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Lecture 12 – Perturbed Eigenvalue Problems

Below A is an n× n matrix.
(λ,x) is an eigenpair of A: Ax = λx and x 6= 0.
λ1, . . . , λn are the eigenvalues of A counted according to multiplicity.
If more matrices play a role we will put λ(A) or λi(A) instead of λ and λi, respectively.

The Rayleigh quotient ρ is defined by

ρ(u) ≡ u∗Au

u∗u
(u ∈ C

n,u 6= 0)

The following theorem shows that an approximate eigenpair is an exact eigenpair of a
perturbed matrix if Rayleigh quotients are used as approximate eigenvalues. The perturbation
can be bounded by the residual. The residual norm is smallest also if Rayleigh quotients are
used as approximate eigenvalues.

Theorem 12.1 Let u be a normalised n-vector. Put ϑ ≡ ρ(u) and r ≡ Au− ϑu.
Then r ⊥ u and ‖Au− ϑu‖2 ≤ ‖Au− ϑ′u‖2 for all ϑ′ ∈ C. Moreover,

(A+∆)u = ϑu for ∆ ≡ −ru∗ and ‖∆‖2 = ‖r‖2.

Recall that ∆ is the backward error if (ϑ,u) is an approximate eigenpair and (A+∆)u = ϑu
(cf., Lecture 1.C).

Exercise 12.1.

(a) Prove Theorem 12.1.

(b) Prove that (A+∆)u = ϑu for the Hermitian perturbation ∆ ≡ −ru∗ − ur∗.

Consider the situation where we have a right approximate eigenvector u as well as a left
one, w. Both vectors are normalised.

(c) As approximate eigenvalue ϑ, we now take the two-sided Rayleigh quotient

ϑ ≡ w∗Au

w∗u
.

r ≡ Au− ϑu is the right residual, s∗ ≡ w∗A− ϑw∗ is the left residual. Show that

(A+∆)u = ϑu and w∗(A+∆) = w∗ϑ for ∆ ≡ −ru∗ −ws∗.

(d) Compute ‖uw∗‖2.
(e) Compute ‖uw∗ +wu∗‖2.

A The Hermitian eigenvalue problem

In this subsection, A is Hermitian (A∗ = A). Hence, the eigenvalues are real. We assume that
the associated eigenvectors x1, . . . ,xn are selected to form an orthonormal basis of Cn and we
assume the eigenvalues to be ordered such that

λ1 ≤ λ2 ≤ . . . ≤ λn. (12.1)

Theorem 12.2 (Courant–Fischer) For any j ∈ {1, . . . , n}, we have

λj = min
V

max
{
u∗Au u ∈ V, ‖u‖2 = 1

}
, (12.2)

where the minimum is taken over all linear subspace V of Cn of dimension j (or ≥ j).
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The following obvious variants can sometimes be more convenient.

λj = min
W

max
{
u∗Au u ⊥ W , ‖u‖2 = 1

}
= max

V
min

{
u∗Au u ∈ V , ‖u‖2 = 1

}
, (12.3)

where the minimum is taken over all linear subspaces W and V of Cn of dimension n − j (or
≤ n− j) and dimension n− j + 1 (or ≥ n− j + 1), respectively.

Exercise 12.2. Proof of Theorem 12.2.

(a) If J ⊂ {1, . . . , n} and u ∈ span{vj j ∈ J},u 6= 0, then ρ(u) is a convex mean (weighted
average) of the λj with j ∈ J. In particular,

λ1 ≤ ρ(u) ≤ λn (u ∈ C
n,u 6= 0). (12.4)

Let ρj be the value of the expression at the right-hand side of (12.2).

(b) Take V = span(x1, . . . ,xj) to see that λj ≥ ρj .

(c) To show that λj ≤ ρj note that V ∩ span(xj , . . . ,xn) 6= {0} if V has dimension ≥ j.

Theorem 12.3 (Sylvester’s law of inertia) With In(A) the inertia of A, i.e., the triple
(n−, n0, n+) of the number of negative (n−), zero (n0), and positive (n+) eigenvalues, we have

In(V∗AV) = In(A) for all non-singular matrices V. (12.5)

Note that V∗AV is Hermitian and that V is not required to be unitary.

Exercise 12.3. Proof of Theorem 12.3. Let V be n× n non-singular.

(a) Prove N (A) = V(N (V∗AV)). Here, N (A) ≡ {x Ax = 0}.
Let V−(A) ≡ span{x Ax = λx, λ < 0} and V+(A) ≡ span{x Ax = λx, λ > 0}.

(b) Is V+(A) = V(V+(V
∗AV))? Are all vector in V+(A) eigenvectors of A?

Show that V−(A) ∩V(V+(V
∗AV)) = {0}. Similarly, V+(A) ∩V(V−(V

∗AV)) = {0}.
(c) Prove C

n = V−(A)⊕N (A)⊕ V+(A) (with ⊕ as in Lecture 0.A). Prove (12.5).

(d) LetA = LU be the LU-decomposition ofA (diag(L) = I). Show that In(A) = In(diag(U)).
To simplify notation, put In(U) ≡ In(diag(U)). Note that this notation is consistent (why?).

(e) Use the above insight to make a method for computing the number of eigenvalues of A in
real intervals [α, β]. Here, α, β ∈ R, α < β. Why might it be helpful to reduce A to tridiagonal
form first (using Householder reflections, cf., Exercise 2.8)?

For an alternative proof of Theorem 12.3, see Exercise 12.11.

The following theorem, Cauchy’s interlace Theorem, is particularly useful in case the ap-
proximate eigenpairs come from Krylov subspaces. Then H and A are the matrices of the
projections onto two consecutive Krylov subspaces of the linear map of interest and the eigen-
values of A and H are Ritz values. In such a situation, the extension of a projected matrix
(as H) is obtained by extending by one new row (at the bottom) and one new column (at the
right). According the Cauchy’s Theorem, the Ritz values of consecutive order interlace.

Theorem 12.4 (Cauchy’s interlace) Assume A is partitioned as

A =

[
α a∗

a H

]
.

