
Select a b ∈ C
n, b 6= 0

%% Initiation:

v = b/‖b‖2, w = Av

V = [v], W = [w], H = [v∗w]

repeat

%% Extraction:

1) Compute pre Ritz pairs (ϑ, y): Hy = ϑy

2) Selected an appropriate pre Ritz pair, say, (ϑ, y).

3) u = Vy, r = Wy − ϑu
%% Stopping criterion:

4) if ‖r‖2 < tol, x = u, λ = ϑ, break, end

%% Expansion:

5) Select an expansion vector t ∈ C
n, t 6= 0.

6) [v,~h] = Orth(V, t)

7) V← [V,v], H ← [H;v∗W]

8) w = Av, W← [W,w], H = [H,V∗w]

end repeat

Algorithm 13.1. Subspace method for computing one eigenpair (λ,x) with residual accuracy tol for
a general square matrix A.

March 26, 2018

Lecture 13 – Subspace Methods for Eigenvalue Problem

In this lecture, A is an n× n matrix.

A pseudo code for any subspace method for eigenvalue problems basically is as in Alg. 13.1.
A (hopefully well-conditioned) basis V for a search space V = span(V) is expanded in each
step (as in the substeps 5 – 8 of Alg. 13.1): an expansion vector t is selected (in substep 5)
and is orthogonalised against V (in 6) before being included in the basis V. An appropriate
approximate eigenpair is extracted from the search subspace in each step (the substeps 1 –
3): H is the projection of A onto the search subspace V. An appropriate solution (ϑ, y) of the
projected problem Hy = ϑy (in 1) is lifted to an approximate solution in n-space (in substep 3).
Convergence is monitored (in 4): the stopping criterion.

Methods differ in the way the expansion vector is selected (see Lecture 13.E): better ex-
pansion vectors (ones that have a smaller angle with the required eigenvector) lead to faster
convergence (less steps), but are usually harder to compute. The methods are named after the
expansion strategy even though there are also different extraction strategies (see Lecture 13.A).
Selection of the appropriate approximate eigenpair (see Lecture 13.B) depends on what eigen-
pairs are wanted.

Depending on the choices, more efficient implementation of substeps may be possible, for
instance, with t = w = Av, we retain Arnoldi’s method and H can be expanded using ~h (cf.,
Exercise 13.1).

In practice, usually more then one eigenpair is required. Then, after detection of an eigen-
pair (cf., substep 4) the detected eigenvector has to be deflated from the matrix (see Lec-
ture 13.D) before searching for the next eigenpair. If many steps are required, the search
subspace V will be high dimensional, requiring a lot of storage space (to store V, W,. . . ) and
slows down the computational speed of the steps (substep 6 will become costly and possibly

1



also substep 1). Then restarts are required (see Lecture 13.C).
In substep 6, we suggested to orthogonalise the expansion vector against the previously

computed basis vectors (the columns of V). This is the most popular approach for obtaining
a well-conditioned basis. However, there are methods that use a modified orthogonalisation
procedure (as bi-Lanczos).

Exercise 13.1.

(a) Show that we obtain a method that is mathematically equivalent to Arnoldi’s method if,
in Alg. 13.1.5, we select t = w(= Av) (Arnoldi’s expansion). Show that then the H that
is formed in substep 7 equals Hk if V formed in substep 7 has k + 1 columns. Simplify the
computation of H in this case.

(b) Prove that in Arnoldi’s method, in one step, the residuals of all Ritz pairs are co-linear
(i.e., each residual is a scalar multiple of any other residual in that step).

(c) Show that we obtain a method that is mathematically equivalent to Arnoldi’s method if,
in Alg. 13.1.5, we select t = r (residual expansion). Note that residual expansion does not
require additional matrix-vector multiplications.

A Extraction

If a subspace V is available (in the form of a matrix V of basis vectors such that span(V) = V),
then the question is how to extract appropriate approximate eigenvectors from the space? For
Krylov subspaces, two different approaches were suggested in Lecture 6, one with Ritz values,
and another with harmonic Ritz values (see Exercise 6.4). Although harmonic Ritz values
have been introduced in Lecture 6 mainly for their relation to GMRES (see Exercise 6.8), they
certainly play a very useful role in eigenvalue computation as we will learn below.

We first recall the notion of Ritz values and harmonic Ritz values and generalise it to general
spaces and general n×n matrices A. A scalar ϑ ∈ C and a non-trivial n-vector u forms a Ritz
pair (ϑ,u) with Ritz value ϑ and Ritz vector u of A with respect to V if

ϑ ∈ C, u ∈ V,u 6= 0 and Au− ϑu ⊥ V,

(ϑ,u) is an harmonic Ritz pair with harmonic Ritz value ϑ and harmonic Ritz vector
u of A with respect to V and target τ if

ϑ ∈ C, u ∈ V ,u 6= 0 and Au− ϑu ⊥ (A− τI)V :

for harmonic Ritz values, the test subspace is A − τI times V .1 Here, τ is the target value,
that is, we are interested in finding eigenvalues of A close to the scalar τ .

If V contains an good approximation of an eigenvector x with eigenvalue λ (that is, the angle
between V and x is small), then there is a normalised vector ũ = Vỹ in V , as the normalised

orthogonal projection of x onto V , for which the residual r̃ ≡ Aũ − ϑ̃ũ is small. Here, ϑ̃ is
the Rayleigh quotient, ϑ̃ ≡ ũ∗Aũ. With perturbation ∆ ≡ −r̃ ũ∗, (ϑ̃, ũ) is an eigenpair of

the perturbed problem (A + ∆)ũ = ϑ̃ũ. Since ‖∆‖2 = ‖r̃‖2, the perturbation ∆ is small and

(ϑ̃, ũ) is close to (λ,x). Hence, (V∗AV + V∗∆V)ỹ = ϑ̃ỹ with small perturbation V∗∆V:
‖V∗∆V‖2 ≤ ‖∆‖2 ≤ ‖r̃‖2. From the perturbation theorems of Lecture 12, we know that there

is an eigenpair (ϑ, y) of V∗AV that is close to (ϑ̃, ỹ), that is, there is a Ritz pair (ϑ,u ≡ Vy)

that is close to (ϑ̃, ũ). Since this last pair is close to (λ,x), we see that (ϑ,u) is close to (λ,x).
Moreover, the residual for (ϑ,u) is small. Summarising:

Proposition 13.1 If (λ,x) is a simple eigenpair of A and φ ≡ ∠(V ,x) is small, then there
is a Ritz pair (ϑ,u) of A with respect to V that is (directionally) close to (λ,x) and has small
residual (‘small’ is of order φ).

1We are enforcing a so-called Petrov–Galerkin condition. In Ritz–Galerkin test space and search
space are the same. For this reason, harmonic Ritz values are also called Petrov values if A is non-
normal.
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In other words, if V contains a good approximation of an eigenvector, then a good approx-
imation of that eigenvector can be detected by computing Ritz vectors and checking the sizes
of their residuals. A similar analysis shows that also harmonic Ritz vectors can be used to de-
tect good approximations of eigenvectors in situations where V contains good approximations of
eigenvectors. Theorems as the ones in Lecture 12 can be used to quantify the above statements.

Exercise 13.2. Quantify (in terms of φ and tan(φ)) the above claims.

However, often appropriate approximate eigenpairs have to be identified when no small
residuals exist. For instance, when the search subspace V is too large (high dimensional)
and memory limitations or computational efficiency requires a ‘restart’ with a smaller (lower
dimensional) linear subspace of V . This will certainly occur if not only one, but a set of
eigenpairs are to be computed. At restart, non of the residual may be small, or we want
to include more approximate eigenpairs in the restart space than only the ones with small
residual. Moreover, computing the size of the residuals of all approximate eigenpairs gives
additional costs.

For Hermitian matrices, we saw several theorems (as Cauchy’s interlace theorem II) that
indicate that Ritz vectors may form appropriate approximate eigenvectors specifically in case
the wanted eigenvalues are extremal (largest or smallest). Below, we will discuss an illustrative
example. In case interior eigenvalues, more specifically, eigenvalues close to the target value τ
in the interior of the spectrum, are to be computed, then harmonic Ritz vectors might be more
appropriate as we will argue below. This claim follows from the observation that Harmonic
Ritz vectors can be viewed as Ritz vectors for an inverted matrix:

Proposition 13.2 Let u be an harmonic Ritz vector with respect to V and target τ .
With y ≡ Au − τu and W ≡ (A − τI)V we have that ( 1

ϑ−τ
,y) is a Ritz pair of (A − τI)−1

with respect to W.

Exercise 13.3. Prove Prop. 13.2.

Note that, although an inverted matrix plays a role, the computation of harmonic Ritz pairs
does not require matrix inversion.

Below, in Exercise 13.4, we analyse how Ritz values and harmonic Ritz values relate to
their Ritz vectors and harmonic Ritz vectors, respectively.

Exercise 13.4. Ritz values and harmonic Ritz values. Let A be an n× n matrix and
u a normalised n-vector. To ease notation, take τ = 0.

(a) Show that u∗Au = argminϑ‖ϑu−Au‖2.
Let ϑ and ϑ̃ be such that Au− ϑu ⊥ u and Au− ϑ̃u ⊥ Au.

(b) Show that

ϑ = u∗Au and ϑ̃ =
u∗A∗Au

u∗A∗u
:

ϑ is a Rayleigh quotient associated with u, and ϑ̃ is an harmonic Rayleigh quotient or
Temple quotient. Note that Ritz values are Rayleigh quotients, while harmonic Ritz values
are harmonic Rayleigh quotients.

