
March 26, 2018

Lecture 2 – Decompositions, perturbations

A Triangular systems

Exercise 2.1. Let L = (Lij) be an n× n lower triangular matrix (Lij = 0 if i > j).

(a) Prove that L is non-singular if and only if Lii 6= 0 for all i.

Assume L is non-singular. Let B ≡ L−1.

(b) Prove that B = (Bij) is lower triangular as well.

For a given n-vector b, we are interested in solving Lx = b for x. Note x = Bb.

(c) Suppose all Bij , i ≤ j, are non-zero as well as all coordinates bi.
Compute the number of floating-point operations (flop) that are required to perform the matrix-
vector multiplication (MV) Bb.

(d) How many flop are needed to solve Lx = b for x by forward substitution?

(e) Determine B = L−1 in case L = I+DS, where S = (Sij) is the shift matrix (all entries Sij

are zero, except for Sii+1 which equals 1 for all i) and D a diagonal matrix.

(f) Suppose L is banded (i.e., there is a k such that Lij = 0 if i−k < j). Will B have a specific
sparsity structure?

(g) Discuss the efficiency of computing x given L and b.

Exercise 2.2. Let L be a k×k lower triangular matrix with non-zero diagonal elements. Put
ℓj ≡ Lej − ej. Note that e∗i ℓj = 0 if i < j.

(a) Prove that L = (I+ ℓ1e
∗
1) · . . . · (I+ ℓke

∗
k).

(b) Prove that, if diag(L) = I (i.e., all ones on the diagonal), then e∗j ℓj = 0 and

(I+ ℓje
∗
j)

−1 = I− ℓje
∗
j .

Let A be an k × n matrix. Consider the sequence (Aj) of k × n matrices for which

A0 ≡ A, (I+ ℓje
∗
j)Aj = Aj−1 (j = 1, . . . , k) (2.1)

(Aj is to be solved). Put U ≡ Ak.

(c) Prove that A = LU.
Note that with n = 1, this describes the solution process of lower triangular system Ly = b

with ‘forward elimination’ (i.e., take A0 = b and y = Ak).

B LU-decompositions

Exercise 2.3. Gauss elimination. Let A be an k × n matrix and let L be such that
e∗iLej = e∗iAj−1ej if i ≥ j (i.e., the jth column of L is the jth column of Aj−1 below the
diagonal), with Aj−1 as in (2.1) (j = 1, . . . , k).

(a) Prove that U is upper triangular (and diag(U) = I).

(b) Check that (2.1) with L with columns scaled (e∗iLej = 1
νj
e∗iAj−1ej if i ≥ j with νj ≡

e∗jAj−1ej, assuming νj 6= 0) such that diag(L) = I represents the standardGauss elimination

process for computing an LU-decomposition (see Alg. 2.1).

Exercise 2.4. Let A be an n× n matrix.

(a) Show that if A has an LU-decomposition, A = LU, with diag(L) = I, and is non-singular,
then L and U are unique.

1

LU-factorisation (standard)

Put U = A = (Uik).

For k = 1, . . . , n− 1 do

For i = k + 1, . . . , n do

Lik = Uik/Ukk

For j = k + 1, . . . , n do

Uij ← Uij − LikUkj

LU-factorisation (ikj-variant)

Put U = A = (Uik).

For i = 2, . . . , n do

For k = 1, . . . , i− 1 do

Lik = Uik/Ukk

For j = k + 1, . . . , n do

Uij ← Uij − LikUkj

Algorithm 2.1. Computing the LU-factorisation with Gauss elimination of an n × n matrix A:
A = LU, where, with L = (Lik) and U = (Uik), the Lik values for k < i and the Uik values for k ≥ i are
as computed in the algorithm, Lkk = 1 all k and all other Lik and Uik values are 0. The left panel displays
the standard variant, also called kij-variant. The right panel shows the so-called ikj-variant. In practise, the
resulting U and the L factors are stored in the same location as the original matrix (i.e, if U is the original
matrix, then the value Lik in the above algorithms is stored in the location for Uik: replace Lik by Uik in
the algorithms. Then, upon termination, Lik = Uik for k < i).

