k). (11.9)

4



µ⋆ ≡ f(x⋆) is the minimising value.

(a) Put G ≡ ⋂
j{x ∈ C

n gj(x) = 0}. Argue that

G is tangent to the level curve {x ∈ C
n f(x) = µ⋆} at x⋆.

(b) In particular, (11.9) implies that the gradient ∇f(x⋆) of f at x⋆ is in the space that is
orthogonal to G at x⋆. Show that this space is spanned by the vectors ∇g1(x

⋆), . . . ,∇gk(x
⋆).

Conclude that

∇f(x) +

k∑

j=1

λj∇gj(x) = 0 and gj(x) = 0 (j = 1, . . . , k) (11.10)

for x = x⋆ and certain k-vector λ⋆ = λ = (λ1, . . . , λk)
T . The λj are Lagrange multipliers.

The equations in (11.10) are the KKT conditions (Karush-Kuhn-Tucker conditions) for the
optimisation problem (11.9). Note that these equations characterise the solution x⋆ of (11.9)
in case they have a unique solution.

(c) Let H be an n× n Hermitian positive definite matrix, q an n-vector, α a real number, A
an n× k matrix and b a k-vector. Consider the quadratic optimisation problem:

min (12x
∗Hx+ q∗x+ α) with x such that A∗x = b. (11.11)

With f(x) ≡ 1
2x

∗Hx + q∗x + α and gj(x) ≡ e∗j (A
∗x − b), this problem is of the form (11.9).

Show that the KKT conditions now take the form
[

H A

A∗ 0

][
x

λ

]
=

[
−q

b

]
.

The situation as described above is a simplification of the optimisation problems that one
encounters in practice. Functions can be defined on a subset (domain) of Cn only. Moreover, the
restrictions usually include inequalities hi(x) ≤ 0 (i = 1, . . . ,m) as well as equalities gj(x) = 0
(j = 1, . . . , k) (with k +m ≤ n). The Lagrange multipliers µ = (µ1, . . . , µm)T in

∇f(x) +

k∑

j=1

λj∇gj(x) +

m∑

i=1

µi∇hi(x) = 0

for the inequality restrictions are required to satisfy an inequality restriction as well: µi ≥ 0
all i.

The Stokes equation system (here in 2-d formulation)





−µ

(
∂2u

∂x2
+

∂2u

∂y2

)
+

∂p

∂x
+ f = 0

−µ

(
∂2v

∂x2
+

∂2v

∂y2

)
+

∂p

∂y
+ g = 0

and
∂u

∂x
+

∂v

∂y
= 0

describes slow viscous flows. It is a simplified version of the Navier–Stokes equation system for
modelling the flow of an incompressible (Newtonian) fluid (as air and water). The first equation
represents the conservation of momentum, the second equation enforces conservation of mass
(the incompressibility constrain): (u, v) is the wind field, p is the pressure, f and g are external
forces as gravitation. The momentum equation in full Navier–Stokes contains the non-linear
‘convection’ term ((∇~u∗)∗~u) from the motion of the underlying fluid. The term is quadratic

(in the velocity) and can be neglected for ‘slow’ flows. With the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 , the

gradient ∇ = ( ∂
∂x

, ∂
∂y

)T and divergence ∇∗ = ( ∂
∂x

, ∂
∂y

), the Stokes equation can be represented
as




−µ∆ 0 ∂
∂x

0 −µ∆ ∂
∂y

∂
∂x

∂
∂y

0







u

v

p


 =




−f

−g

0


 or

[
−µ~∆ ∇
∇∗ 0

][
~u

p

]
=

[
−~f

0

]
.
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~∆ is the ‘vector Laplacian’. Discretization leads to a matrix as in (11.8) with F the discretised
vector Laplacian and B the discretised gradient operator.

The Stokes equation can be viewed as the KKT conditions of a (energy minimising) min-
imisation problem

∫ ∫
1
2µ(‖∇u‖22 + ‖∇v‖22) + (f

∂u

∂x
+ g

∂v

∂y
) dx dy such that ∇∗~u = 0.