(c) Conclude that

ϑ

ϑ̃
=
|u∗Au|2
‖Au‖22

and ϑ = rϑ̃ for some r ∈ [0, 1], (13.1)

|ϑ| ≤ ‖Au‖2 =

√
|ϑ| |ϑ̃| ≤ |ϑ̃| and ‖Au− ϑu‖2 =

√
ϑ(ϑ̃− ϑ) ≤ 1

2 |ϑ̃|, (13.2)

|ϑ| ≤ ‖A‖2 and |ϑ̃| ≥ 1

‖A−1‖2
. (13.3)
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Now, assume that Avj = λjvj with (vj) orthonormal basis (or, equivalently, A is a normal
matrix). Let

u =
∑

j

βjvj and Au =
∑

j

γjvj with γj ≡ βjλj .

(d) Show that the Rayleigh quotient of u is a weighted average of the eigenvalues,

ϑ =

∑
λj |βj |2∑
j |βj |2

=
∑

j

λjαj with αj ≡
|βj |2∑
i |βi|2

, (13.4)

while the harmonic Rayleigh quotient is an harmonic weighted average of the eigenvalues (which
explains the namings ‘harmonic Rayleigh quotient’ and ‘harmonic Ritz value’),

1

ϑ̃
=

∑
j

1
λj
|γj |2

∑
j |γj |2

=
∑

j

1

λj
α̃j with α̃j ≡

|γj |2∑
i |γi|2

. (13.5)

Assume A is normal and consider the situation of Exercise 13.4(d).
Note that ϑ can be close to and eigenvalue, say λ1, while β1 is very small (if, for instance,

λ1 = 0, λ2 = −1, and λ3 = 1, then 0 = 1
2λ2 + 1

2λ3: u = 1√
2
(v2 + v3) is far away from v1

while the Ritz value ϑ = u∗Au = 0 is an excellent approximation of λ1). If, however, λ1
is an extremal eigenvalue, i.e., a vertex of the convex hull of the spectrum of A, then, from
(13.4) we learn that, a Ritz value ϑ can be close to λ1 only if β1 is relatively large, that is,
only if the associated Ritz vector approximates the eigenvector v1 well. In other words, if
we select extremal Ritz values (extremal in set of all Ritz values of order k) to approximate
extremal eigenvalues, then we have a good approximation only if the Ritz vectors form good
approximations of the eigenvectors. If we select an absolute small Ritz value to approximate
an absolute small eigenvalues, then there is no guarantee that the Ritz vector forms a good
approximation of the eigenvector with this absolute small eigenvalue. In such a case (13.5) tells
us that it is safe to select for absolute small harmonic Ritz values. From (13.5) we learn that an
absolute small harmonic Ritz value is close to an absolute small eigenvalue only of the harmonic
Ritz vector is close to the eigenvector. The following proposition summarises these conclusions.
Though we argued for normal matrices, the conclusion seems to be useful for general matrices
as well.

Property 13.3 Extremal Ritz pair can safely be selected if extremal eigenpairs are to be com-
puted, harmonic Ritz pairs are more appropriate for computing eigenpairs with eigenvalues close
to some target τ in the interior of the spectrum.

Harmonic Ritz values can be viewed as extremal Ritz values for an inverted matrix in case
the matrix is normal. This allows us to translate results for extremal Ritz values into results
for harmonic Ritz values. Here, we give the “Cauchy interlace” type for Hermitian A:

Theorem 13.4 Let A be an n×n Hermitian matrix with λp the eigenvalue of A closest to τ .
Assume λp simple and λp 6= τ . Let V be an n× k orthonormal matrix spanning V. Assume V
does not contain an eigenvector of A.

Let ϑ̃1, . . . be the harmonic Ritz values of A with respect to V and target τ , ordered such
that ϑ̃ℓ+1 ≤ . . . ≤ ϑ̃k < λp < ϑ̃1 ≤ ϑ̃2 ≤ . . . ≤ ϑ̃ℓ. We count according to multiplicity and allow
harmonic Ritz values to have value ∞. Then,
(a) [Lehmann] the interval (τ, ϑ̃j ] contains at least j eigenvalues of A,

(b) the interval (τ, ϑ̃j ] contains at least j Ritz values of A w.r.t. V.
(c) If V is a Krylov subspace, then Ritz values and harmonic Ritz values interlace.

(d) The inertia of all Ritz values equals the inertia of all (1/ϑ̃j).
2

2The inertia of a sequence (µj) of real µj is the triple (#{j µj < 0},#{j µj = 0},#{j µj > 0})
as used in Sylvester’s law of inertia, see Th. 12.3.
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The intervals (τ, ϑ̃j ] are called Lehmann intervals. If only V and AV is available, then
the Lehmann intervals are the smallest intervals with the property mentioned in (a) of the
above theorem.

Exercise 13.5. Consider the situation of Th. 13.4.

(a) Harmonic Ritz values are allowed to have value∞ (if d ≡ dim(V∪V⊥) > 0) with multiplicity
d. Argue that this definition of multiplicity for an harmonic Ritz value ∞ is consistent with
the standard definition of multiplicity.

(b) Prove (d) of Th. 13.4. In particular, the number of zero Ritz values equals the number
if ∞ harmonic Ritz values. (Hint: observe that V∗A∗AV allows a Cholesky decomposition,
V∗A∗AV = LL∗ with L k × k non-singular.)

If an (harmonic) Ritz value is close to an eigenvalue, then sometimes a few extra digits of
accuracy can be obtained by the ‘refined Ritz approach’: if ϑ is an approximate eigenvalue,
then

u = argmin{‖Aũ− τ ũ‖2 ũ ∈ V, ‖ũ‖2 = 1}.

defines the refined Ritz vector u. Note that, given an approximate eigenvector, the Rayleigh
quotient minimises the residual, while a refined Ritz vector minimises the residual for a given
approximate eigenvalue.

The fact that harmonic Ritz values can be viewed as extremal Ritz values for an inverted
matrix was use as an argument to favour harmonic Ritz values for selecting appropriate ap-
proximate interior eigenvalues. In the more specific Hermitian case, squaring can do same, it
can turn interior eigenvalues to exterior ones, while preserving eigenvectors: if λ is an eigen-
value closest to τ (in the interior of the spectrum), then (λ − τ)2 is an extremal eigenvalue of
(A− τI)2. It turns out that refined Ritz vectors can be viewed as Ritz vectors for the shifted
squared matrix (see (13.8) in Exercise 13.6). In this Hermitian case, refined Ritz vectors and
harmonic Ritz vectors are the same for carefully selected shifts (one for harmonic and one for
refined Ritz; see (13.9)). This result can also be used to explain the favourable properties of
harmonic Ritz values and to translate estimates on the accuracy of extremal Ritz vectors (as
(12.12) and (12.13)) to estimates for harmonic Ritz vectors as is done in the next theorem.

Theorem 13.5 Let A be an n×n Hermitian matrix with λp the eigenvalue of A closest to τ .
Assume λp simple. Let V be an n × k orthonormal matrix spanning V. Let (ϑ,u) be the
harmonic Ritz pair with ϑ closest to τ : Au − ϑu ⊥ (A − τI)V and |ϑ − τ | smallest. Suppose
ϑ ∈ (λp, λp+1). Let λq the eigenvalue of A, λq 6= λp closest to 1

2 (τ + ϑ). Then

tan2(u,xp) ≤
λp − τ
λq − τ

ϑ− λp
λq − ϑ

. (13.6)

With t ≡ tan∠(V ,xp) we have that

0 < ϑ− λp ≤ t2 max
i

(λi − τ)(λi − λp)
(λp − τ) + t2(λi − τ)

. (13.7)

Substitution of (13.7) in (13.6) estimates the angle φ between the harmonic Ritz vector u
and the desired eigenvector xp in terms of (the tangent t of) the angle φp between the search
subspace V and xp: tan(φ) is of order t ≡ tan(φp) for t small provided that τ 6= λp. Numerical

results indicate that tan(φ) is at most
√
k times t. Apparently, even if the shift τ happens

to be equal (or almost equal) to an eigenvalue, then one of the harmonic Ritz vectors forms
an accurate approximation to the desired eigenvector. But in such a case selection based on
harmonic Ritz values may have to be adapted. We will not further pursue this issue here.
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Exercise 13.6. Let A and V be as in Theorem 13.5. To ease notation, take τ = 0. For a
scalar ϑ ∈ R and vector u = Vy ∈ C

n, ‖u‖2 = 1, consider the statements on Ritz, harmonic
Ritz, and Refined Ritz pairs, respectively:

Au− ϑu ⊥ V ⇔ V∗AVy = ϑy

Au− ϑu ⊥ AV ⇔ V∗A2Vy = ϑV∗AVy

u = argmin{‖Aũ‖2 ũ ∈ V , ‖ũ‖2 = 1} ⇔ V∗A2Vy = ϑy.

(13.8)

In the last statement, we assume ϑ to be the smallest eigenvalue of V∗A2V. Moreover, it then

holds that ϑ = min{‖Aũ‖22 ũ ∈ V, ‖ũ‖2 = 1}.
(a) Prove the first two equivalencies.

(b) Prove the third equivalency and the characterisation of ϑ for the refined Ritz case (Hint:
u = argmin . . . ⇒ A2u ⊥ (V ∩ u⊥) ⇒ A2u− δu ⊥ V for some δ ∈ R ⇒ δ = ‖Au‖22).
(c) Prove that the Ritz vectors form a system that is orthogonal as well as A-orthogonal, the
harmonic Ritz vectors are A-orthogonal and A2-orthogonal, while the refined Ritz vectors (i.e.,
all vectors Vy that solve V∗A2Vy = ϑ y for some ϑ ∈ R) are orthogonal and A2-orthogonal.

(d) Put σ ≡ ϑ/2. Prove the following equivalency

Au− ϑu ⊥ AV ⇔ u = argmin{‖Aũ− σũ‖2 ũ ∈ V , ‖ũ‖2 = 1}. (13.9)

Switching to refined Ritz vectors can be dangerous if the approximate eigenvalue is not
close to the wanted eigenvalue: the refined Ritz vector may be close to some eigenvector of
which the eigenvalue happens to be (accidentally) close to the approximate eigenvalue and may
have no component of the wanted eigenvector.