Then the eigenvalues of A and H interlace:

λ1(A) ≤ λ1(H) ≤ λ2(A) ≤ λ2(H) ≤ . . . ≤ λn−1(H) ≤ λn(A).
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Proposition 12.5 Let b be an n-vector. The eigenvalues of A and the rank 1 perturbation
A′ ≡ A− bb∗ of A interlace: λ1(A

′) ≤ λ1(A) ≤ λ2(A
′) ≤ λ2(A) ≤ . . . ≤ λn(A

′) ≤ λn(A).

Exercise 12.4. Proof of Theorem 12.4 and of Proposition 12.5.

(a) Use Courant–Fischer to prove Theorem 12.4.

To prove Proposition 12.5, first assume that A is diagonal, A = diag(µ1, . . . , µn), with
µj < µj+1 for all j = 1, . . . , n− 1. Put b = (b1, . . . , bn)

T. Consider an eigenvector x of A−bb∗

with eigenvalue λ: (A− bb∗)x = λx. With β ≡ b∗x, assume β 6= 0.

(b) Show that x = β (A− λ I)−1b and 1 = b∗(A− λ I)−1b, whence

x = β

(
b1

µ1 − λ
, . . . ,

bn
µn − λ

)
T

and 1 =
n∑

j=1

|bj|2
µj − λ

. (12.6)

Sketch a graph of the function ζ  ψ(ζ) ≡ ∑n
j=1

|bj |
2

µj−ζ
(ζ ∈ R) (for, say four µj , that is,

n = 4, and in case all bj 6= 0). Note the vertical asymptotes at the µi and the horizontal one
at |ζ| → ∞. Intersect this graph with the line ζ  1 to relate the eigenvalues µj of A and the
eigenvalues λj of A+ bb∗. Now, show that these eigenvalues interlace.

(c) What is the effect of having some bj = 0? Discuss the case where β = 0.

(d) Prove Proposition 12.5 for general Hermitian matrix A.

(e) Relate the eigenvalues of A′ ≡ A+ bb∗ and A.

∗ (f) As a variant of the proof suggested in (a), Cauchy’s result can also be proved with arguments
as in (b): with A and H as in Theorem 12.4, assume that H = diag(µ1, . . . , µn−1).

With a = (a1, . . . , an−1)
T and φ(ζ) ≡ ∏n−1

j=1 (µj − ζ) (ζ ∈ R), prove that

det(A− λ I) = φ(λ) ((α− λ)− ψ(λ)) where ψ(ζ) ≡
n−1∑

j=1

|aj|2
µj − ζ

.

Sketch the graph of ζ  α − ζ and of ψ in one figure. Intersect these graphs to relate the
eigenvalues of A and the eigenvalues µj of H.

The second equation in (12.6) is called the secular equation. This equation can be ef-
ficiently solved for λ using methods as Newton-Raphson. Note also that all eigenvectors can
efficiently be computed and stored (only 3n scalars are required: the b1, . . . , bn, µ1, . . . , µn, for
all eigenvectors plus, per eigenvector, one additional scalar, the eigenvalue). These insights are
exploited in the so-called Divide and Conquer Algorithm for computing all eigenpairs of
Hermitian tridiagonal matrices: with a well choosen rank 1 perturbation an Hermitian tridiago-
nal matrix can be divided in two parts (of half dimension). With the above strategy, eigenpairs
for the halfs lead to eigenpairs for the unperturbed matrix. The Divide and Conquer Algorithm
is particularly efficient on parallel computers. For details, see ??.

Exercise 12.5. Cauchy’s interlace theorem II. Suppose A is partitioned as

A =

[
U F∗

F H

]
with U ∈ Mk, H ∈ Mn−k.

(a) Prove that {
λj(A) ≤ λj(U) for all j = 1, . . . , k,

λn−j+1(A) ≥ λk−j+1(U) for all j = 1, . . . , k.

(b) Let V = [v1, . . . ,vk] be an n× k orthonormal matrix. Then
∑k

j=1 λj ≤
∑k

j=1 ρ(vj).

(Hint:
∑k

j=1 ρ(vj) = trace(V∗AV).)
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(c) Let u be a normalised n-vector such that ρ(u) ≤ 1
2 (λ1 + λ2).

Prove that Ã ≡ (I− uu∗)(A− ρ(u)I)(I − uu∗) is a positive definite map from u⊥ to u⊥.

The following tells us that (ϑ,u) is an accurate approximate eigenpair if the residual
Au− ϑu is sufficiently small.

Theorem 12.6 Let u be a normalised n-vector and let ϑ ∈ C.
Put r ≡ Au−ϑu and let λ be the eigenvalue of A that is nearest to ϑ. Then [Eisberg’s theorem]

|ϑ− λ| ≤ ‖r‖2. (12.7)

Let γ be the spectral gap for the eigenvalue λ:

γ ≡ min{|λj − λ| λj 6= λ} and γ̃ ≡ min{|ϑ− λj | λj 6= λ}.

With V(µ) ≡ {y Ay = µy} (µ ∈ C), we have that

sin∠(u,V(λ)) ≤ ‖r‖2
γ̃

and sin(2∠(u,V(λ))) ≤ 2
‖r‖2
γ

. (12.8)

Exercise 12.6. Let u, ϑ, r and λ be as Theorem 12.6.

(a) Prove Eisberg’s theorem, i.e., (12.7).

First assume that λ is simple and take x = xj0 , in particular, ‖x‖2 = 1.

(b) Prove that s ≡ sin∠(x,u) = ‖(I− xx∗)u‖2 and c ≡ cos∠(x,u) = |x∗u|.
(c) Show that ‖(I− xx∗)(A− ϑI)(I − xx∗)t‖2 ≥ γ̃‖t‖2 for all t ⊥ x.

(d) Show that ‖(I− uu∗)(I− xx∗)t‖2 ≥ c‖t‖2 for all n-vectors t.

(e) Prove (12.8). (Hint: Show first that (I− xx∗)(A− ϑI)(I − xx∗)u = (I− xx∗)r and
(I− xx∗)(A− λI)(I − xx∗)u = (ϑ− λ)u+ r and note that sin 2∠(u,V(λ)) = 2sc.)