LU-factorisation with partial pivoting

Put U = A = (Uik), π = (1, 2, . . . , n)

For k = 1, . . . , n− 1 do

m = argmax{|Uπ(j),k| j, j ≥ k}
ℓ = π(k), π(k) = π(m), π(m) = ℓ

For i = k + 1, . . . , n do

Lπ(i)π(k) = Uπ(i)k/Uπ(m)k

For j = k + 1, . . . , n do

Uπ(i)j ← Uπ(i)j − Lπ(i)π(k)Uπ(k)j

Algorithm 2.2. Computing the LU-factorisation with Gauss elimination of an n× n matrix A using
partial pivoting. Here, for a function f on k ≡ {1, . . . , k} with values ≥ 0, argmax is the smallest index at

which f takes its maximum (j0 = argmax{f(j) j ∈ k} is such that f(j) ≤ f(j0) for all j ∈ k and j0 ≤ j if
f(j) = f(j0)). With Uπ(i)k = 0 for k < π(i), Lπ(i)π(k) = 0 for π(k) > π(i) and Lπ(k)π(k) = 1 we have that
A = LU, and, following the Matlab conventions, A(π, :) = L(π, π)U(π, :) with L(π, π) lower triangular
with ones on the diagonal and U(π, :) upper triangular; π defines a permutation P: PA = A(π, :). Note
that this algorithm avoids swapping rows: it simply only swaps indices. Note that x solves Ax = b if and
only if x solves A(π, :)x = b(π).

(b) Show that if A has an LDU-decomposition, A = LDU, with diag(L) = diag(U) = I, and
is non-singular, then L, D and U are unique.

Exercise 2.5. Let A be an n× n matrix. Below we neglect terms that are lower order in n.
Show the following:

(a) It requires 2n3/3 flop (floating point operations) to compute an LU-decomposition.

(b) It requires 2n2 flop to solve both the systems Ly = b and Ux = y.

(c) If A is banded with bandwith p, i.e., Aij = 0 if |i − j| > p, then it requires 2p2n flop to
compute an LU-decomposition.

(d) Both L and U have also bandwidth p and it requires 2pn flop to solve both the systems
Ly = b and Ux = y.

Exercise 2.6. In Gauss elimination with partial pivoting (GEPP), rows of the partially
eliminated matrices may be switch in each step of the process.

2

(a) Show that this can be represented by one permutation matrix P (a matrix that arises by
permuting rows of the identity matrix I), i.e., PA = LU, with U the upper triangular matrix
as resulting from GEPP and |Lij | ≤ 1 for all matrix entries Lij of L: ‖L‖M = 1.

(b) How is L related to the Lij-terms as computed in the steps of GEPP?

(c) Give an adaption ofAlg. 2.1 (standard variant) that incorporates partial pivotting. Include
also the updating of the permutation π of (1, 2, . . . , n) that represents the permutation matrix
P (i.e., the jth row of P equals eT

π(j). Hint: start with π = (1, 2, . . . , n).)

(d) Give another variant of Alg. 2.1 (standard variant) where the partial pivotting is incorpo-
rated not by swapping rows, but by going through the rows in a customized order (swap the
‘pointers’ to the rows rather than the rows themselves), i.e., derive Alg. 2.2. Can you guess
what strategy Matlab is following?

Exercise 2.7. Suppose A = LU with L = (Lij), U = (Uij) and Lii = 1 all i. Derive an
algorithm to compute Lij and Uij by comparing the product LU with A.

Exercise 2.8. Let A = (aij) be an n× n matrix.
Assume A is upper Hesenberg, that is, aij = 0 if i > j + 1.

(a) Assume LU-factorisation does not require pivoting (cf., Exercise 2.6). Show that L is
bidiagonal. Give an (efficient) algorithm to compute the LU-factorisation, A = LU, of A.
Show that the factorisation can be computed with n2 flop.