Refined Ritz vectors are singular vectors with smallest singular value (see Exercise 13.7(c)).
The following exercise shows how Ritz pairs and harmonic Ritz pairs can be computed

for general subspaces V (= span(V)). The approach may lead to a generalised eigenvalue
problem, that is, a problem of the form Ax = λBx with A and B k × k matrices. If, say B,
is non-singular, then this generalised problem is equivalent to a ‘standard’ eigenvalue problem,
B−1Ax = λx. However, it is not always stable to recast the generalised problem into standard
form. The so-called QZ-algorithm brings the generalised problem (of low dimension) into the
form Ty = λSy with T and S upper triangular matrices, using unitary matrices: T = Z∗AQ
and S = Z∗BQ with Z and Q k × k unitary. Similar to the QR-algorithm for Ax = λx, the S
and T appear in the QZ-algorithm as limit of repeated basis rotations in image space (resulting
in a basis Z) and in domain space (resulting in a basis Q) applied to A and B, respectively.

Exercise 13.7. Let V be n × k orthogonal with columns spanning the search subspace V .
Let AV = WR be the QR-decomposition of AV, i.e., W is n×k orthogonal and R k×k upper
triangular. Put M ≡ V∗W. Below u = Vy.

(a) Show that Au− ϑu ⊥ V ⇔ MRy = ϑy ((ϑ,u) is a Ritz pair).
Note that the H of Alg. 13.1 equals MR.

(b) Show that Au− ϑu ⊥ AV ⇔ Ry = ϑM∗y ((ϑ,u) is an harmonic Ritz pair).

(c) Show that u = argmin{‖Aũ−τ ũ‖2 ũ ∈ V} ⇔ y is the right singular vector of R−τM∗

associated to the smallest singular value of R− τM (u is a refined Ritz vector).
Usually τ is selected to be a Ritz value.

B Sorting the Schur form

If H is the matrix A projected onto a low, k-dimensional subspace, then, for stability reasons,
we will compute a Schur decomposition H = USU∗, with U unitary and S upper triangular,
(cf., Th. 0.6 and Exercise 0.17), rather than an eigenvector decomposition H = XΛX−1 with Λ
diagonal. To facilitate selection of interesting approximate eigenpairs, we may want to reorder
the Schur decomposition. To be more precise, we want a Schur decomposition with an upper
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triangular S with diagonal entries in specified order. Because, if S11, . . . , Sℓℓ are the eigenvalues
(Ritz values) of interest, then the first ℓ columns of U form an orthonormal basis of the space
spanned by the eigenvectors associated with these eigenvalues, while, say the kth column of U ,
does not span the eigenspace with eigenvalue Skk. Reordering the eigenvector decomposition
is easy: if P is a reordering of (1, 2, . . . , k), then HX(:, P ) = X(:, P )Λ(P, P ) is an eigenvector
decomposition with eigenvalues reorder on the diagonal of Λ. Reordering the Schur form requires
more care: S(P, P ) is in general not upper triangular. The following property states that
reordering is possible even with unitary matrices, which is in line with stability demands. The
following exercise describes how this can be done in practice.

Property 13.6 For a k× k upper triangular matrix S and a permutation π of (1, . . . , k) (i.e.,
π is a bijection onto {1, 2, . . . , k}), there is a k × k unitary matrix Q such that S′ ≡ Q∗SQ
upper triangular and the ith diagonal entry S′

ii equals Sπ(i)π(i) (i = 1, . . . , k).

Exercise 13.8. Sorting the Schur decomposition. Let S and π be as in Prop. 13.6.

(a) Consider the (complex) 2× 2 matrix

[
λ α

0 µ

]
.

Show that there is a Givens rotation (cf., Exercise 3.5)

[
c s

−s c

]
with c ∈ [0, 1] en s ∈ C such that c2 + |s|2 = 1

(c = cos(φ) and s = sin(φ)) such that

[
c s

−s c

][
λ α

0 µ

][
c −s
s c

]
=

[
µ β

0 λ

]

for some appropriate scalar β. With t ≡ s/c we should have that t = (µ− λ)/α. Hence,

t = (µ− λ)/α, c = 1/
√
|t|2 + 1, and s = ct.

(b) Consider S. Suppose we want to ‘switch’ the 1th and the kth diagonal element: we are
interested in a unitary matrix Q such that S′ ≡ Q∗SQ is upper triangular such that S′

ii = Sii if
i 6∈ {1, k} and S′

11 = Skk and S′
kk = S11. Show that this can be achieve with Givens rotations.

How many Givens rotations are required?

Any permutation can be expressed as a product of basic permutation, where a basic per-
mutation is a permutation that switches two indices only.

(c) Show that there is a unitary matrix Q such that with S′ ≡ Q∗SQ, S′ is upper triangular,
and the (i, i) entry of S′ equals the (π(i), π(i)) entry of S. Q can be obtained as a product of
Givens rotations.

(d) Write a Matlab function subroutine

[S1,Q1]=SortS(S,p)

that sorts the upper triangular matrix S according to the permutation π: the matrices are k×k,
S is upper triangular, the matrices S1 ≡S1 and Q1 ≡Q1 are such that S1 is upper triangular,
Q1 is unitary, S = Q1S1Q

∗
1 and with D=diag(S), D1=diag(S1) we have that D1=D(p), where p

is a reordering of 1:k according to π.
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C Thick restart

Consider a subspace method for computing an eigenpair. Let k be the dimension of the search
subspace Vk at a certain point in the computational process. If k is large (typically k =
kmax = 60), then the demands for storing a basis v1, . . . ,vk of the search subspace and the
costs for computing a well conditioned expansion vector vk+1 (i.e., the costs of orthogonalising
in some sense the expansion vector to v1, . . . ,vk) will be high and we may want to continue the

computational process with a smaller search subspace Ṽℓ, that is, with a subspace of dimension
ℓ with ℓ < k. An obvious choise for such a smaller subspace is the one spanned by the ℓ
‘best’ eigenvector approximations that can be extracted from the larger subspace. If Ritz pairs
(ϑj ,uj) are selected for approximating eigenpairs, then one may select the ℓ Ritz vectors, say
u1, . . . ,uℓ, with Ritz value that best have a desirable property. For instance, if one is interested
in the eigenvalue with largest real part or the one closest to some target value τ (in which
case one will select harmonic Ritz pairs rather than Ritz pairs, cf., Lecture 13A), then the ℓ
Ritz values will be the ones with largest real part (Re(ϑj) ≥ Re(ϑj+1)) or the ones closest to τ
(|ϑj−τ | ≤ |ϑj+1−τ |), respectively. With ℓ = 1 we have the standard restart approach. However,
thick restart, that is, with a larger ℓ, usually is more effective (typically ℓ = kmin = 15): the
error in the Ritz vector u1 (as eigenvector approximation) usually has largest component in
u2, . . . . Therefore, discarding (ϑ2,u2) at restart will slow down convergence towards the first
wanted eigenpair. Moreover, in eigenvalue computation, one is often interested in computing
more than one eigenpair. The Ritz pair (ϑ2,u2) is typically converging towards the second
wanted eigenpair. Therefore, maintaining this Ritz vector in the search subspace will provide
a good starting vector later on in the computational process when the first eigenpair has been
detected and the search for the next eigenpair is started.

A thick restart procedure for the Arnoldi process requires additional care. We not only want
a subspace spanned by the appropriate approximate eigenvectors, but we also need a basis of
this subspace that forms an Arnoldi relation.

Assume that, for k = kmax,

AVk = Vk+1Hk, v1 ≡ Vke1 (13.10)

is an Arnoldi relation: Vj is n× j orthonormal, Hk is (k + 1)× k upper Hessenberg. With Hk

the k × k upper block of Hk, let

Hk = QkSkQ
∗
k

be the Schur decomposition of Hk, that is, Sk is k× k upper triangular and Qk is k× k unitary
(see Th. 0.6). In particular, as before, the index k ofVk, Hk, . . . refers to the number of columns
of these matrices. Let the Schur decomposition be sorted such that ϑ1, . . . , ϑℓ, ϑℓ+1, . . . , ϑk be
the on the diagonal of Sk (see Prop. 13.6 and Exercise 13.8): the first ℓ diagonal entries of S
are the Ritz values of interest. Let ui be the Ritz vectors associated with the Ritz values ϑi.
Let Ṽℓ the subspace spanned by u1, . . . ,uℓ.

At restart, an Arnoldi relation AṼℓ = Ṽℓ+1 H̃ ℓ is required: we need an orthonormal basis of

Ṽℓ that forms the columns of Ṽℓ and for which H̃ ℓ is upper Hessenberg. In particular, Ṽℓ spans
a Krylov subspace. The following property states that such a basis exists. For a construction
(and a proof of the property), we refer to the following exercise.

Theorem 13.7 Any set u1, . . . ,uℓ of Ritz vectors in a Krylov subspace Kk(A,v1) spans a
Krylov subspace Kℓ(A, ṽ1) of A (for some n-vector ṽ1).

Exercise 13.9. Restarting Arnoldi method. Consider the situation as described above.
In particular, Ṽℓ is the space spanned by the ℓ Ritz vectors u1, . . . ,uℓ associated to the first ℓ
Ritz values.

(a) Prove that Aui − ϑiui is a multiple of vk+1.
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(b) Let Wℓ be the matrix consisting of the first ℓ columns of VkQk. Show that the columns of
Wℓ form an orthonormal basis if Vℓ.
(c) Show that

AWℓ = [Wℓ,vk+1]Gℓ for some (ℓ+ 1)× ℓ matrix Gℓ =

[
Sℓ

c∗

]
(13.11)

for some ℓ-vector c. Here, Sℓ is the ℓ × ℓ left upper block of Sk. Describe c.