(f) Prove that the simplicity restriction can be removed. (Hint: Restrict A to

span{x(λj) j = 1, . . . , n}, where x(λj) is the orthonormal projection of u onto V(λj).)
(g) Conclude that (ϑ,u) is an approximate eigenpair if the residual r is sufficiently small.

The accuracy of the eigenvalue is essentially the square of the size of residual if the eigenvalue
is approximated by the Rayleigh quotient:

Theorem 12.7 Let u be a normalised n-vector and let ϑ ≡ ρ(u).
Put r ≡ Au− ϑu and let λ be the eigenvalue of A that is nearest to ϑ. Then

2‖r‖2 < γ ⇒ |ϑ− λ| ≤ ‖r‖22
γ − ‖r‖2

. (12.9)

Exercise 12.7. Let u, ϑ, r and λ be as Theorem 12.7.

First assume that λ is simple and take x = xj0 .

(a) Prove |ρ(u)− λ| ≤ tan∠(x,u)‖r‖2 (Hint: ρ(u)− λ = x∗r/x∗u and r = (I− uu∗)r).

(b) Prove (12.9).

(c) Prove that the simplicity restriction can be removed (as in (f) of Exercise 12.6.)

The accuracy of the eigenvalue is essentially the square of the accuracy of the eigenvector.
Moreover, if the Rayleigh quotient is close to an extreme (smallest or largest) eigenvalue, then
then we have a good approximate eigenvector as well (be it, less accurate than the eigenvalue
approximation).
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Theorem 12.8 Let u be a normalised n-vector and let ϑ ∈ C.
Put r ≡ Au− ϑu and let λ be the eigenvalue of A that is nearest to ϑ. Then

|ρ(u)− λ| ≤ sin2∠(u,V(λ)) · max{|λj − λ| j 6= j0}. (12.10)

Here, V(µ) ≡ {y ∈ C
n Ay = µy} (µ ∈ C).

In case λ = λ1, we have that 0 ≤ ρ(u)− λ1 and

sin2∠(u,V(λ1)) ≤
ρ(u)− λ1
λ2 − λ1

. (12.11)

If, in addition, ρ(u) < λ2, then (12.11) is equivalent to

tan2∠(u,V(λ1)) ≤
ρ(u)− λ1
λ2 − ρ(u)

. (12.12)

Exercise 12.8. Let u, ϑ, r and λ be as Theorem 12.8. First assume λ is simple.

(a) Prove (12.10). (Hint: ρ(u)− λ = u∗(A− λI)u.)

(b) Prove (12.11).

(c) Generalise the result to the case where λ is not simple. (Hint: see (f) of Exercise 12.6).

(d) Conclude that the accuracy of the eigenvalue approximation (using Ritz values) is basically
the square of the accuracy of the eigenvector approximation.

(e) Equation (12.11) is a kind of reverse of (12.10) in case λ = λ1. Prove or disprove that (12.10)
has a ‘reverse’ in case λ 6= λ1.

If V is a linear subspace of C
n, then (ϑ,u) is a Ritz pair of A with respect to V , if

u ∈ V ,u 6= 0 and ϑ ∈ C is such that Au− ϑu ⊥ V.
The following theorem tells us that the Ritz vector forms a good approximate eigenvector

if the search subspace V contains a good approximation of the eigenvector associated to the
smallest eigenvalue and the Ritz vector is associated to the smallest Ritz value. A similar
statement holds with respect to the largest eigenvalue.

Theorem 12.9 Let V be a linear subspace of Cn.
If λ1 is simple and u1 is the Ritz vector with smallest Ritz-values ϑ1 w.r.t. V, then

0 ≤ ϑ1 − λ1 ≤ sin2∠(x1,V) · (λn − λ1), sin2∠(x1,u1) ≤ sin2∠(x1,V) ·
λn − λ1
λ2 − λ1

. (12.13)

Exercise 12.9. Let V be as in Theorem 12.9.

(a) Show that Ritz values are the Rayleigh quotients, i.e., ϑ = ρ(u) if (ϑ,u) is a Ritz pair.

(b) Prove (12.13). (Hint: let xV be the orthonormal projection of x1 onto V . Use Courant-
Fischer to show that ϑ1 ≤ ρ(xV ). Then use Theorem 12.8.)

B Hermitian matrices with Hermitian perturbations

In this subsection, A is Hermitian, ∆ is n× n Hermitian perturbation of A. The eigenvalues
of A as well A+∆ are ordered in increasing magnitude (cf., (12.1)).

The following result follows from an application of the Implicit Function Theorem. You can
use this result; you do not have to prove it here.

Theorem 12.10 If F is an analytic map on a neighbourhood U of a real interval [α, β] such that
F (τ)∗ = F (τ̄ ) ∈ Mn (τ ∈ U), then there n complex-valued functions µj on some neighbourhood
U ′ of [α, β] such that, for each τ ∈ U ′, µ1(τ), µ2(τ), . . . , µn(τ) are the eigenvalues of F (τ)
counted according to multiplicity.
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Exercise 12.10. Let x ∈ C
n,x 6= 0.

(a) Prove that
t x∗(A− tI)−1x

is strictly increasing on any interval of R that does not contain an eigenvalue of A.

Exercise 12.11. Here, we will see an alternative prove of Theorem 12.3 (cf., Exercise 12.3).
Let V be an n× n non-singular matrix.

(a) Argue that there is a ζ ∈ C, |ζ| = 1 such that Ṽ ≡ ζV does not have real eigenvalues.

(b) Consider the map F (τ) ≡ (τṼ
∗
+ 1 − τ)A(τṼ + 1− τ) (τ ∈ C). Show that the (matrix-

valued) map is analytic. Moreover, F (τ)∗ = F (τ̄ ). This implies that the eigenvalues (counted
to multiplicity) depend continuously on τ for τ ∈ [0, 1]; you can use this without proving it.

(c) Prove (12.5) (you may use (a) of Exercise 12.3).

Exercise 12.12.

(a) Show that the functions τ  λj(A+ τ∆) are continuous.