Tridiagonal matrices T = (tij) are special Hessenberg matrices: tij = 0 also if i < j − 1.
Give an efficient algorithm to compute the LU-factorisation for such a matrix (also assuming
pivotting is not required).

(b) Assume partial pivoting is required. Does that affect the Hessenberg structure in the elim-
ination steps? If the resulting factorisation is represented as PA = LU with P an appropriate
permutation, is PA still Hessenberg? Is a tridiagonal structure affected by partial pivotting?

(c) Suppose, for a sequence σ1, . . . , σn of scalars and a sequence b1, . . . ,bn of n-vectors, we
want to solve all systems

(A− σjI)xj = bj , (j = 1, . . . , n). (2.2)

Show that this can be done with 2n3 flop (neglecting terms of order n2, i.e., modest multiples
of n2).

Now, supposeA is a general n×nmatrix (no specific algebraic structure, no specific sparsity
structure).

(d) In Exercise 3.19 in Lecture 3, we will see that with 8
3n

3 flop we can compute an n × n
unitary matrix Q and an upper Hessenberg matrix H such that AQ = QH (a Hessenberg
factorisation). Use this and explain how the n shifted systems (2.2) can be solved in 8 2

3n
3 flop.

Analyse the costs if the n shifted systems are solved without a Hessenberg factorisation.

Variants for computing the LU-decomposition. Matrices are often stored row-wise. The
variant of the Gaussian elimination process in the right panel of Alg. 2.1, the so called ikj-

variant, fits better this row-wise storage format. The standard variant in Exercise 2.3 is the
kij-variant. Note that the ikj-variant does not allow pivoting of rows. Column pivoting is
possible.

Exercise 2.9. Show that A = LU, with U the upper triangular part of the matrix as con-
structed in the ikj-variant and L = I + L′, where L′ = (Lij) also as in the ikj-variant: both
variants give the same L and U factors (also in floating-point arithmetic).

Theorem 2.1 An n × n matrix A has a non-singular LU-decomposition (without pivoting),
A = LU, i.e., L has all 1 on its diagonal U is non-singular, if and only if each left upper-block
of A is non-singular. The LU-decomposition is unique in this case.

3

Exercise 2.10. Proof of Theorem 2.1.

(a) Show that both L = (Lij) andU = (Uij) are non-singular ifA = LU andA is non-singular.
Note that det(A) = det(L) det(U) = det(U) =

∏n

i=1 Uii. Conclude that A is non-singular if
and only if all diagonal entries Uii of U are non-zero.

(b) Let Aj , Lj , and Uj be the j × j left upper block of A, L, and U, respectively. Prove
that Aj = LjUj is the LU-decomposition of Aj if A = LU is the LU-decomposition of A
(j = 1, . . . , n).

(c) Assume A is non-singular. Use an induction argument and the above results to show that
A has an LU-decomposition if and only if each square left upper-block of A is non-singular.

(d) Prove that the LU-decomposition is unique if the diagonal elements of L are fixed to 1 and
all square left upper blocks of A are non-singular.

For an n× n matrix A it is often convenient to consider a some block partitioning

A =

[
A11 A12

A21 A22

]
,

where for some m, 1 ≤ m ≤ n, A11 is the m ×m left upper-block of A, with k ≡ n−m, A22

the k × k right lower-block, etc..

In case A11 is non-singular, consider the block LU-factorisation

[
A11 A12

A21 A22

]
= A = LU =

[
I1 0

A21A
−1
11 I2

][
A11 A21

0 U22

]

with I1 and I2 identity matrices of appropriate size and U22 = A22 −A21A
−1
11 A21. U22 is the

Schur complement (of A11 in A).

C Cholesky decomposition

A complex n× n matrix A is positive definite if
(i) A is Hermitian, i.e, A∗ = A, and (ii) x∗Ax > 0 (x ∈ C

n, x 6= 0).
A is said to be positive semi-definite if (i) A is Hermitian and (ii)’ x∗Ax ≥ 0 (x ∈ C

n).
A real matrix A is positive definite if (i)’ A is symmetric, i.e., AT = A and (ii)” xTAx > 0
(x ∈ R

n, x 6= 0).