(d) Write a Matlab function subroutine (cf., the procedure in Exercise 5.27, Exercise 5.27(d))

[tQ,tH]=Hessenberg(G)

that for a given (ℓ+1)×ℓmatrix Gℓ (G=Gℓ) produces an (ℓ+1)×ℓ upper Hessenberg matrix H̃ ℓ

(tH=H̃ ℓ) with an ℓ× ℓ unitary matrix Q (tQ=Q with Q a product of Householder reflections)

and such that H̃ ℓQ = Q◦Gℓ. Here Q◦ is the matrix Q extended with a row of zeros and the
column eℓ+1.

(e) Turn AWℓ = [Wℓ,vk+1]Gℓ into an Arnoldi relation

AṼℓ = [Ṽℓ , ṽℓ+1 ] H̃ ℓ,

i.e., the columns of Ṽℓ form an orthonormal Krylov basis for Ṽℓ. What can you tell about ṽℓ+1?

With Arnoldi relation AVk = [Vk,vk+1]Hk of order k, restart requires the following steps

1) Compute the Schur decomposition HkQ = QS of the k × k upper block Hk of Hk

K=1:k; [Q,S]=schur(H(K,:));

2) Sort S: SQ1 = Q1S1 with diagonal S1 in prescribed order (cf., Exercise 13.8)

[S1,Q1]=SortS(S,p);

3) Compute an orthonormal basis W of the span of the first ℓ Ritz vectors

L=1:ell; W=V*Q*Q1(:,L);

4) Turn the left ℓ× ℓ upper block of S1 extended with the proper part of the last row

of Hk (properly represented) into an upper Hessenberg matrix H̃ ℓ (cf., Exercise 13.9)

c=H(k+1,:)*Q*Q1(:,L); G=[S1(L,L);c]; [tQ,tH]=Hessenberg(G);

5) Compute an orthonormal Krylov basis Ṽ of span(W)

tV=W*tQ;

Then AṼℓ = [Ṽℓ,vk+1] H̃ ℓ is an Arnoldi relation of order ℓ and Ṽℓ spans the space spanned
by the first ℓ Ritz vectors of A with respect to span(Vk).

Note that 3) and 5) can be combined: V=V*(Q*Q1(:,L)*tQ), thus limiting the number of
high dimensional operations. This approach is called the Arnoldi-Schur restart.

The above thick restart strategy, restart with a space spanned by Ritz vectors of interest,
is essentially applicable to any subspace method (not necessarily a Krylov subspace method as
Lanczos and Arnoldi). If no Arnoldi decomposition is required (as in Jacobi–Davidson methods)
then, at restart, step 4) and 5) can be skipped. For such methods, Hk will be the matrix of A
projected onto the search subspace. In general Hk will not be Hessenberg.

Implicitly Restarted Arnoldi Method (IRAM)

The well-know implicitly restarted Arnoldi method (IRAM) is an elegant and efficient
implementation of the above steps. It combines the steps 2) and 4) (and 3) and 5)) (sort, select
and form Krylov basis for the selected Ritz vectors). It exploits the fact that the QR-algorithm
for computing the Schur decomposition for dense matrices actually incorporates a polynomial
filter in the first column. In IRAM, the steps of the QR-algorithm are applied to the Hessenberg
matrix Hk. This matrix is not square and as a consequence, each QR-RQ step reduces the size
by one. After k− ℓ of such steps, the Arnoldi decomposition of order k is reduced to an Arnoldi
decomposition of order ℓ. The first column of the reduced Arnoldi matrix Ṽℓ equals p(A)v1,
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Let AVk = Vk+1Hk be an Arnoldi relation

Set U = Ik+1, S = Hk.

For j = k, k − 1, . . . , ℓ+ 1 do

1) Select a shift µj.

2) Compute the QR-decomposition S − µj Ij = QR.

3) Compute S ← RQ′ + µj Ij−1

4) U ← UQ.

end for

Ṽℓ+1 = Vk+1U, H̃ ℓ = S

Algorithm 13.2. Implicit polynomial filtering of Arnoldi relations. A given Arnoldi relation
AVk = Vk+1Hk

for a general square matrix A is reduced to an Arnoldi relation AṼℓ = Ṽℓ+1 H̃ ℓ
such

that the first column ṽ1 of Ṽℓ equals a multiple of p(A)v1 where v1 is the first column of Vk and p is the
polynomial p(λ) = (λ− µℓ+1) · . . . · (λ− µk) as defined by the µj . See Theorem 13.8.
Matrices denotes as B are of size (j + 1)× j, i.e., square plus one additional row. If B is (j + 1)× j, then
B′ denotes the j × (j − 1) left upper block of B: B′ is the matrix that arises by removing the last row and
last column of B. I

j−1
is the left j × j − 1 block of the j × j identity matrix. Note that the index j in the

‘For’-loop decreases.

where v1 is the first column of the Arnoldi matrix Vk of order k, and p is the polynomial as
defined by the (shifted) QR-RQ steps.

In Alg. 13.2, a limited number of steps (k − ℓ) of the shifted QR-algorithm is applied to
the matrix Hk. This has the same effect as applying a polynomial filter (of degree m) in A
to v1: the filtered vector p(A)v1 rather than v1 shows up as the initial vector in an Arnoldi
relation. Here, p is a polynomial of degree m. This result is formulated in Theorem 13.8. For
a proof, we refer to Exercise 13.10. The filtering is implicit in the sense that it is obtained
by applying the filter to Hk, i.e., in low dimensional space, rather than to A, i.e., in high
dimensional space. Vector updates (at the end of Alg. 13.2) are the only high dimensional
operations that are required for this, no MVs, no inner products. In Theorem 13.9, we will
see that this implicit polynomial filtering approach will provide us with the elegant way as
indicated above for restarting Arnoldi with a space of selected Ritz vectors.

Theorem 13.8 Consider Alg. 13.2. With

p(ζ) ≡ (ζ − µℓ+1) · . . . · (ζ − µk−1)(ζ − µk) (ζ ∈ C),

v1 ≡ Vk e1, and ṽ1 ≡ Ṽℓ e1, we have

AṼℓ = Ṽℓ+1 H̃ ℓ and ṽ1 = τ̃ p(A)v1 for some τ̃ ∈ C.

Exercise 13.10. Proof of Theorem 13.8. Consider Alg. 13.2.

Select a shift µ ∈ C. Form the QR-decomposition of Hk − µ Ik:

Hk − µ Ik = Q
k
Rk,

where Q
k
is (k + 1)× k orthonormal and Rk is k × k upper triangular.

(a) Show that such a decomposition exists. Show that Q
k
is upper Hessenberg.

Let Q
k

′ be the k × (k − 1) left upper block of Q
k
. Define

H+
k−1 ≡ Rk Qk

′ + µ Ik−1 and V+
k−1 ≡ Vk Qk

′, V+
k ≡ Vk+1Qk

.
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(b) Prove that H+
k−1 is k × (k − 1) upper Hessenberg. Prove that

Q
k
H+

k−1 = HkQk

′ and AV+
k−1 = V+

k H
+
k−1, (A− µ I)Vk = V+

k Rk.

(c) Show that
(A− µ I)v1 = τ v+

1 for some τ ∈ C.

Here, v1 and v+
1 are the first columns of the matrix Vk and V+

k , respectively. Conclude that the
columns of V+

k form an orthonormal Krylov basis for the Krylov subspace of order k generated
by A and the vector (A− µ I)v1.

(d) Let U ≡ Q
k
Q

k−1
. . . Q

ℓ+1
with Q

j
= Q of step j (j = k, k − 1, . . . , ℓ+ 1) in Alg. 13.2.

Show that U is (k+1)× (ℓ+1) orthonormal, U ′ = Q′
k
Q′

k−1
. . . Q′

ℓ+1
, U ′ is k× ℓ orthonormal,

and UH̃ ℓ = HkU
′.

(e) Prove Theorem 13.8.

Implicit polynomial filtering of a Arnoldi relation is useful in itself. With a specific choice
of shifts, we have the restart strategy of IRAM: select ‘unwanted’ Ritz values for the shifts
µj . The polynomial filter method removes the selected Ritz values from the Arnoldi relation,

i.e., the eigenvalues of the ‘new’ Hessenberg matrix H̃ ℓ are precisely the ‘wanted’ Ritz values
ϑ1, . . . , µℓ, that is, the non-selected eigenvalues of Hk (as stated in the following theorem. As
in Alg. 13.2, the index j in the theorem decreases).

Theorem 13.9 Consider Alg. 13.2. Let (ϑj ,uj) be the Ritz pairs for A from Hk and Vk. If
the selected shifts µj are equal to the Ritz values ϑj,

µj = ϑj (j = k, k − 1, . . . , ℓ+ 1),

then ϑ1, . . . , ϑℓ are Ritz values of the Arnoldi relation AṼℓ = Ṽℓ+1 H̃ ℓ and Ṽℓ spans the space
spanned by the Ritz vectors u1, . . . ,uℓ.

Exercise 13.11. Proof of Theorem 13.9. We continue Exercise 13.10.
Let ϑ1, . . . , ϑk be the eigenvalues of Hk. Select µj = ϑj for j = k, k − 1, . . . , ℓ+ 1.

Recall that (cf., Th. 5.9, Th. 6.1, and Exercise 6.6) for a polynomial q of exact degree k,

q(Hk) = 0 ⇔ q(Hk)e1 = 0 ⇔ q(A)v1 ⊥ Vk ⇔ q(ϑj) = 0 (j = 1, . . . , k).

Let q be the characteristic polynomial of Hk, i.e., q(Hk) = 0.

