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Lecture 3 – Factorisations

A Decompositions

Exercise 3.1. The stability of decompositions. Let A, L and U be n× n non-singular
matrices such that A = LU. We are interested in the quantities

γ1 ≡
‖ |L| |U| ‖
‖A‖ and γ2 ≡

‖L‖ ‖U‖
‖A‖

for some induced norm.

(a) Show that γ2 ≤ min(C(L), C(U)), where C(A) is the condition number of a matrix A with
respect to the used norm.

(b) Show that for p-norms, γ1 ≤ γ2.

(c) Now, suppose L is unitary. Show that γ2 = 1 and γ1 ≤ n w.r.t. the 2-norm and γ2 = 1,
γ1 ≤

√
n w.r.t. the F -norm .

B Orthonormal matrices

Orthonormal matrices (see Lecture 0.C) play an important role in Numerical Linear Algebra.
The columns represent an orthonormal basis of a subspace. Stable computations require the
use of well-conditioned bases. The best conditioned basis is an orthonormal one.

In many methods high dimensional problems are approximately solved by projecting them
onto low dimensional spaces, thus turning the ‘hard’ high dimensional problem into an ‘easy’
low dimensional one. To have optimal stability orthogonal projection are often used.

A map P from C
n onto a subspaces V of Cn is an orthogonal projection onto V if

Px ∈ V for any x ∈ C
n,

Px = x for any x in V ,
x−Px ⊥ Px for any x ∈ C

n.

The first two properties define a projection onto V, the third property makes P orthogonal.
The orthogonal projection onto V is unique as we will learn in the next exercise. Non-orthogonal
projections are also called skew projections.

Orthogonal projections are conveniently defined by means of an orthonormal basis in the
image space V of the projection, as is explained in the next exercise. In Exercise 3.6, we will
see that any basis of V can be used to define the orthogonal projection. In part (d) of this
exercise, we will also see that how skew projections can be used to project orthogonal to V .

Exercise 3.2. Orthogonal projections. In this exercise we use the standard inner prod-
uct and associated 2-norm:

(x,y) = y∗x = yHx =
∑

ȳjxj . (3.1)

Let V = [v1, . . . ,vk] be an n× k matrix.

(a) Show that V is orthonormal if and only if V∗V = I, where I is the k × k identity matrix.

(b) Is the product VV∗ defined (i.e., do the dimensions match)? Is this product also equal to
an identity matrix if V is orthonormal?

(c) Suppose V is orthonormal.
Show that both P ≡ VV∗ and Q ≡ I −VV∗ are projections (i.e., PP = P) and Hermitian
(P∗ = P).
Show that P projects orthogonally on the V ≡ span(V) ≡ span{v1, . . . ,vk}.
Show that any map (matrix) P̃ that projects orthogonally onto V is equal to P: P is the
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orthogonal projection onto V .
Show that any Hermitian map (matrix) P̃ that projects onto V is equal to P
Show that Q is also an orthogonal projection (onto what space?).

(d) How many flop does it take to compute Px? And to compute Qx?
Note that, for any x ∈ C

n, with xV ≡ Px and xV⊥ ≡ x−Px = Qx, we have that

x = xV + xV⊥ , xV ∈ V , xV⊥ ⊥ V :

the orthogonal projection P onto V provides an efficient way to compute the component the
component in the subspace V as well as its orthogonal complement of any vector.

(e) Show that, if V is orthonormal,

I−VV∗ = I−
k∑

j=1

vjv
∗
j =

k∏

j=1

(I− vjv
∗
j ).

(Note: If I is the k × k identity, then I =
∑k

j=1 eje
∗
j . Therefore, if A = [a1, . . . , ak] is an n× k

matrix and B = [b1, . . . ,bk] is an m× k matrix, then we have that

AB∗ =

k∑

j=1

Aeje
∗
jB

∗ =

k∑

j=1

ajb
∗
j .

Here, we expressed AB∗ as the sum of rank one matrices.)

Exercise 3.3. One dimensional range. Let A be an n× k matrix.

(a) Prove that R(A) = N (A∗)⊥ (see also Exercise 0.4(c)).

Assume N (A∗) = span(v) for some v with ‖v‖2 = 1 (that is, k = n or n− 1).

(b) Prove that R(A) = {(I− v v∗)y y}.
Let b be a k vector.

(c) Let x be the least square solution of Ax = b, i.e., x = minargx̃‖Ax̃− b‖2. Prove that

b−Ax = v(v∗b), ‖b−Ax‖2 = |v∗b|.

(d) Let c be a k-vector such that v∗c 6= 0, c ⊥ b and ‖c‖2 = 1.
Show that b+ βc ∈ R(A) for some scalar β. Conclude that (I− c c∗)Ax = b for some x and

b−Ax = c
v∗b

v∗c
, ‖b−Ax‖2 =

|v∗b|
|v∗c|

Householder reflections of Exercise 3.4 and Givens rotations of Exercise 3.5 are important
elementary unitary matrices that allow stable transformations and that are frequently use to
bring matrices to a simpler form. For a typical application, see Exercise 3.16.

Exercise 3.4. Householder reflections. Let V ≡ [v1, . . . ,vk] be an orthonormal n × k
matrix. Let V ≡ span(V). Consider the Householder reflection

H ≡ I− 2VV∗.

(a) Use the results Exercise 3.2 to show that Hx reflects x with respect to the ‘mirror’ V⊥

(with n = 3 and k = 1, V⊥ is a plane). Show that H is unitary, Hermitian, and the inverse of
H is H itself.