As observed in Exercise 0.29 of Lecture 0, property (i) follows from property (ii), in the
complex case. If the matrix is real and xTAx > 0 for all x ∈ R

n, x 6= 0, then (i) does not
follow and the additional restriction AT = A is required for positive definiteness.

In the literature, ‘positive definite’ and ‘positive semi-definite’ are also called ‘strictly pos-
itive definite’ and ‘positive definite’, respectively.

Exercise 2.11. Prove that a positive definite matrix is non-singular.

Theorem 2.2 Let A be a complex or real positive (semi-)definite n× n matrix. Then there is
a Cholesky factorisation, i.e., there is an upper triangular n× n matrix C with all diagonal
entries ≥ 0, a so called Cholesky factor, such that

A = C∗C.

In particular, ‖C‖22 = ‖A‖2. If A is real, then C is real.
A is positive definite if and only if all diagonal entries of C are > 0. The Cholesky factor is
unique if A is positive definite. Then, we also have that C22(C) = C2(A).

4

The existence of a Cholesky factorisation follows from Theorem 2.1 and the fact that each
left upper block of a complex positive definite matrix is positive definite as well (why?) and
therefore non-singular. The proof in the exercise below essentially folows this argument, but is
a but more straight-forward.

Exercise 2.12. Proof of Theorem 2.2. First assume that A is positive definite.

(a) If the Cholesky decomposition exists, then prove that the Cholesky factors are non-singular
and C22(C) = C2(A). Note that the Cholesky factor is non-singular if and only if all its diagonal
entries are non-zero.

To prove existence and uniqueness of the Cholesky factorisation, partition C and A as

C =

[
C′ c

0∗ γ

]
, A =

[
A′ a

a∗ α

]
,

where C′ is the left (n − 1) × (n − 1) of C, (cT, γ)T is the last column of C, and we have a
similar partitioning of A.

Assume A′ has a Cholesky factorisation with unique Cholesky factor C′. We will prove
that the Cholesky decomposition of A (uniquely) exists.

(b) Show that c is the (unique) solution of the lower triangular system (C′)∗c = a, which can
be solved by forward substitution.

Put β ≡ α− ‖c‖22.
(c) Prove that, with γ =

√
β ≥ 0 if β ≥ 0, C is the Cholesky factor of A.

(d) Derive a contradiction if β = 0.

(e) Assume that β < 0. Consider the Cholesky decomposition for the matrix A + |β|en e∗n.
Prove that this matrix is positive definite and derive a contradiction.

(f) Prove Theorem 2.2.

(g) Show that C is real if A is real.

(h) If A has a Cholesky factorisation, then A is positive definite.

Assume that A is positive semi-definite.

(i) Prove the existence of a Cholesky factorisation (Hint: Note that A+ εI is positive definite
for all ε > 0 and recall that ‖Cε‖22 = ‖A+ εI‖2 for the appropriate Cholesky factor Cε).

(j) Give an example to illustrate the fact that the Cholesky factors need not to be unique if A
is positive semi-definite.

Exercise 2.13. Suppose that A is a symmetric and positive definite tridiagonal matrix. Give
an (efficient) algorithm to compute the LDLT-decomposition of A, i.e., compute the factors D
and L′ such that A = LDLT with L = I+ L′, L′ strict lower triangular, and D diagonal.

Exercise 2.14. Let A be a complex positive semi-definite n× n matrix.

(a) For x ∈ C
n, show that x ∈ N (A) if and only if x∗Ax = 0. Does this equivalence hold for

any Hermitian matrix A?

(b) Assume that A = LL∗ for some n× n matrix L. Show that

N (L∗) = N (A) and R(L) = R(A).

5

D Iterative refinement

Exercise 2.15. Let A be a non-singular n×n matrix. Let b be an n-vector. We are interested
in solving Ax = b for x. Suppose we have a numerical procedure that, for some δ ∈ (0, 12),
produces for any n-vector r a computed solution û of the systemAu = r such that (A+∆)û = r

for some n× n matrix ∆; ∆ may depend on r, but ‖A−1∆‖ ≤ δ.