The pressure p represent the Lagrange multiplier.

Exercise 11.7.

(a) Show that the least norm problem Ax = b (A is k × n, k ≤ n, A full rank) as in Exer-
cise 9.1(b) can be viewed as the KKT conditions of a quadratic minimisation problem.

(b) Show that the least square problem Ax = b (A is n × k, k ≤ n, A full rank) as in
Exercise 9.1(a) can be viewed as the KKT conditions of a quadratic minimisation problem.
What are the Lagrange multipliers?

Conditioning

With MS ≡ C + B∗F−1B, −MS is the Schur complement and we have the block

LU-decomposition

A =

[
I 0

B∗F−1 I

] [
F 0

0∗ −Ms

][
I F−1B

0∗ I

]
.

The Schur complement is useful to establish the stability (conditioning) of the matrix (see
Exercise 11.8) and leads to effective preconditioners.

A matrix A of (11.8) is Hermitian, but indefinite (see (a) of Exercise 11.8). Note that the
Schur complement MS is negative semi-definite.

Exercise 11.8.

(a) Compute the eigenvalues of A in case k = m = 1: F = α > 0, b = β, C = γ ≥ 0.

(b) Assume C = 0. Note that A is singular if B∗ does not have full column rank. The matrix
A is non-singular if and only if the Schur complement is non-singular.

For a β > 0, prove that the following two statements are equivalent

‖B∗F−1Bp‖2 ≥ β‖p‖2 (p ∈ C
k)

and (the inf-sup condition or Babushka–Brezzi condition) for every p ∈ C
k there is a v ∈ C

m

such that
v∗Bp ≥ β ‖p‖2

√
v∗Fv.

The inf-sup condition plays an important role in mixed finite element methods for the Stokes
equation.

Show that ‖A−1‖2 ≤ (1 + ‖F−1B‖2)max(‖F−1‖2, 1/β).
(c) Prove that the matrix A is non-singular if C is positive definite. C is often introduced
to “stabilise” the matrix, i.e., the make an approximate matrix that is ‘well conditioned’ (as
C = τ2I in demped least square problems).

Preconditioning

As a preconditioner for the saddle point problem, consider the matrix

P =

[
F B

O∗ −MS

]
(11.12)
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This leads to the right-preconditioned matrix

AP−1 =

[
I O

B∗F−1 I

]
.

Exercise 11.9. Let v be any nonzero vector.

(a) Compute AP−1v and (AP−1)2v. Show that v can be expressed as a linear combination
of AP−1v and (AP−1)2v.

(b) Explain why this implies that GMRES applied to a right-preconditioned system saddle point
system with (11.12) as preconditioner must find the exact solution in at most two iterations.

The preconditioner in (11.12) is not Hermitian and leads to a skew preconditioned system.
This may make the method (preconditioned GMRES) sensitive to perturbations. In practise,
systems involving F can not be exactly solved (for instance, if F is a discrete Laplacian). An
Hermitian preconditioner may not be helpful either: the preconditioned system may also have
an ill conditioned basis of eigenvectors. See also the discussion following Exercise 10.3 and
Exercise 10.4. We are interested in positive definite preconditioners. Exercise 10.4 describes
a way to incorporate such a preconditioner in MINRES. A positive definite preconditioner for
saddle point systems is the block diagonal matrix

P =

[
F O

O∗ MS

]
. (11.13)

Exercise 11.10.

(a) Assume that C = 0. Show that in this case the preconditioned matrix AP−1 has three
distinct eigenvalues: 1, 1

2 + 1
2

√
5, and 1

2 − 1
2

√
5.

Hint: solve the generalised eigenvalue problem

[
F B

B∗ O

] [
xt

xb

]
= λ

[
F O

O∗ MS

] [
xt

xb

]

by first eliminating xt.

(b) Assume again that C = 0. Explain why MINRES applied to a saddle-point system, pre-
conditioned with (11.13) must find the exact solution in at most three iterations.
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