(b) Show that the function τ  λj(A + τ∆) is analytic round τ0 if λj(A + τ0∆) is a simple
eigenvalue of A+ τ0∆. Is the function also analytic round τ0 if the eigenvalue is not simple?

(c) Prove that the function τ  λ(τ) ≡ λ1(A+ τ∆) is convex, i.e.,

αλ(τ0) + (1− α)λ(τ1) ≤ λ(ατ0 + (1 − α)τ1) for all α ∈ [0, 1] and all τ1 ≤ τ2.

(Hint: λ(τ) = minu∗(A+ τ∆)u, where the minimum is taken over all normalised u.)

Theorem 12.11 (Weyl) For all j ∈ {1, 2, . . . , n}, we have

−‖∆‖2 ≤ λ1(∆) ≤ λj(A+∆)− λj(A) ≤ λn(∆) ≤ ‖∆‖2. (12.14)

Exercise 12.13. Proof of Theorem 12.11. Assume ∆ is n× n Hermitian.

(a) Prove Theorem 12.11.

(b) Prove the more general result

λk+m−n(A+∆) ≤ λm(A) + λk(∆) ≤ λk+m−1(A+∆),

with k and m such that the λi’s in the claim are defined.

Theorem 12.12 (Wielandt–Hofman) We have that

√√√√
n∑

j=1

|λj(A+∆)− λj(A)|2 ≤ ‖∆‖F. (12.15)

Exercise 12.14.

(a) Compare Theorem 12.12 and Theorem 12.11.

We prove Theorem 12.12.
Let D ≡ diag(λ1, . . . , λn) and D′ ≡ diag(µ1, . . . , µn) such that λ1 < λ2 < . . . < λn and
µ1 < µ2 < . . . < µn. Consider the following statement

‖D−D′‖F < ‖D−Q∗D′Q‖F for all unitary n× n matrix Q. (12.16)

(b) Show that (12.16) implies Theorem 12.12.

(c) Show that Q0 = argmin{‖D−Q∗D′Q‖F Q is unitary n× n} exists.

Put H ≡ Q∗
0D

′Q0.
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(d) Prove H is diagonal with increasing diagonal entries in case n = 2.

(e) Assume the (1, 2)-entry of H is non-zero.
Show there is a rotation G in the (1, 2)-plane (i.e., span(e1, e2): G is a Givens rotation, see
Exercise 3.5) such that the 2 × 2 left upper block of G∗HG is diagonal with diagonal entries
in increasing order.
Show that ‖H(J, [1, 2])G([1, 2], [1, 2])‖F = ‖H(J, [1, 2])‖F (see Exercise 4.14(a)). Here, we used
Matlab notation to denote submatrices and J ≡ [3, 4, . . . , n]. Conclude that the Frobenius
norm of the part of the matrices H and G∗HG outside the 2× 2 upper block are the same.
Conclude that the (1, 2)-entry of H is zero.

(f) Prove that H = D′. Hence, (12.16) is correct.

In case of a cluster of eigenvalues, the eigenvector with eigenvalues in this cluster are very
sensitive the perturbations. In such a case, it is more useful to analyse the effect on perturbation
on the space spanned by all eigenvalues in the cluster.

Theorem 12.13 (Davis–Kahan) Assume α, β, ρ ∈ R, α < β, ρ > 0 are such that

λj(A) ∈ (−∞, α− ρ] ∪ [α, β] ∪ [β + ρ,∞) and ‖∆‖2 < ρ.

Let V be the space spanned by all eigenvectors of A with eigenvalue in [α, β],

let Ṽ be the space spanned by all eigenvectors of A+∆ with eigenvalue in [α−‖∆‖2, β+‖∆‖2].
Then

sin(V , Ṽ) ≤ ‖∆‖2
ρ− ‖∆‖2

.

Exercise 12.15.

(a) Compare the result of Davis–Kahan with (12.8) in Theorem 12.6.

(b) Give an example to illustrate that it is not useful to try to analyse the effect of perturbations
on eigenvectors with eigenvalues in a cluster.

Consider the situation of Theorem 12.13.

(c) Prove that λj(A) ∈ [α, β] ⇔ λj(A+∆) ∈ [α− ‖∆‖2, β + ‖∆‖2].
Conclude that V and Ṽ have the same dimension.

C Hermitian matrices with non-Hermitian perturbations

In this subsection, A is Hermitian with eigenvalues ordered in increasing magnitude (cf., (12.1)).
∆ is n× n perturbation of A.

Exercise 12.16. We will show that

γn ≤ log2(2n), where ‖U− L‖2 ≤ γn‖A‖2 ∀A ∈ Mn.

Here U is the strict upper triangular part of the matrix A and L is the strict lower triangular
part.

With k = 2ℓ < n and ℓ such that n ≤ 2l+1, let the n× n matrix B be partitioned as

B =

[
E F∗

G K

]
with E ∈ Mk, K ∈ Mn−k.

(a) Prove that

max(‖E‖2, ‖F‖2, ‖G‖2, ‖k‖2) ≤ ‖B‖2 ≤ max(‖E‖2, ‖K‖2) + max(‖F‖2, ‖G‖2).
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(b) For an n× n matrix A, let Π(A) ≡ U− L, where U is the strict upper triangular part of
the matrix A and L is the strict lower triangular part. Note that

Π(B) =

[
Π(E) F∗

−G Π(K)

]

and conclude that

‖Π(B)‖2 ≤ (γℓ + 1)max(‖E‖2, ‖K‖2) + max(‖F‖2, ‖G‖2) ≤ (γℓ + 1)‖B‖2.

Conclude that γℓ+1 ≤ γℓ + 1 and γn ≤ log2(2n).

Exercise 12.17. Weyl’s theorem for non-Hermitian perturbations. A and ∆ are
n× n, A is Hermitian, ∆ is possibly non-Hermitian.
Let λj(A+∆) be ordered such that

Re(λ1(A+∆)) ≤ Re(λ2(A+∆)) ≤ . . . ≤ Re(λn(A+∆)).

We will show that, for each j = 1, . . . , n

|λj(A) − Re(λj(A+∆))| ≤ (log2(4n)) ‖∆‖2 and |Im(λj(A+∆))| ≤ ‖∆‖2.