(a) For j = 1, . . . , k, let qj be the polynomial of degree k − 1 such that

q(ζ) = (ζ − ϑj)qj(ζ) (ζ ∈ C).

Prove that wj ≡ qj(A)v1 is a multiple of the Ritz vector uj . (Hint: (A− ϑjI)wj ⊥ Vk.)

(b) With p(ζ) ≡ (ζ − ϑℓ+1) · . . . · (ζ − ϑk) (ζ ∈ C), there is a polynomial r of exact degree ℓ

such that q(ζ) = r(ζ)p(ζ) (ζ ∈ C). Prove that r(A)ṽ1 ⊥ Ṽℓ.

(c) Prove Theorem 13.9.

Exercise 13.12. Restart with Ritz vectors. This exercise suggests an alternative proof
of Th. 13.9 and gives some additional insight in polynomial filtering with Ritz values.

Let ϑ1, . . . , ϑk be the eigenvalues of Hk.
We continue Exercise 13.10. Apply the steps in (a) and (b) of Exercise 13.10 with µ = ϑk.

(a) Show that Q
k
ek = ek+1.

3 Conclude that V+
k ek = vk+1 ≡ Vk+1 ek+1 and ṽℓ+1 ≡

Ṽℓ+1eℓ+1 = vk+1 with AṼℓ = Ṽℓ+1 H̃ ℓ the Arnoldi relation of Theorem 13.9 and Exer-
cise 13.11.

3When Matlab’s qr, [uQ,R]=qr(uH-µ∗uI,0);, has been used to compute Q
k
, cf., Exercise 13.10,

then the right bottom element of Q
k
may differ from 1 by a sign, i.e., by eiφ.
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(b) Show that the eigenvalues of the (k − 1)× (k − 1) upper block H+
k−1 of H+

k−1 are equal to
ϑ1, . . . , ϑk−1.

(c) As in (d) of Exercise 13.10, the Q
j
can be assembled into a matrix U , U = Q

k
· . . . · Q

ℓ+1
,

before updating Vk+1. Show that the last row and last column of U consists of all 0s except
for the (k + 1, ℓ+ 1)-entry which equals 1.3

Exercise 13.13. Restart with harmonic Ritz vectors. Let ϑ1, . . . , ϑk be the harmonic
Ritz values with respect to AVk = Vk+1H k. As with Ritz values as shifts, Alg. 13.2 with

harmonic Ritz values leads to the Arnoldi relation AṼℓ = Ṽℓ+1 H̃ ℓ with Ṽℓ spanning the space
spanned by the harmonic Ritz vectors that are not selected as shifts. This result can be proved
by adapting the arguments of Exercise 13.11. Below we present an elementary proof of the fact
that the residuals (or, more precise, a multiple of the residuals) of harmonic Ritz pairs (and of
GMRES) is preserved in the restart. This result can be exploited in an implicit restart version
of GMRES (not discussed here).

Let yj be the harmonic pre-Ritz vector with harmonic Ritz value ϑj : (Hk −ϑj Ik)yk ⊥ Hk

(see Exercise 6.4). Note that ϑj 6= 0.
We continue Exercise 13.10. Apply the steps in (a) and (b) of Exercise 13.10 with µ = ϑk.

Let ~γk+1 be the (k + 1)-vector with first coordinate equal to 1 such that ~γ∗k+1Hk = ~0∗k (as
in (6.2)). Recall that (Hk − ϑj Ik)yk = τ~γk+1 for some scalar τ (see Exercise 6.4(f)).

(a) Let γ̃ be a (k + 1)-vector such that γ̃∗(Hk − ϑk Ik) = ~0∗. Prove that γ̃ ⊥ ~γk+1.

(b) Let Hk − ϑk Ik = Q
k
Rk be the QR-decomposition. Show that ~γk+1 ∈ R(Qk

).

(c) Apply Alg. 13.2 with shifts µj = ϑj harmonic Ritz values. Let U ≡ Q
k
Q

k−1
. . . Q

ℓ+1
with

Q
j
the Q of step j (j = k, k − 1, . . . , ℓ+ 1) in Alg. 13.2. Prove that ~γk+1 ∈ R(U).

Let AṼℓ = Ṽℓ+1 H̃ ℓ the Arnoldi relation resulting from Alg. 13.2 with harmonic Ritz
values as shifts. Put γ̃ℓ+1 ≡ U∗~γk+1.

(d) Show that γ̃ℓ+1 is an (ℓ+1)-vector, γ̃∗ℓ+1 H̃ ℓ = 0∗, Uγ̃ℓ+1 = ~γk+1. In particular Ṽℓ+1γ̃ℓ+1 =
Vk+1~γk+1.

In practice (when modified Gram–Schmidt has been used for orthonormalisation of the

Arnoldi vectors), the columns of Ṽℓ may loose orthogonality: modified Gram-Schmidt leads
to loss of orthogonality exactly when with GMRES the size of the GMRES residual reaches
machine precision. With implicit restarts orthogononality may be lost before the residual is
small enough. This can be circumvented with a more stable form of Gram–Schnidt (as repeated
Gram–Schmidt), or by reorthogonalizing the Arnoldi relation, as explained in the following
exercise.

Exercise 13.14. Suppose AVk = Vk+1Hk is a Krylov flag, i.e., Hk+1 is upper Hessenberg,
the first k columns of Vk+1 are the columns of Vk.

(a) Let Vk+1 = Wk+1Rk+1 be the QR-decomposition (in economical form) of Vk+1. Show that
AWk = Wk+1Rk+1HkR

−1
k is an Arnoldi relation. Here, Rk is the k × k left upper block of

Rk+1. Note that the first j columns of Vk+1 span the same space as the first j columns of
Wk+1.

Exercise 13.15. Implicitly restarted Lanczos (IRL).
Consider the situation of Exercise 13.10. Assume that Hk is tridiagonal.

(a) Prove that H+
k−1 and H̃ ℓ are tridiagonal.

(b) Explain how a thick implicitly restart strategy can be incorporated in Lanczos.

(c) The strategy as indicated in (b) assumes storage of the Lanczos vectors. One of the advan-
tages of Lanczos compared to Arnoldi is the low storage. This advantage is lost in implicitly
restarted Lanczos. What are the advantages (if any) of IRL compared to IRAM?

12



D Deflation

If an eigenpair, say (λ,x), has been detected (with a certain accuracy), the search will be
continued to a next eigenpair. In order to avoid that the already detected eigenpair(s) will
re-enter the computation (due to errors, rounding errors as well as approximation errors), these
eigenpairs are to be deflated. Eigenvalues that re-enter the computation due to erros are called
ghost eigenvalues or spurious eigenvalues. As we learnt from the power method, it is not
sufficiently stable to apply deflation in one step only. We therefore deflate the problem (the
matrix) rather than the initial vector.

For stability reasons, usually a partial Schur decomposition is computed, AQℓ = QℓSℓ

with n × ℓ orthonormal Qℓ and ℓ × ℓ upper triangular Sℓ, rather than a partial eigenvector
decomposition, AXℓ = XℓΛ with n × ℓ matrix Xℓ and ℓ × ℓ diagonal Λ. The Schur vectors
q1, . . . ,qℓ, i.e., the columns of Qℓ, span the space of eigenvectors with eigenvalues λj if the
diagonal elements λj of Λ are the diagonal entries of Sℓ. Detected Schur vectors give an explicit
way for deflating the detected eigenvectors, or, more precise, for deflating the detected Schur
vectors, from the matrix: continue the search with the deflated matrix (cf., Exercise 4.3)

Ã ≡ (I−QℓQ
∗
ℓ )A(I−QℓQ

∗
ℓ ).

4

An eigenvector of Ã is a Schur vector of A.
For many methods, one of the projections is redundant, or more precise, is automatically

taken care of. For instance, if Ãv is the expansion vector and v ⊥ Qℓ, then (I−QℓQ
∗
ℓ )v = v

and the projection at the right is not needed.

In Arnoldi’s method the projections are not (explicitly) needed when the Schur vectors
are kept in the Arnoldi basis as the first ℓ vectors. Because, if vk is the last vector in this
basis, then vk is orthogonal to all preceding basis vectors, in particular, it is already orthogonal
to q1, . . . ,qℓ. In Arnoldi’s method, the expansion vector Avk is orthogonalised against all
preceding basis vectors, in particular, it is orthogonalised against q1, . . . ,qℓ.

5 The Hessenberg
matrix in this case has ℓ zero subdiagonal entries: hj+1,j = 0 for j = 1, . . . , ℓ; the Hessenberg
matrix is reduced. Note that keeping the Schur vectors in the Arnoldi basis has the additional
advantage that the Schur matrix Sℓ becomes automatically available (as the left top ℓ× ℓ block
of Hk).

Theoretically, deflation is automatically taken care of in Arnoldi’s method. The following
lemma proves that a Krylov subspace spanned by Arnoldi vectors contains an eigenvector if
and only if the corresponding Hessenberg matrix has a subdiagonal element equal to zero.

Lemma 13.10 Let Hk be a (k + 1)× k upper Hessenberg matrix. Assume that

Hk y = ϑ y with y normalized and hk+1,k e
∗
ky = 0.

Then hj+1,j = 0 for a j < k. In particular, if AVk = Vk+1Hk is an Arnoldi relation, then
AVj = VjHj, where Vj is the left n× j block of Vk and Hj is the j × j left upper block of Hk:
Vj spans an invariant subspace of A (and contains an eigenvector). If the span of Vk contains
multiples of one eigenvector only, then h2,1 = 0.

Exercise 13.16. Prove Lemma 13.10.

This suggests a strategy for deflation in Arnoldi’s method: if a subdiagonal element of the
Hessenberg matrixHk is small, say |hj+1,j | ≤ ε, then replace this quantity by 0 and continue the

4For stability reasons, the projections have to be performed with a stable version of Gram–Schmidt,
as repeated Gram–Schmidt.