Solve Ax = b for x.

Put x0 ≡ x̂, r0 ≡ b, u0 = x0.

For i = 1, . . . do

Compute ri ≡ ri−1 −Aui−1

Stop if ‖ri‖ is sufficiently small

Solve Au = ri for u

With ui ≡ û, update xi = xi−1 + ui

We assume that the errors in the updates or ri−1 and xi−1 and in the matrix vector
multiplication Aui−1 are much smaller than δ, that is, we neglect these errors.

Prove the following claims.

(a) ri = b−Axi−1.

(b) ei ≡ x− xi = ei−1 − (A+∆i)
−1Aei−1 = (I+Ei)

−1Eiei−1,
where ∆i is such that (A+∆i)ui = ri and Ei ≡ A−1∆i.

(c) ‖ei‖ ≤ δ
1−δ
‖ei−1‖ ≤ (δ

1−δ
)i+1.

(d) Argue that the assumption on the size of the errors in the updates is a reasonable one as
long as ‖ei‖ is much larger (some factors n) than u ‖x‖ with u unit round off.

(e) Assume that δ ≤ 10−2. Conclude that the error in x5 as a solution of Ax = b is smaller
than 10−12.

(f) Suppose the numerical procedure is the LU-decomposition (with partial pivoting). Compare
the costs (in flop) for computing x0 and x5.

A practical stopping criterion would be ‘Stop if ‖ri‖/(‖A‖ ‖x0‖) ≤ 10−12’; see (1.26) in
Section C of Lecture 1.

E Rounding errors

We follow the conventions as introduced in Section E of Lecture 1.

LU-decomposition.

The following theorem gives the backward error in the solution process based on LU-
decomposition (from Gauss elimination).

An n× n matrix A = (Aij) has bandwidth p if |Aij | = 0 whenever |i− j| ≥ p.

Theorem 2.3 Let A be an n×n matrix with bandwidth p. Let L̂ and Û be the L and U factors
of the LU-decomposition of A as computed by Gauss elimination (without pivoting). Then1

A+∆LU = L̂Û for some ∆LU for which |∆LU | ≤ pu |L̂| |Û|.

Let x̂ be the solution of the system Ax = b as computed by solving L̂y = b and Ûx = ŷ. Then

(A+∆)x̂ = b for some ∆ for which |∆| ≤ 3 pu |L̂| |Û|.
1As in Section E in Lecture 1, inequalities and absolute values are matrix entry wise.

6

Exercise 2.16. Proof of Theorem 2.3. Let L be an n × n lower non-singular triangular
matrix with bandwith p.

(a) Let b be an n-vector. Let x̂ be the solution of Lx = b as computed by forward substitution.
Note that the j coordinate xj of x is computed as a difference of the scalar bj (the jth coordinate
of b) and an inner product. Use this fact and the results in (1.29) of Section E in Lecture 1 to
show that, for some n× n matrix ∆L we have that

(L+∆L)x̂ = b with |∆L| ≤ pu |L| and |b− Lx̂| ≤ pu |L| |x̂|.

Let A be an n× n matrix with bandwidth p.

(b) Let Û be the n × n matrix as computed by forward substitution by solving LU = A

column-wise, i.e., Lui = Aei is solved for ui, for i = 1, 2, . . . , n and we put U = [u1, . . . ,un].
Show that, for some n× n matrix ∆

(A+∆) = LÛ with |∆| = |A− LÛ| ≤ pu|L| |Û|.

Do we also have that A = (L+∆′
L)Û for some n× n matrix ∆′

L for which |∆′
L| ≤ pu |L|?

(c) Suppose L̂ is the lower triangular matrix as computed by the Gauss elimination process.