According to Schur’s theorem,

A+∆ = Q(D+U)Q,

for some unitary matrix Q, an strictly upper triangular matrix U and a diagonal matrix D;
D = diag(λ1(A+∆), . . . , λn(A+∆)).
Put H ≡ 1

2 (∆ +∆∗), W ≡ 1
2 (U +U∗), and Dr ≡ 1

2 (D+D).

(a) Prove that

|λj(A)− Re(λj(A+∆))| ≤ ‖W‖2 + ‖H‖2 and ‖W‖2 ≤ log2(2n) ‖∆‖2

(b) Prove that

|Im(λj(A+∆))| ≤ ‖H‖2.

D Perturbed eigenvalue problems for general matrices

In this subsection, A and ∆ are n× n matrices.

Theorem 12.14 (Bauer–Fike) Suppose A is diagonizable.
Let V be a non-singular matrix that diagonalises A. Put CE ≡ ‖V−1‖2 ‖V‖2.
For each eigenvalue ϑ of A+∆, there is an eigenvalue λ of A such that |ϑ− λ| ≤ CE ‖∆‖2.
If A is Hermitian, then there is a unitary V and CE can be taken 1.

Note that CE = 1 in case A is normal.
The theorem is well-known for this particular situation of a normal matrix and with perturbation
equal to r∗u, with r ≡ Au−ϑu. Then the theorem tells us (cf., Theorem 12.6, inequality (12.7))

Corollary 12.15 (Eisberg’s theorem) If A is normal, (ϑ,u) is an approximate eigenpair
with ‖u‖2 = 1, and r ≡ Au− ϑu, then there is an eigenvalue λ of A such that

|λ− ϑ| ≤ ‖r‖2.
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Exercise 12.18. Proof of Theorem 12.14.

(a) Prove Theorem 12.14.
Hint: If (A+∆)u = ϑu with ‖u‖2 = 1, then (A− ϑI)u = −∆u and

1 = ‖u‖2 = ‖(A− ϑI)−1∆u‖2 ≤ ‖(A− ϑI)−1‖2 ‖∆‖2.

(b) Prove Eisberg’s theorem (Cor. 12.15).

The matrix V, that is, a basis of eigenvectors, is usually not available. Moreover, if CE

is large, then the estimate in Bauer–Fike’s theorem may suggest that all eigenvalues of A are
sensitive to perturbations, which, in general, is not correct, as we will learn in Theorem 12.19
below (see (12.21)). If A is not diagonalizable, V does even not exist. The following theorem
covers this situation.

Theorem 12.16 (Henrici) Let A be an n×n matrix with Schur decomposition A = Q = QS.
Write S = Λ+U with Λ diagonal and U strict upper triangular.
For some p ≤ n, and for each eigenvalue µ of A+∆, there is an eigenvalue λ of A such that

|λ− µ| ≤ max(δ,
p
√
δ), where δ ≡ ‖∆‖2

∑

j<p

‖U‖j2.

Exercise 12.19. Proof of Theorem 12.16. Consider the situation of Theorem 12.16.
Prove the following claims.

(a) There is a p ∈ N, p ≤ n such that Up = 0. Let p be the smallest integer.

(b) (D−N)−1 =
∑

j<p(D
−1U)jD−1 for any n× n diagonal matrix D.

(c) If µ is such that ‖(Λ−µI+U)−1‖2 ‖∆‖2 < 1, then Λ+U−µI is non-singular and µ is not
an eigenvalue of A+∆.

(d) Theorem 12.16 holds.

Henrici’s theorem is mainly of theoretical interest: it proves that the eigenvalues depend
continuously on perturbations (as stated in Theorem 1.13).

Bauer–Fike nor Henrici’s theorem give us readily insight in the sensitivity of eigenvalues to
perturbations. Pseudo-eigenvalues do. For non high dimensional matrices, pseudo-eigenvalues
can be plotted in the complex plane. These plots show for each individual eigenvalue how
sensitive they are to perturbations.

Consider an n× n matrix A and an ε > 0.
A complex number µ is an ε-pseudo-eigenvalue if it is an eigenvalue of A+∆ for some n×n
matrix ∆ with ‖∆‖2 ≤ ε. Λε(A) is the ε-pseudo-spectrum of A, that is, the collection of
ε-pseudo-eigenvalue of A.

Theorem 12.17 Let A be an n× n matrix and let ε > 0.
a) The following properties are equivalent for a µ ∈ C.

• µ ∈ Λε(A)

• ‖(A− µ I)−1‖2 ≥ 1
ε
.

• The smallest singular value of A− µ I is at most ε.

b) If |µ− λ| ≤ ε for some λ ∈ Λ(A), then µ ∈ Λε(A).

c) If (ϑ,u) is an approximate eigenpair of A and ‖Au−ϑu‖2

‖u‖2

≤ ε, then ϑ ∈ Λε(A).

The matrix-valued function R on C, defined by R(µ) ≡ (A − µI)−1 (µ ∈ C) (cf., Theo-
rem 12.17.a), is called the resolvent of A.

Exercise 12.20. Proof of Theorem 12.17.

(a) Use Theorem 12.1 to prove b) and c) of Theorem 12.17.
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(b) If ‖(A− µ I)−1∆‖2 < 1, then µ is not an eigenvalue of A+∆.
Conclude that ‖(A− µ I)−1‖2 ≥ 1

ε
if ‖(A− µ I)−1‖2 ≥ 1

ε
.

(c) If ‖(A − µ I)−1‖2 ≥ 1
ε
, then ‖(A − µ I)−1w‖2 ≥ 1

ε
‖w‖2 for some non-trivial vector w.

Consider u ≡ (A− µ I)w and conclude that ‖(A− µ I)−1‖2 ≥ 1
ε
.

(d) Complete the proof of Theorem 12.17.