5Including q1, . . . ,qℓ in the basis and applying a stable version of Gram–Schmidt for orthogonalising
the expansion vector against the basis is more stable than applying a projection I−QQ∗ followed by
orthogonalisation against the basis from which q1, . . . ,qℓ is excluded (which is a kind of ‘block’ modified
Gram–Schmidt).

13



computational process. Keep Vj in the process for orthogonalisation, but compute Ritz values
only for the (k+1−j)×(k−j) right lower block of Hk and apply the shifted QR steps also only
to this right lower block (apply the apropriate rotations also to the j× (k− j) right upper block
of Hk). The detected eigenvalues and eigenvectors (actually, the space of detected eigenvectors)
are locked: they are kept in the orthogonalisition steps, to avoid the introduction of spurious
eigenvalues, but they are excluded from updating process for approximate eigennpairs.

The QR-algorithm is backward stable (the computed quantities are the exact ones for a
slightly perturbed matrix), but it can be forward unstable, specifically if a shift is used that is
very close to an eigenvalue: the computed quatities may differ significantly from the ones that
would be obtained in exact arithmetic. As a consequence, the size of subdiagonal elements of
the Hessenberg matrix may not be reliable. A stable and reliable procedure is obtained by a
similarity transformation with a Householder reflection to put the detected eigenvalue at the
top left position of Hk and then using the Hessenberg routine as indicated in Exercise 13.9(e)
restore the Hessenberg structure for the k × (k − 1) right bottom other part of the matrix; see
the next exercise for details.

Exercise 13.17. Locking. Let Hk be a (k + 1)× k Hessenberg matrix.
Assume Hk y = ϑ yk such that |ρ| ≤ ε, where ρ ≡ hk+1,k e

∗
ky.

(a) Show there is a Householder reflection with a normalized k-vector w such that

(Ik − 2ww∗)e1 = τy for some scalar τ, |τ | = 1, τe∗1y ∈ R.

(b) Show that (Ik+1 − 2ww∗)Hk (Ik − 2ww∗) is of the form

(Ik+1 − 2ww∗)Hk (Ik − 2ww∗) =

[
ϑ b∗

ρek Gk−1

]

Here the w at the left equals the w at the right extended by one 0. The first column of the
transformed matrix consists of all zeros except at the first position, where it has the value ϑ,
and the last position, where it has the small value ρ. The matrix Gk−1 is (full) k × (k − 1).

(c) Use Exercise 13.9(e) to construct a k × k unitary matrix Q (as a product of Householder

reflections) and a k × (k − 1) upper Hessenberg matrix H̃ k−1 such that, with Q◦ as defined in
Exercise 13.9(e),

HkQk = Q◦
k

[
ϑ b̃∗

ρek H̃ k−1

]
(13.12)

(d) Describe a locking procedure based on the above suggestions.

Ideally the filter procedure prevents eigenpairs that are not wanted from being detected.
Nevertheless, due to rounding errors (and forward instabilities of the QR-procedure) unwanted
eigenpairs are occasionally detected. They can be locked as described above. If memory is
an issue and too many unwanted eigenpairs are detected, then it may be desirable to remove
them from the Arnoldi relation. Removing locked eigenpairs from the Arnoldi relation is called
purging. It requires the decoupling of the ‘active’ Arnoldi vectors from the unwanted locked
eigenvector, i.e., b̃∗ from (13.12) has to be transformed to 0∗. The next lemma tells us that
this is possible. Note that if the unwanted eigenvector is to be removed, then there is no need
to maintain orthogonality between the unwanted eigenvector and the Arnoldi vectors. The
purging procedure is in low dimensional space. It ‘sets’ b̃∗ to 0∗ using a basis consisting of e1
and vectors orthogonal to the left eigenvector of Hk with eigenvalue ϑ. The easiest choice for
this basis leads to a Hessenberg structure of the remaning part (see Exercise 13.18).

Lemma 13.11 Let Hk be a (k + 1) × k matrix, b a k-vector and ϑ a scalar. There is an
orthonormal (k + 1)× k matrix Q and a (k + 1)-vector y such that

[
ϑ b∗

0 Hk

]
[e1, Q] = [e1, Q

◦]

[
ϑ 0∗

0 H̃k

]
and y∗

[
ϑ b∗

0 Hk

]
= ϑ y∗. (13.13)
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The columns of Q form a basis of y⊥, y is a left eigenvector with eigenvalue ϑ.
Here, Q◦ is the matrix Q expanded with a row of zeros and the column ek+2.

Exercise 13.18. Purging. Consider the Arnoldi relation, with locked eigenvector u1,

A[u1,Vk] = [u1,Vk,vk+1]

[
ϑ b∗

0 Hk

]

(a) Let (1, yT)T be a (k + 1) left eigenvector as in (13.13). Show that

[
1 −(y∗ 0)
0 Ik+1

][
ϑ 0∗

0 Hk

]
=

[
ϑ b∗

0 Hk

][
1 −y∗
0 Ik

]

(b) Consider the QR-decomposition

[
−y∗
Ik

]
= QR

with (k + 1)× k orthonormal Q and k × k upper triangular R. Show that the columns of the
matrix at the left are orthogonal to the left eigenvector (1, yT)T and conclude that the clumns
of Q form an orthonormal basis of the space orthogonal to this left eigenvector.

(c) Put H̃ k ≡ R◦HkR
−1. Show that H̃ k is upper Hessenberg and

[
e1 Q◦

] [ ϑ 0∗

0 H̃ k

]
=

[
ϑ b∗

0 H̃ k

] [
e1 Q

]

(d) Describe a purging procedure based on the above suggestions.

Note that the purged eigenvectors may re-enter the computational process again in a later
stage. To prevent this from happening they should be kept in the collection of locked eigenvec-
tors (demanding memory and, since they will be involved then in the orthogonalisation, they
contribute to the computational costs).

E Subspace methods

Methods as Arnoldi and Lanczos exploit Krylov subspaces for finding approximate eigenpairs.
They can be viewed as subspace variants of the power method. We already learnt that it can
be more effective to use shift and invert variants of the power method, multiply by (A−µ I)−1,
rather than the (shifted) power method, multiply by A− µ I, since it leads to amplification of
eigenvector components with eigenvalue close to µ. If the shift is fixed in each step, then shift
and invert is a power method as well and can be extended to an Arnoldi variant. However, it
can be efficient to allow different shifts in subsequent steps of shift and invert. The subspace
variant of such an approach does not built Krylov subspaces. This may also be the case if
the systems for inverting are not solved exactly. We discuss two non-Krylov subspace methods
below, Rational Krylov Sequence (RKS) and Jacobi–Davidson. Of course the advantage of a
Krylov structure (with Hessenberg matrices) is lost and the ‘orthogonalisation’ part in the steps
may be more expensive, but less steps may be needed. Note, however, that, if we give up the
Krylov structure, restart (and deflation) may be less cumbersome.

Though RKS, the first method that we discuss below, does not built a Krylov subspace, the
space is related to a Krylov subspace and leads to structured relations allowing computational
savings.

Rational Krylov Sequence method
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For a sequence (µ1, . . . , µn) of scalars (in C), consider the polynomials

pk(ζ) ≡ (ζ − µ1) · . . . · (ζ − µk) (ζ ∈ C, k = 1, 2, . . . , n).

The first k + 1 terms of the rational Krylov sequence

v1, p1(A)−1v1, p2(A)−1v1, p3(A)−1v1, . . . , pk(A)−1v1

span a space of rational functions in A times v1:

{
ψ(A)v1 ψ =

q

pk
(q ∈ Pk)

}
= Kk+1(A, pk(A)−1v1).

Note that this rational Krylov subspace depends on the poles µ1, . . . , µk (whereas a Krylov
subspace does not depend on the zeros of the polynomials:

span(v1, p1(A)v1, . . . , pk(A)v1) = Kk+1(A,v1).

The rational Krylov subspace incorporates Shift and Invert and requires matrix inversion (i.e.,
solving linear systems). Since matrix inversion can be expensive, the poles µj are often kept
the same for a number of consecutive steps. Then the same LU-decomposition of A− µjI can
be used in these steps.

Consider the generalised eigenvalue problem

Ax = λBx, (13.14)

with eigenpair (λ,x), x 6= 0. We assume the matrix pencil A − λB to be regular or non-
degenerated, that is, det(A − µB) is non-zero for some µ ∈ C. If a pencil is not regular, then
it is said to be singular. We allow the eigenvalue λ to have value ∞, which is the case if x is
a kernel vector of B.6

The generalised eigenvalue problem can be turned into a standard one if B or a shifted
matrix A − µB is non-singular: (λ,x) is an eigenpair of (13.14) if and only if (1/(λ− µ),x)
is an eigenpair of the matrix (A − µB)−1B. Since matrix inversion (i.e., solving systems) is
intrinsic for RKS anyway, we discuss this method for the more general problem of generalised
eigenvalues rather than standard eigenvalues.

Property 13.12 The matrix pencil A−λB is regular if and only if there are only finitly many
λj ∈ C, generalised eigenvalues, such that A− λjB is singular.

Exercise 13.19.

(a) Prove Prop. 13.12.

(b) If N (A) ∩ N (B) 6= {0} then the pencil A− λB is singular.

(c) Consider the matrices

A =




1 0 0

0 0 1

0 0 0


 and B =




0 1 0

0 0 0

0 0 1


 .

Show that the pencil is singular even though N (A) ∩N (B) = {0}.
6To avoid the use of the value ∞, the generalised eigenvalue problem is often formulated as finding

a pair (c, s) with c ∈ [0, 1] and s ∈ C such that c2 + |s|2 = 1 and cAx = sBx. Then λ = s/c and, with
c = 0, s = 1, we have the situation where λ = ∞.
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1) Select a µk ∈ C and a ~tk ∈ C
k with e∗k~tk 6= 0

2) Solve (A− µkB)z = B(Vk
~tk) for z

3) [w,~hk] = Orth(Vk, z)

4) η = ‖w‖2, vk+1 = w/η, Vk+1 = [Vk,vk+1]

Algorithm 13.3. One step RKS (see the text below).