Show that the factor Û as computed by Gauss elimination is equal (in rounded arithmetic) to

the solution of L̂U = A as computed as indicated in (b) (do we have to worry about the zeros

in the lower triangular part of Û?). Note that for the claim in (b) it is irrelevant where the
lower triangular matrix L comes from and whether it is perturbed by an error. Conclude that
the computed factors in the LU-decomposition satisfy

A+∆LU = L̂ Û with |∆LU | ≤ pu |L̂| |Û|

(d) Let x̂ be the solution of Ax = b as computed by solving L̂y = b with computed solution

ŷ and Ûx = ŷ. Show that

(A+∆)x̂ = b with |∆| = |∆LU + L̂∆U +∆LÛ| ≤ 3 pu |L̂| |Û|.

Here, ∆L, ∆U , is the perturbation term that represents the error in solving L̂y = b for y, and
solving Ûx = ŷ for x, respectively.

Theorem 2.3 leads to the following (sharp) estimates for the backward errors in Gauss
elimination. For a proof, we refer to Exercise 2.17. Note that with partial pivoting, the
bandstructure will be (partly) destroyed. With pivotting we may have to replace p by n.

Corollary 2.4 For the backward error in the solution of a system obtained with and LU-
decomposition we have that

‖∆‖∞
‖A‖∞

≤ 3 pu
‖ |L̂| |Û| ‖∞
‖A‖∞

. (2.3)

With partial pivoting (cf., Exercise 2.6), this leads to

‖∆‖∞
‖A‖∞

≤ 3n3 u ρpv(A), where ρpv(A) ≡ ‖Û‖M‖A‖M
. (2.4)

The result indicates that the stability of the Gauss elimination process is a factor of order
‖ |L̂| |Û| ‖/‖ |A| ‖ worse than the stability of the problem “solve Ax = b for x”, cf., Section F
in Lecture 1. This factor can be viewed as the conditioning of Gauss elimination.

Once the LU factors are available, the factor ‖ |L̂| |Û| ‖/‖ |A| ‖ can be computed. Since,

with 1 ≡ (1, 1, . . . , 1)T, ‖ |L̂| |Û| ‖∞ = ‖ |L̂| (|Û|1) ‖∞ (why?) the computation of ‖ |L̂| |Û| ‖∞
requires n2 flop; much less than the computation of the LU-factors. Nevertheless, the so-called
growth factor ρpv(A) (cf., (2.4)) of the Gauss elimination process with partial pivoting, is
available for free as a side product of the elimination process and can conveniently be used saving

7

computational costs. Note, however, that ‖ |L̂| |Û| ‖∞/‖A‖∞ can be smaller than n2 ρpv(A) by
a factor n2.

It can be proved that the quantity ρpv(A) in (2.4) is at most 2n−1. In Exercise 2.18 below,
we will see that this bound is sharp. Already for n ≤ 50, this upper bound is larger than 1015.
However, in practice, it appears that ρpv(A) rarely is larger than 16 (Wilkinson’s miracle,
1965). Nevertheless, the Gauss elimination process with pivoting can be unstable also since
the factor n3 can be large. Full systems of size up to n = 10000 are standardly solved with
Gauss elimination with partial pivoting. With n = 10000, the factor n3 = 1012 allows a loss of
12 digits of accuracy (or more depending on C(A) even if ρpv(A) is modest). For large n, the
matrix should have some sparsity structure to make Gauss elimination feasible. In such a case,
pivoting has to be limited in order to avoid destruction of the sparsity.

Exercise 2.17. The stability of Gauss elimination. Consider Theorem 2.3.
The norm ‖ · ‖ in this exercise is a p-norm for p ∈ [1,∞]. (Otherwise p is the bandwidth of A.)