Pseudo-eigenvalues suggest a graphical way to obtain insight in the sensitivity of eigenvalues
to perturbations. For µ ∈ C, let σ(µ) be the smallest singular value of A − µ I. For various

values of ε, say, ε = 10j for j = −14,−13, . . . ,−8, plot the ε-level curves {µ ∈ C σ(µ) = ε} of
σ(µ) in an part of the complex plane that contains the eigenvalues of A that are of interest (or
plot the spectrum of A + ∆ for various perturbations ∆ of size ε).1 Around eigenvalues that
are not so sensitive, ‘circles’ will arise with radius of order ε, whereas the sensitive eigenvalues
are in ‘huge areas’.

Exercise 12.21. Let S be the n× n shift matrix: Sei = ei−1 for i = 1, . . . , n− 1.

(a) Compute the spectrum and the ε-pseudo-spectrum of S.

(b) Conclude that for S and n ≥ 30, the ε-pseudo-spectrum does not really depend on ε.

Unfortunately, plots of pseudo-eigenvalues are very computationally intensive and are only
feasible for matrices of modest dimension. More quantitative statements that are also applicable
to high dimensional matrices rely on the following extension of Theorem 1.13. You can use this
result. It follows from an application of the Implicit Function Theorem. We will not give details
here.

Theorem 12.18 Assume F(τ) is an n × n matrix for all τ in some subset I of C that de-
pends continuously on τ . Let µ1, . . . , µn be continuous complex-valued functions on I such that
µ1(τ), . . . , µn(τ) are the eigenvalues of F(τ) counted according to multiplicity (τ ∈ I).
If F is analytic on some neighbourhood of τ0 in C and µj(τ0) is a simple eigenvalue of F(τ0),
then, on some neighbourhood U of τ0, µj is analytic and for some n-vector valued function xj

that is analytic on U we have that F(τ)xj(τ) = µj(τ)xj(τ) (τ ∈ U).

Exercise 12.22. Is Theorem 12.18 also correct in case µj(τ0) is not simple?

Exercise 12.23. Consider the eigenvalue problem

(A+ τ∆)xτ = λτxτ , where A =

[
µ a∗

0 B

]
, ∆ =

[
ν f∗

r F

]
, xτ =

[
1

zτ

]
.

Here,B and F are (n−1)×(n−1) matrices and 0, a, f , r and zτ are (n−1)-vectors, µ, ν, τ, λτ ∈ C,
µ is not an eigenvalue of B.

(a) Note that u ≡ e1 is a eigenvector of A with eigenvalue λ0 = µ, µ is a simple eigenvalue
of A. Prove that ‖zτ‖2 = tan∠(u,xτ ).

(b) For |τ | small enough, we may assume λτ and zτ to be analytic. Why?

Put t ≡ (B− µI)−1r and γ ≡ ‖(B− µI)−1‖−1
2 .

(c) Prove that ‖t‖2 ≤ ‖r‖2

γ
.

(d) Show that γ = min{|µ− λj(A)| λj(A) 6= µ} in case B is Hermitian.

Put φ(τ) ≡ λτ − µ− τν.

(e) Prove that φ(τ) = a∗zτ + τf∗zτ and (B− µI)zτ = −τr− τ(F− νI)zτ + φ(τ)zτ .

Put α ≡ ‖a‖2 and δ ≡ ‖∆− νI‖2.
1In practise, the smallest singular value σ(µ) is computed for all values µ in a grid in a part of C.

Then numerical interpolation procedures are applied to find the ε-level curves.

10



(f) Show that |φ(τ)| ≤ (α+ τδ)‖zτ‖2 and ‖zτ‖2 ≤ τ ‖r‖2

γ−τδ−|φ(τ)| for τ sufficiently small.

(g) If, for some ω, β > 0 and for t ∈ [0, 12ω] we have that t(ω − t) ≤ β, then t ≤ β
ω−β

.

Prove this claim and conclude that φ(τ) = O(τ) and, if a = 0, φ(τ) = O(τ2) for τ → 0. Note
that the order terms can be quantified.

(h) Prove that, for τ → 0,




zτ = −τ(B− µI)−1r+O(τ2),

λτ = µ+ τν + τa∗(B− µI)−1r+O(τ2),

λτ = µ+ τν + τ2f∗(B− µI)−1r+O(τ3) if a = 0.

(12.17)

Theorem 12.19 Let µ be a simple eigenvalue of A with normalised eigenvector u.
Let (λ,x) be the eigenpair of A+∆ with λ nearest to µ.
Put

A′ ≡ (I− uu∗)(A− µI)(I− uu∗) and γ ≡ min{‖A′t‖2 t ⊥ u, ‖t‖2 = 1}. (12.18)

0) Then γ > 0.

We assume ‖∆‖2 to be sufficiently small.
1) We have

x = u+ t+O(‖∆‖22) and tan∠(x,u) ≤ ‖∆‖2
γ

+O(‖∆‖22). (12.19)

Here,
t ⊥ u solves A′t = −r ≡ −(I− uu∗)∆u. (12.20)

2) With w a left eigenvector of A associated to µ, we have that

λ = µ+
w∗∆u

w∗u
+O(‖∆‖22) and |λ− µ| ≤ ‖∆‖2

cos∠(u,w)
+O(‖∆‖22). (12.21)

In particular,
• for the condition number CA(u) of the eigenvector u of A and
• for the condition number CA(µ) of the eigenvalue µ of A,

we have

CA(u) =
1

γ
and CA(µ) =

‖w‖2 ‖u‖2
|w∗u| =

1

cos(u,w)
.

Exercise 12.24. Here, we prove Theorem 12.19. We use the results of Exercise 12.23.

(a) Prove that γ > 0.

(b) Prove (12.19). (Hint: represent the perturbed eigenvalue problem with respect to a basis
u,v2,v3, . . . ,vn. Here v2, . . . ,vn is an orthonormal basis of u⊥. Then, use (12.17).)

(c) Let V = [v2, . . . ,vn] be an orthonormal matrix spanning w⊥. Show that

[u,V]−1 =

[
1

w∗u
w∗

V∗(I− uw
∗

w∗u
)

]
.

(d) Prove (12.21). (Hint: represent the perturbed eigenvalue problem with respect to a basis
u,v2,v3, . . . ,vn. Here v2, . . . ,vn is an orthonormal basis of w⊥. Note that, with this choice
of basis, a = 0. Now, use (12.17).)