The so-called QZ-algorithm (qz in Matlab) is the method of choice for solving the
generalised eigenvalue problems for dense systems. It generalises the QR-algorithm. It computes
n× n unitary matrices Q and Z and n× n upper triangular matrices S and T such that

AQ = ZS and BQ = ZT.

The eigenvalues λ are on the diagonal of T−1S.
If the pencil is singular, then the singular part induces an “unstable eigenvalue” (εA/εB),

while the QZ-algorithm is stable, representing the singular part as small common diagonal
entries of S and T, say εA and εb, respectively.

For ease of notation, we assume that A is non-singular: if A is singular, consider the shifted
problem (A− µB)x = (λ− µ)Bx with A− µB non-singular.

For computing eigenpairs (λ,x) of (13.14), the rational Krylov sequence method (RKS)
computes an orthonormal matrix Vk+1 that spans the space spanned by w0, . . . ,wk with

w0 ≡ v1, wj ≡ (A− µjB)−1Bwj−1 (j = 1, . . . , k).

or, equivalently,
span(Vk+1) = Kk+1(A

−1B, p̃k(A
−1B)−1v1), (13.15)

where p̃(ζ) ≡ (1− µ1ζ) . . . (1− µkζ) (ζ ∈ C).

Exercise 13.20.

(a) Prove (13.15).

(b) If B is non-singular, then

Kk+1(A
−1B, p̃k(A

−1B)−1v1) = Kk+1(B
−1A, pk(B

−1A)−1v1)

(c) If µj = µ for all j = 1, 2, . . ., then

Kk+1(A
−1B, p̃k(A

−1B)−1v1) = Kk+1((A− µB)−1B,v1).

Prove that, in this case and choosing tk = ek, RKS is equivalent to Arnoldi for the matrix
(A− µB)−1B.

Assume Vk is available and vk+1 is computed as in Alg. 13.3. If Hk−1 and Kk−1 are
k × (k − 1) upper Hessenberg matrices such that

AVkHk−1 = BVkKk−1,

then this RKS relation is expanded to AVk+1Hk = BVk+1Kk by

Vk+1 = [Vk,vk+1], Hk =

[
Hk−1

~hk

0 η

]
, Kk =

[
Kk−1

~hk µk + ~tk

0 η µk

]
.

(Vk+1, Hk,Kk) is an RKS tripel of order k + 1 for the pencil A− λB.
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Approximate eigenvalues ϑj with approximate eigenvectors uj for the generalised eigenvalue
problem are obtained as

uj = VkHk yj where (ϑj , yj) solves ϑjHk yj = Kk yj.

The k-dimensional generalized eigenvalue problem can be solved via the QZ-algorithm. The
approximate eigenpairs (ϑj ,uj) can be viewed as being obtained by projecting (13.14) onto
Vk ≡ span(VK), as we will see below in Exercise 13.21(b). With residual rj ≡ Auj − ϑjBuj

we have that
rj = −η(A− µkB)vk+1e

∗
kyj. (13.16)

Then progress can be monitored by |η e∗kyj|.

Exercise 13.21.

(a) Prove (13.16).

(b) Suppose Hk is non-singular. Show that in this approach, (1/(ϑj − µk),uj) is an Ritz pair
for (A− µkB)−1B obtained from the search subspace Vk (and tested against Vk as well).

RKS shares advantages of Arnoldi: the orthogonalisation scalars are used in the formation of
the projected problem. The fact that the projected matrices are upper Hessenberg is exploited.
RKS is the rational Krylov variant of Arnoldi. Implicit restart procedure that preserve the
Hessenberg structure at restart have been designed.

Jacobi–Davidson method

Jacobi–Davidson (JD) also obtains expansion vectors from a shift and invert approach (as
RKS in step 2 of Alg. 13.3). However, rather than formulating the shift and invert step such
that the subsequent orthogonalisation and projection steps are as efficient as possible as in RKS,
JD aims for optimal expansion using a well-conditioned proper variant of the shift and invert
system, called the JD correction equation. This leads to faster convergence and allows inexact
solves of the ‘shift and invert system’, i.e., preconditioned iterative linear systems solvers can
be used to solve the correction equation to some degree. Often a modest degree of accuracy
already leads to fast convergence.

For high dimensional problems (n is huge), exact shift and invert is not feasible and this is
where the main advantage of the JD approach comes in. JD allows to use preconditioners and
(inaccurate) solutions obtained with (a few steps of) some iterative linear solver.

Exercise 13.22. Jacobi-Davidson. Consider (13.14) with regular pencil.
Suppose we have an approximate eigenvector u. Select

ϑ ≡ u∗Au

u∗Bu

as approximate eigenvalue. We are interested in finding corrections ε ∈ C to ϑ and t ∈ C
n,

t ⊥ u, to u such that λ = ϑ + ε is the wanted eigenvalue with eigenvector x = u + t. Put
v ≡ Bu. Let r ≡ Au− ϑBu be the residual.

(a) Show that r ⊥ u.

(b) Show that 0 = r+ εv + (A− ϑB)t− εBt.

(c) Neglecting O(|ε| ‖t‖2)-terms (‘small’2 terms), implies that

(I− v(u∗v)−1u∗)(A− ϑB)t = −r, where t ⊥ u. (13.17)

This is the JD correction equation. Note that, in case of the standard eigenvalue problem,
i.e., B = I, and u is normalised, this correction equation reduces to

(I− uu∗)(A− ϑ I)t = −r, where t ⊥ u. (13.18)

(d) Put Ã ≡ (I− v(u∗v)−1u∗)(A− ϑB). Prove that Ks(Ã, r) ⊥ u.
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Jacobi–Davidson

%% Initiation

Select an n× ℓ orthonormal matrix V.

Compute W ≡ AV and the interaction matrix H = V∗W.

repeat

%% Extraction

1) Compute the Schur form H = USU∗.

Order the Schur form H = USU∗.

2) Select (ϑ, y) = (S1,1, Ue1).

3) Compute u = Vky and the residual r = Wy − ϑu.
%% Stopping criterion

4) If ‖r‖2 ≤ tol, x = u, λ = ϑ, break, end

%% Expansion

5) Solve (approximately) for t ⊥ u

(I− uu∗)(A− ϑI)(I− uu∗)t = −r.
6) v = Orth(V, t).

7) V← [V,v], H ← [H;v∗W]

8) w = Av, W← [W,w], H ← [H,V∗w], ℓ← ℓ+ 1.

end repeat

Algorithm 13.4. This is the basic Jacobi–Davidson scheme for computing one approximate eigenpair
(λ,x) with residual accuracy tol of the standard eigenvalue problem Ax = λx. The scheme here uses
Ritz pairs and an orthonormal basis of the search subspace V spanned by V. The expansion vector t of V
is obtained as an (approximate) solution of the JD correction equation and is orthonormalised against V.
Substep 5 is essential for Jacobi–Davidson. All subspace methods basically follow the above scheme except
for the way they compute an expansion vector t of the search subspace.

This shows that Krylov methods as GMRES and Bi-CGSTAB are suited for obtaining
approximate solutions t of the JD correction equation. If the initial guess t0 is 0, then all
iterates are automatically orthogonal to u. Often an effective expansion vector t is obtained
with s steps of preconditioned GMRES.

The correction equations are solved to some accuracy and the solutions are used to expand
the search subspace, see Alg. 13.4. If the correction equation is solved exactly, JD asymptoti-
cally converges quadratically. When solved inaccurately, convergence is usually still fast.

Jacobi-Davidson tends to converge quickly to some eigenpair. In order to avoid convergence
to an unwanted eigenpair it is helpfull to have a “thick” start. As a start a number of Arnoldi
steps is recommended.

The scheme in Alg. 13.4 can be extended with a (thick) restart by extending substep 1:

1.c) if ℓ = kmax, then %% restart

ℓ← kmin,

V← VU(:, 1 : ℓ), W←WU(:, 1 : ℓ), H ← S(1 : ℓ, 1 : ℓ).

And, if more than one eigenvector (Schur vector) is required, then it can be extended with
deflation by modifying step 4:
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4) if ‖r‖2 < tol , then %% lock a Schur vector

Q← [Q,u],

if the number of detected Schur vectors (the columns of Q) is as desired

stop

else %% deflate

V← VU(:, 2 : ℓ), W ←WU(:, 2 : ℓ), H ← S(2 : ℓ, 2 : ℓ),

ℓ← ℓ− 1, and go to substep 3.

If deflation is included, the correction equation in substep 5 should be deflated as well:

(I− [Q,u][Q,u]∗)(A− ϑI)(I− [Q,u][Q,u]∗)t = −r, t ⊥ [Q,u].

Exercise 13.23. Consider the Jacobi–Davidson scheme Alg. 13.4.

(a) Adapt the scheme to harmonic Ritz values.

(b) Adapt the scheme for solving the generalised eigenvalue problem. Include the adaptation
also in the restart and deflation.

To compare JD with Davidson,

solve Mt = −r for t,

and inexact Rayleigh Quotient Iteration with subspace acceleration (aiRQI),

solve (A− ϑB)t = u,

suppose M is an n×n matrix that approximates A− ϑB in some sense and such that systems
of the form My = z are ease to solve for y. M can be preconditioner as an ILU-decomposition
of A− τB or M−1 can represent q(A − ϑB)z, with q a polynomial of degree < s as obtained
by applying a s steps of a Krylov method to solve (A−ϑB)y = z (then the residual is equal to
(I− (A−ϑB)q(A−ϑB))z), or a combination of both, K−1q((A−ϑB)K−1)z, a Krylov solver,
preconditioned with K.