(a) Prove that

‖A−1∆LU‖ ≤ pu C(A)
‖ |L̂| |Û| ‖
‖A‖

Use the results of Theorem 1.11 in Lecture 1 to discuss the non-singularity of L̂Û and to
estimate ‖A− L̂Û‖ and ‖A−1 − (L̂Û)−1‖.
(b) Prove that (the backward error [cf., Theorem 1.10] can be bounded by

‖b−Ax̂‖
‖A‖ ‖x̂‖ ≤ 3 pu

‖ |L̂| |Û| ‖
‖A‖ . (2.5)

(c) Prove that (the forward can be bounded by)

‖x− x̂‖
‖x‖ ≤ δC(A)

1− δC(A)
, where δ ≡ 3pu

‖ |L̂| |Û| ‖
‖A‖

and assuming that δC(A) < 1.

(d) Assume partial pivoting has been applied (cf., Exercise 2.6). Now, consider PA instead of
A (note that partial pivoting applied to PA does not lead to a permutation of the rows. We
take p = n). Prove that then

‖L̂‖M ≤ 1 and
‖ |L̂| |Û| ‖∞
‖A‖∞

≤ n2 ρ(A),

with ρ(A) as in (2.4). Hence, δ can be estimated by 3un3 ρpv(A) (in case ‖ · ‖ = ‖ · ‖∞).

Partial pivoting limits the growth factor in Gauss elimination. Nevertheless, there are
(exceptional) situations where the growth is exponential in the dimension as we will see in the
next exercise. Although complete pivoting provably limits the growth even more, the bound
might still be huge for high dimensions: ρcomp(A) ≤ κn

3

2
+ 1

4
log(n) for some modest constant κ

(it is conjectured that ρcomp(A) ≤ κn). With complete pivoting, the absolute largest matrix
entry of the ‘active’ matrix (rather than of the first column of this matrix) is brought to ‘pivot
position’: after j sweeps of Gauss elimination, the active matrix is the (n−j)×(n−j) right lower
block of the matrix obtained after elimination of the first j columns (with the pivot strategy).
The absolute largest matrix entry of this matrix is brought to the top row of this matrix by
switching two rows. Then it is brought to the left top position (the pivot position) by switching
two columns. Eventually, we have an LU-decomposition of P1AP2 for some permutations P1

and P2.
Stability of Gauss elimination requires pivoting. Complete pivoting is hardly ever applied:

in practise partial pivoting appears to be sufficiently stable. For high dimensional, sparse
systems, pivot strategies on rows as well as on columns are frequently applied. However, in
these cases, the pivot strategies aim for efficiency (to keep fill-in as low as possible) and to

8

maintain some symmetry structure rather than for stability. At best they try to keep the lost
of stability limited: often more stability leeds to more fill, that is to a computationally more
costly process.

Exercise 2.18. Stability LU-decomposition. For ε ∈ R, ε 6= 0, let

A ≡
[

ε 1

1 0

]
.

(a) Determine the LU-decomposition A = LU of A (without pivoting).

(b) Compute (in exact arithmetic) ‖ |L| |U| ‖∞

‖A‖∞

and ‖L‖∞ ‖U‖∞

‖A‖∞

.

Exercise 2.19. Here, for an n× n matrix A, we estimate ρpv(A), where

ρpv(A) ≡ ‖U‖M‖A‖M
(2.6)

with the LU-factors L and U as obtained by Gauss elimination with partial pivoting.

(a) Let A0 ≡ A, A1,. . . , U ≡ An−1 the intermediate matrices as computed in the Gauss
elimination process with partial pivoting (cf., (2.1)): Ak is obtained after elimination of the
first k-columns. Recall that with partial pivoting the multiplication factors are ≤ 1 in absolute
value and prove that ‖A1‖M ≤ 2‖A0‖M . Conclude that ‖U‖M ≤ 2n−1‖A‖M , whence

ρpv(A) ≤ 2n−1. (2.7)

To prove that (2.7) is sharp, consider the n× n matrix A given by

A ≡




1 0 0 . . . 0 1

−1 1 0 . . . 0 1

−1 −1 1 0 1
...

...
. . .

...
...

−1 −1 −1 . . . 1 1

−1 −1 −1 . . . −1 1




. (2.8)

(b) Determine the LU-decomposition A = LU of A (without pivoting). Note that partial
pivoting leads to the same result (no rows have to be switched).

(c) Show that ρpv(A) = 2n−1.