Exercise 12.25. Let u be a normalised approximate eigenvector.
With µ ≡ u∗Au, r ≡ Au− µu, and ∆ ≡ ru∗ we have that (A−∆)u = µu (cf., Th. 12.1).

(a) Represent A−∆ and ∆ with respect to an orthonormal basis u,v2, . . . ,vn. Show that the
eigenvalue problem ([A − ∆] + ∆)x = λx is in the form of Exercise 12.23 (with τ = 1) with
ν = 0, F = 0, and f = 0 (if ∆ ≡ ru∗ + ur∗ then f = r).
Can we improve the results in (12.17) for this special situation?

11



E Krylov search subspaces

In this subsection, we assume that A is an Hermitian n × n matrix and we will consider
approximate eigenpairs from a sequence of Krylov subspaces Kk(A, r0). In particular, we will
continue our discussion on CG as a deflated process (see Prop. 10.2 with preceding text and
subsequent exercise). Note that the Krylov subspaces are nested and that the extension when
increasing k to k + 1 is with a vector of the form Avk.

Let (λ1,x1), . . . , (λn,xn) be the eigenpairs of A with ‖xi‖2 = 1 and increasingly ordered
eigenvalues, i.e., λ1 < . . . < λn. To avoid technical details, we assume that all eigenvalues are

simple and the dimension of Kn(A, r0) is n. For k ∈ {1, 2, . . . , n}, let (ϑ(k)1 ,u
(k)
1 ), . . . , (ϑ

(k)
k ,u

(k)
k )

be the kth order Ritz pairs of A, also increasingly ordered Ritz values: ϑ
(k)
1 < . . . < ϑ

(k)
k , and,

for all i = 1, . . . , k,

u
(k)
i ∈ Kk(A, r0) and Au

(k)
i − ϑ

(k)
i u

(k)
i ⊥ Kk(A, r0).

Proposition 12.20 Consider a k < n. For all i = 1, . . . , k, we have that

λi < ϑ
(k+1)
i < ϑ

(k)
i and ϑ

(k)
i ∈ (λi, λi+1) ⇒ ϑ

(k)
i′ ∈ (λi′ , λi′+1) (i′ < i). (12.22)

Moreover, for all j = 1, . . . , k, ϑ
(k)
k−j < ϑ

(k+1)
k−j < λk−j and

ϑ
(k)
k−j ∈ (λk−j−1, λk−j) ⇒ ϑ

(k)
k−j′ ∈ (λk−j′−1, λk−j′ ) (j′ < j). (12.23)

Eventually, for any fixed i, ϑ
(k)
i will ‘converge’ monotonically decreasing towards λi for

k → ∞ (usually, if i is small as i ≤ 3, we already have that 0 < ϑ
(k)
i − λi ≪ λi+1 − λi for a

modest value of k as k = 30). In particular, eventually ϑ
(k)
i will be in its final interval, that is,

ϑ
(k)
i will be in the interval (λi, λi+1). From (12.22), we learn that, for i′ < i, all ϑ

(k)
i′ will be in

there final interval as soon as ϑ
(k)
i is in its final interval. Moreover there is at most one Ritz

vale between two consecutive eigenvalues of A. According to (12.23), a similar statement holds
for the other end of the spectrum.

Exercise 12.26. Proof of Prop. 12.20.

(a) Show that the first statement of (12.22) is a consequence of Courant–Fischer and Cauchy’s
interlace Theorem.

To prove the second statement in (12.22) consider the projection Av of A onto v⊥, where
v ≡ vk+1 is the k + 1th Lanczos vector (vk+1 = rk/‖rk‖2), i.e., Av = (I − vv∗)A(I − vv∗).
Consider Av as a map from v⊥ to v⊥.

(b) Use Cauchy’s interlace to prove that the eigenvalues of A and of Av interlace.

(c) Put K ≡ Kk(A, r0) and W ≡ Kk+1(A, r0)
⊥. Note that v ⊥ K as well as v ⊥ W .

Show that Av : K → K and Av : W → W .
Conclude that eigenvalues of Av as a map from K to K together with the eigenvalues of Av

as a map from W to W are the eigenvalues of Av. Note that the eigenvalues of Av as a map
from K to K are the kth order Ritz values.

(d) Prove the second statement of (12.22).

(e) Replace A by −A to prove (12.23).

Prop. 10.2 states that CG from step k on can be viewed as a CG process started with a
deflated matrix. We will use the results of the present Lecture to analyse the distribution of
the eigenvalues of this deflated matrix and thus explain super-linear convergence of CG.

Here, we use the notation of (10.22) and Prop. 10.2 and we will assume that A is positive
definite. We measure the convergence of CG by the reduction of the residual in the A−1-norm.
Therefore, since the approximate solutions of the CG are not needed for this, we can safely use
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to denote eigenvectors by xi in the disicussion below.

Let A′ be the map Ã restricted to K⊥. As stated in Prop. 10.2, the eigenvalue distribution
of A′ determines the convergence of the CG process from the kth step on. The following
proposition locates the eigenvalues of A′ depending on the Ritz values of A and the eigenvalues
of A. Except for some mild technical restriction, the proposition basically states that as soon
as the ith Ritz value arrives in its final interval, then, from the next step on, the CG process
converges as if the eigenvalues λ1, . . . , λi have been deflated from the matrix.

Proposition 12.21 All eigenvalues of A′ are in (λ1, λn).
Let i, j < n. All eigenvalues of A′ are in (λi+1, λn−j−1) if the following two properties hold:

a) ϑ
(k−1)
i ∈ (λi, λi+1) and |(rk,xi+1)| < |(rk−1,xi+1)|,

b) ϑ
(k−1)
k−j ∈ (λn−j−1, λn−j).

Inspection of the proof of Prop. 12.5 (see Exercise 12.4), reveals the folowing generalisation
of Prop. 12.5. This result is useful in the proof of the above Proposition (Prop. 12.21).