Now consider the correction equation that arises by replacing A − ϑB by M in the JD
correction equation (13.17):

(I− v(u∗v)−1u∗)Mt = −r, t ⊥ u. (13.19)

Property 13.13 If w solves Mw = v and s solves Ms = −r, then (13.19) is solved by

t ≡
(
I−w(u∗w)−1u∗) s.

This result is of interest in itself: it gives a way to incorporate a preconditioner in a Krylov
solver for the JD correction equation , see Exercise 13.24. But it also helps to understand the
advantage of JD over Davidson and over aiRQI, see Exercise 13.25.

Exercise 13.24. Preconditioning the JD correction equation.

(a) Prove Property 13.13.

Apparently, if M is a preconditioner for A − ϑB, then
(
I−w(u∗w)−1u∗)M−1 can be

viewed as a preconditioner for (I− v(u∗v)−1u∗)(A− ϑB)(I− uu∗) (why?).

(b) Prove that multiplication of the projected matrix followed by a preconditioning step equals

(
I−w(u∗w)−1u∗)M−1(A− ϑB)(I − uu∗)

and conclude that, starting with t0 = 0 it suffices to multiply by

(
I−w(u∗w)−1u∗)M−1(A− ϑB)
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in a preconditioned Krylov solver (as GMRES).

Exercise 13.25. JD versus Davidson and aiRQI.
For ease of discussion we assume B = I. Suppose A− ϑI and M are of the form

A− ϑI =
[

0 a∗

r B

]
and M =

[
µ b∗

s B

]
, respectively.

Note that A−ϑI takes this form with respect to an orthonormal basis with u as first vector and
ϑ as the Rayleigh quotient for u. Here, we modelled the assumption that M is an approximation
of A−ϑI with perturbation term ∆ (M = A−ϑI+∆) that is small as compared to ‖A−ϑI‖2.
If B is well-conditioned (which will be the case if λ is simple and ϑ is close to λ) then the block
of ∆ that corresponds to the block B is negligible, also as compared to B−1. Therefore, to ease
the discussion, we neglected this block. Since 0 and r (and a if A is Hermitian) are small, the
corresponding blocks of ∆ can not be negelected.

(a) Show that the vector
B−1r (13.20)

characterizes the expansion vector obtained with the exact solution of the Jacobi–Davidson
correction equation.

(b) Show that

M =

[
1 b∗B−1

0 I

][
χ 0∗

0 B

] [
1 0∗

B−1s I

]
with χ ≡ µ− b∗B−1s;

χ is the Schur complement. Conclude that

M−1

[
1

0

]
=

1

χ

[
1

−B−1s

]
and M−1

[
0

r

]
=

[ −b
∗

B
−1

r

χ

B−1
(
r+ b

∗

B
−1

r

χ
s
)

]
.

Hence, with an inexact Rayleigh Quotient step, the search subspace is essentially expanded by

B−1s, (13.21)

while

B−1

(
r+

b∗B−1r

χ
s

)
(13.22)

represents the expansion vector for Davidson and (13.20) for Jacobi–Davidson. Why?

(c) Compare the quality of the expansion vectors. First consider the case where both A and
M are Hermitian (then a = r and b = s) and both |µ| and ‖s‖2 are of order ‖r‖2.

F Higher order eigenvalue problems.

A quadratic eigenvalue problem is of the form

Ax+ λCx+ λ2Mx = 0. (13.23)

Here, A,C,M are given n×nmatrices. We have to find an eigenvector x, that is, a non-trivial
n-vector, and the associated eigenvalue λ, a complex number.

In an important class of applications comes from partial differential problems. Then, A
is the discretization of a partial differential operator. A is often Hermitian. C represents the
boundary conditions. It is often anti-Hermitian, but its rank is relatively low (if the problem is
a discretised 3-d partial differential problem, then the rank of C is of order 2/3

√
n: n = nxnynz

and the rank of C is proportional to nxny). M is the mass matrix, that is, the discretization
of the identity operator. M is positive definite.

21



If M is positive definite, then a Cholesky decomposition might be helpful (if it is feasible

to construct): if M = LL∗, then (13.23) can be simplified to Ãx̃ + λC̃x̃ + λ2x̃ = 0, where

Ã ≡ L−1AL−∗ and C̃ ≡ L−1CL−∗. What is the relation between x̃ and x.
The quadratic eigenvalue problem can be linearised to generalised eigenvalue problem:

[
C A

I 0

] [
λx

x

]
+ λ

[
M 0

0 I

][
λx

x

]
. (13.24)

Exercise 13.26. Quadratic eigenvalue problems.

(a) Prove that any solution of (13.23) gives a solution of (13.24) and the other way around.

(b) The linearisation is not unique. If A is non-singular, then we can replace the identity block
I in (13.24) by A. But also by −A∗, etc..

Exercise 13.27. Deflation. In some sense, we generalise in this exercise the Hotelling
deflation of Lecture 4 to polynomial eigenvalue problems. We explain how to shift a detected
eigenvalue to a non-dominant position (actually to any position that is suitable).

(a) For y ∈ C
n, ‖y‖2 = 1 and α ∈ C, α 6= 0, consider

Tα ≡ T[α] ≡ I− 1
α
yy∗.

Prove that Tα is non-singular if α 6= 1 and T−1
α = T1−α.

(b) For n× n matrices A0, . . . ,Aℓ, consider the matrix polynomial

P(λ) ≡ Aℓλ
ℓ +Aℓ−1λ

ℓ−1 + . . .+A1λ+A0 (λ ∈ C).

(c) Show that generalised eigenvalue problems and quadratic eigenvalue problems are polyno-
mial eigenvalue problems.

Consider a polynomial eigenpair (λ1x1) of P with x1 normalised, that is,

λ1 ∈ C, x1 ∈ C
n, ‖x1‖2 = 1, and P(λ1)x1 = 0.

Select a τ ∈ C, τ 6= λ1. Consider the ‘deflated’ matrix polynomial

P̃(λ) ≡ P(λ)
(
I− τ−λ1

λ−λ1

x1 x
∗
1

)
(λ ∈ C).

(d) Relate I− τ−λ1

λ−λ1

x1x
∗
1 to a Tα.

(e) Prove that P̃ is a matrix polynomial of degree ℓ.

(f) Consider an eigenpair (λi,xi) of P. Define

x̃i ≡
(
I− τ − λ1

τ − λi
x1 x

∗
1

)
xi (i = 2, 3, . . .).

Prove that (τ,x1) and (λi, x̃i) (i = 2, 3, . . .) are eigenpairs of P̃.
Explain how xi can be obtained from x̃i.

(g) Relate the above deflation strategy to the Hotelling deflation of Lecture 4.

Consider the higher degree (degree ℓ) polynomial eigenvalue problem

x− λM1 x− λ2 M2 x− . . .− λℓ Mℓ x = 0, 7 (13.25)

7For convenience, the matrix M0 has been normalized (by multiplying by M−1

0 , possibly after
shifting λ if M0 is singular).
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where Mi are give n × n matrices. If λ ∈ C and x ∈ C
n satisfies (13.25), then (λ,x) is an

eigenpair of the polynomial problem (13.25).
The problem can be reformulated into a linear one, using a companion formulation as in

(13.24). The following observation gives an aalternative. It formulates the problem as a linear
one on the space of smooth n-vector valued functions. The linear operator is an integraloperator.

For smooth vector-valued functions f : C→ C
n, define the operator A by

Af(ζ) ≡
∫ ζ

0

f(ϑ) dϑ+

ℓ∑

i=1

Mi f
(i−1)(0) (ζ ∈ C).

Note that Af is in C(∞)(C,Cn) if f is in this space. Moreover A is linear, whence for a scalar
µ ∈ C, (µ, f) is an eigenpair iff Af = µf . Differentiation of the eigenvalue equation leads to the
differential equation f ′ = 1

µ
f .

Theorem 13.14 For λ ∈ C and x ∈ C
n, define

f(ζ) ≡ x exp(ζλ) (ζ ∈ C). (13.26)

If (λ,x) is an eigenpair of (13.25), then ( 1
λ
, f) is an eigenpair of A.

Conversely, if λ ∈ C and f is an analytic n-vector valued function such that ( 1
λ
, f) is an

eigenpair of A, then f is of the form (13.26) and (λ,x) is an eigenpair of (13.25).

Exercise 13.28. Proof of Theorem 13.14. Prove the theorem.

The definition of eigenpair can be generalized to invariant subspace: an n× p matrix X is
an invariant subspace of (13.25) if, for some p× p matrix S we have that

X−M1XS −M2XS2 − . . .−MℓXSℓ = 0. (13.27)

Exercise 13.29. Relate eigenpairs of S to eigenpairs of (13.25).

Using the expression F(ζ) = X exp(ζS), the theorem can be formulated for invariant sub-
spaces.

Exploiting these equivalences requires a formulation of the methods dicussed sofar for
vector-valued function spaces (what basis?) rather than vectors.

The above aproach can be used te reformulate analytic eigenvalue problems for vectors to
linear ones for smooth functions.

Let ζ  M(ζ) be an analytic map from C (or some neighborhood of 0 in C) to the space
of n× n matrices. We are interested in solving the analytic eigenvalue problem, that is, in
finding eigenpairs (λ,x) for which x − λM(λ)x = 0. The associated integral operator can be
defined by

Af(ζ) ≡
∫ ζ

0

f(ϑ) dϑ+

∞∑

i=0

1

i!
M(i)(0) f (i)(0) (ζ ∈ C)

for n-vector valued functions f that are analytic on some neighborhood of 0 in C and for which
the infinite sum makes sense.

Exercise 13.30. Check that this generalises the suggested approach for polynomial eigenvalue
problems.
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