(d) Compute (in exact arithmetic) ‖ |L| |U| ‖∞

‖A‖∞

and ‖L‖∞ ‖U‖∞

‖A‖∞

.

(e) Solve Ly = e1. Show that ‖L−1‖1 = ‖L−1‖∞ = 2n−1 and C∞(L) ≥ n 2n−1.

(f) Compute, now with complete pivoting, the L and U factors of the matrix A from (2.8) for
n = 4: P1AP2 = LU. Determine ρcomp(A).

Exercise 2.20. Here we discuss the estimate

‖ |L| |U| ‖∞
‖A‖∞

≤ n2ρpv(A) where ρpv(A) =
‖U‖M
‖A‖M

(2.9)

with the LU-factorisation as obtained by Gauss elimination with partial pivoting.

(a) Derive (2.9).

To show that this estimate is sharp (except for some modest factor), consider the n × n
matrix S defined by Sej ≡ ej+1 for j = 1, . . . , n − 1 and Sen = 0: S shifts the basisvectors.
Let a be the n-vector a ≡ (1,−1, 1,−1, . . .)T.

9

(b) Show that (I+ S)a = e1.
Prove that (I− S)−1 is the n× n lower triangular matrix with all ones in the lower triangle.
With b ≡ (I− S∗)−1a, show that b = (0,−1, 0,−1, . . .)T.
(c) Consider the (n+ 1)× (n+ 1) lower triangular matrix L1 defined (as block matrices) by

L1 ≡
[

I− S 0

a∗ 1

]
and U1 ≡

[
I+ S∗ 0

0∗ 1

]
.

Compute L−1
1 . Define the (2n+ 2)× (2n+ 2) matrices L, U and A (as block matrices) by

L ≡
[

L1 0

0 I

]
, U ≡

[
U1 L−1

1

0 I

]
, and A ≡ LU.

Here I is the identity matrix and 0 is the matrix of all zeros. Both are (n+ 1)× (n+ 1).
Show that L is lower triangular, U is upper triangular, and L and U are the L and U factors
of A as obtained by Gauss elimination with partial pivoting.

(d) Show ‖A‖M = 1, ‖A‖∞ = 3, ‖L‖∞ = n, ‖U‖∞ = 1
2n, ‖U‖M = 1, and ‖ |L| |U| ‖∞ = 1

2n
2.

Cholesky factorisation.

The following theorem describes estimates for the rounding errors in the Cholesky factori-
sation. The proof of this theorem is similar to the proof of Theorem 2.3 in Exercise 2.16: we
will not give details here.

Theorem 2.5 Let A be a complex n× n positive definite matrix.
Let Ĉ be the Cholesky factor as computed by Cholesky factorisation. Then

A+∆CC = Ĉ
∗
Ĉ for some ∆CC for which |∆CC | ≤ nu |Ĉ|∗ |Ĉ|.

Let x̂ be the solution of the system Ax = b as computed by solving Ĉ
∗
y = b and Ĉx = ŷ.

Then
(A+∆)x̂ = x for some ∆ for which |∆| ≤ 3nu |Ĉ|∗ |Ĉ|.

Although the estimates are similar to the ones in Theorem 2.3, they allow to prove that the
Cholesky factorisation allows a stable computation of the solution of systems involving positive
definite systems, as we will see in Exercise 2.21.

Corollary 2.6 For the backward error in the solution of a complex positive definite system
obtained with Cholesky’s decomposition we have that

‖∆‖2
‖A‖2

≤ 3un2. (2.10)

Exercise 2.21.

(a) Prove that ‖ |C|∗ |C| ‖2 ≤ n min(‖A‖2, ‖ |A| ‖2) = n ‖ |A| ‖2.
(b) Conclude that solving positive definite systems with Cholesky factorisation is stable (with
respect to the 2-norm, with condition number n, cf., Exercise 2.17).

The Estimate (2.10) can, with some effort, be improved to ‖∆‖2/‖A‖2 ≤ 2.5un
√
n.

10