Proposition 12.22 With b be a non-trivial n-vector, let ϑ1, . . . , ϑn−1 be the increasingly or-
dered Ritz values of an n× n Hermitian matrix A with respect to the space b⊥. Put ϑ0 ≡ −∞
and ϑn ≡ +∞. For each t ∈ R, let λ1(t), . . . , λn(t) be the increasingly ordered eigenvalues of
A + tbb∗. Then, for each i = 1, . . . , n, the function t  λi(t) increases monotonically from
ϑi−1 (for t→ −∞) to ϑi (for t→ ∞), λi(0) is the ith eigenvalue of A, and λi(0) ∈ [ϑi−1, ϑi].

In the proof of Prop. 12.21, we will also consider a matrix family of the form A + 1
t
bb∗

(t ∈ R). Note that Prop. 12.22 implies that the eigenvalue functions of A+ 1
t
bb∗ are decreasing

with horizontal asymptots at the eigenvalues of A and Ritz values at t = 0.

Exercise 12.27. Proof of Prop. 12.21.
Let P be the orthogonal projection onto K, and Q the orthogonal projection onto K⊥.

With vi+1 ≡ ri/‖ri‖2 for all i, the vi form an orthonormal system (of Lanczos vectors).
Moreover, v1, . . . ,vk is a basis of K, vk+1, . . . ,vn is a basis of K⊥. With V ≡ [v1, . . . ,vk]
and W ≡ [vk+1, . . . ,vn], we have that P = VV∗ and Q = I−P = WW∗.

For analysis purposes, we introduce a parameter t ∈ R in the definition of Ã of (10.23):

Ã(t) ≡ A− 1

σk
c(t)c(t)∗ with c(t) ≡

√
t rk−1 −

1√
t
rk (t > 0) (12.24)

and

Ã(t) ≡ A+
1

σk
c(t)c(t)∗ with c(t) ≡

√
−t rk−1 +

1√−t rk (t < 0). (12.25)

Note that Ã(1) equals Ã of (10.23).

(a) Prove that, for any t 6= 0, the eigenvalues of A and Ã(t) interlace. In particular, with
λ0 ≡ −∞, for each t > 0, each interval (λi, λi+1) (for i = 0, . . . , n − 1) contains at most one

eigenvalue of Ã(t), while each interval [λi, λi+1] contains at least one eigenvalue of Ã(t)

(b) Prove that r∗kÃ(t)rk−1 = r∗kÃ(1)rk−1, whence (by (a) of Exercise 10.17), r∗kÃ(t)rk−1 = 0.

Conclude that, for any t, Ã(t) : K → K and Ã(t) : K⊥ → K⊥.

Note that, with ρi ≡ ‖ri‖22, the matrices of these map with respect to the basis v1, . . . ,vk,
and vk+1, . . ., respectively, are given by

A↑(t) ≡ V∗AV − t
ρk−1

σk
eke

∗
k and A↓(t) ≡ W∗AW − 1

t

ρk
σk

ek+1e
∗
k+1 (t 6= 0).

Let ϑ↑1(t), . . . , ϑ
↑
k(t) and ϑ

↓
1(t), . . . , ϑ

↓
n−k(t) be the increasingly ordered eigenvalues of A↑(t) and

A↓(t), respectively. Then ϑ↑j (1) = ϑ
(k)
j and ϑ↓i (1) are the eigenvalues of A′. Note that the
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Figure 1. The figure shows, for some positive definite matrix A, all t ϑ
↑
j (t) (the blue curves, with

t along the horizontal axis) and the extremal t  ϑ
↓
i (in red) as defined in (b) of Exercise 12.27. In this

example, n = 18 and k = 8. The blue and the red curves intersect at eigenvalues of A (indicated by the
doted horizontal lines; see Exercise 12.27.(e)).

collection of all ϑ↑i (t) together with all ϑ↓j (t) form the set of all eigenvalues of Ã(t). See Fig. 1
for a graphical illustration.

(c) Show that for each i = 1, . . . , k, the function t ϑ↑i (t) decreases monotonically from ϑ
(k−1)
i

(at t = −∞) to ϑ
(k−1)
i−1 (at t = ∞), while ϑ↑i (0) = ϑ

(k)
i . Here, we assumed ϑ

(k−1)
0 and ϑ

(k−1)
k

to be defined as ϑ
(k−1)
0 ≡ −∞ and ϑ

(k−1)
k ≡ ∞. Show that each of the function ϑ↓j increases

monotonically for t ∈ (0,∞). (cf. Fig. 1)

(d) Assume ϑ
(k−1)
k−j ∈ (λn−j−1, λn−j). Show that, for each t > 0, we have that ϑ↑k−j(t) ∈

(λn−j−1, λn−j) and ϑ↑k−j′ (t) ∈ (λn−j′−1, λn−j′ ) for all j′ < j. Conclude that ϑ↓n−k(t) <
λn−j−1. In particular we have that all eigenvalues of A′ are less than λn−j−1. (The two red
top curves in Fig. 1 illustrate the situation as discussed here).

(e) Assume that ϑ
(k−1)
i−1 ∈ (λi−1, λi). Then, there is a ti = t > 0 such that ϑ↑i (ti) = λi. Why?

Show that, for t ∈ R,

ϑ↑i (t) = λi ⇔ xi ⊥ c(t) ⇔ t =
r∗kxi

r∗k−1xi

⇔ ϑ↓1(t) = λi.

Conclude that all eigenvalues of A′ are larger than λi if, in addition to ϑ
(k−1)
i−1 ∈ (λi−1, λi) we

also have that 1 > ti. (Compare with two red bottom curves in Fig. 1).

(f) In particular (with the convention that ϑ
(k−1)
0 = −∞ and λ0 = −∞), we have that ϑ↑1(t1) =

λ1, for some t = t1 =
r
∗

kx1

r∗
k−1

x1

> 0. If we can show that 0 < r∗kx1 < r∗k−1x1, then we proved that

all eigenvalues of A′ are larger than λ1.
Note that r∗kx1 = pk(λ1), where pk is the kth CG (FOM) residual polynomial. Conclude

from the fact that pk(0) = 1 and λ1 < ϑ
(k−1)
1 < ϑ

(k)
1 that 0 < r∗kx1 < r∗k−1x1.
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