(b) Discuss the computational costs to perform a matrix-vector product Hx. Discuss the
memory requirements to store H.
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(c) Let x and y be non-trivial vectors in C
n.

For a vector v and a scalar τ (in C) consider the following two statements

‖v‖2 = 1, (I− 2vv∗)x = τy, (3.2)

and

i) |τ | = ‖x‖2‖y‖2
, ii) τx∗y ∈ R, iii) v = ρ(x− τy) with |ρ| = 1

‖x− τy‖2
. (3.3)

Show that (3.2) ⇔ (3.3).
Note that ρ in (3.3) is not unique: ρ can be replaced by ζρ for any sign ζ, i.e., ζ ∈ C with

|ζ| = 1. However, this sign is irrelevant for vv∗, and therefore, for v. Except for a factor −1,
the scalar τ is determined by the properties i) and ii) of (3.3), (−τ has these two properties if
that is the case for τ): either τx∗y > 0 or τx∗y < 0 (if x∗y 6= 0). This essentially leaves two
choices for v. What do you expect to be the best choice for minimising the effect of rounding
errors in the Householder reflection in (3.2)? Also discus the situation where x∗y = 0.

Note that I − (2/ṽ∗ṽ) ṽ ṽ∗ is a Householder reflection (i.p., unitary) regardless whether ṽ
is an accurate approximation of the desired v.

(d) Let w = (wj) be an n-vector. Put

τ ≡ −sign(w1) ‖w‖2, ṽ ≡ w− τe1, β ≡ 2

ṽ∗ṽ
.

Show that, I− β ṽ ṽ∗ is a Householder reflection,

ṽ∗ṽ = 2‖w‖2(‖w‖2 + |w1|), and (I− β ṽ ṽ∗)w = τ e1.

With v ≡ ṽ/‖ṽ‖2, we have that I − β ṽ ṽ∗ = I − 2vv∗. Nevertheless, we prefer the first
expression. Why?

Exercise 3.5. Givens rotations. An n× n matrix G is a Givens rotation if G rotates
in an (i, j)-plane, i.e., in span([ei, ej]). Using Matlab notation, G is the n×n identity matrix
except for the submatrix G([i, j], [i, j]) which is equal to

G([i, j], [i, j]) =

[
c s

−s̄ c

]
, where c ≡ cos(φ), |s|2 = 1− c2,

for some φ ∈ [0, 2π).

(a) Show that G is unitary.

(b) In practice, a t ∈ C, a tangent value, is determined and c and s are computed as

c =
1√

1 + |t|2
and s = tc (3.4)

Let A be an n× n matrix.

(c) Show there is a Givens rotation (that rotates in the (i, j)-plane) such that the (i, j)-entry
of G∗AG is zero.

(d) What is the effect on the eigenvalues (of A as compared to G∗AG) if c and s are computed
using (3.4) and the error in t is large?

(e) The t that shows up in (c) is the root of a degree two polynomial. How do you compute
the desired root in view of rounding errors?

(f) Not that multiplication of the bottom row of G([i, j], [i, j]) with −1 turns G into a unitary
Hermitian matrix (actually a Householder reflection) that, as Givens rotations, also can be used
to bring matrix entries to 0.
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Exercise 3.6. Orthogonal and skew projections. Let V be an n× k matrix, k ≤ n.
Note that V is not required to be orthogonal. Put M ≡ V∗V and V ≡ span(V).

Prove that M is non-singular if and only if V has full rank.

(a) Show that P ≡ VM−1V∗ defines the orthogonal projection onto V if M is non-singular.

(b) Put E ≡ I −V∗V. Then M = I − E (ideally E = 0). Suppose ‖E‖ < 1.
Then M is non-singular (why?). Show that

I−V(I + E)V∗ = (I−VV∗)2 (3.5)

and, more generally,

I−V(I + E + E2 + . . .+ Em)V∗ = (I−VV∗)m+1.

Conclude that
lim

m→∞
(I−VV∗)m = I−VM−1V∗.

Hence, repeating Gram–Schmidt (cf., Lecture 0.C) leads to an orthonormal projection even
if the basis is not fully orthonormal (as will happen in rounded arithmetic). Statement (3.5)
can be used to prove that twice repeated Gram–Schmidt leads to a nearly orthonormal basis
(with ‖E‖22 = O(u)). There is a variant that controles the number of repetitions by tracking
the tangent of the angle between span(V) and the vector to be orthogonalized against span(V):
see, Alg. 3.1

(c) Consider the case where 1 ≪ k ≪ n. Discuss the costs of computing (I − VV∗)x, (I −
VM−1V∗)x and (I−VV∗)2x for a vector x (givenV and considering efficient implementations).

Let W be a full rank n× k matrix. Put T ≡ V∗W. Assume that T is non-singular.

(d) Prove that WT−1V∗ is a projection ontoW ≡ span(W), while Π ≡ I−WT−1V∗ projects
onto V⊥ with null space W: Π is a skew projection that projects orthogonal to V along W .

Exercise 3.7. Sherman–Morrison–Woodbury formula.
Consider low rank matrices V and W both of size n× k. Put M ≡ V∗V and T ≡W∗V.

We are interested in the solution y of the problem

solve (I−VW∗)y = x for y. (3.6)

(a) Assume w is an eigenvector of VW∗ with eigenvalue λ 6= 0. Show that W∗w is an
eigenvector of T with eigenvalue λ (in particular W∗w 6= ~0). Prove that λ 6= 0 is an eigenvalue
of VW∗ if and only if λ is an eigenvalue of T . Conclude that

I−VW∗ is non-singular ⇔ I − T is non-singular.

(b) Prove the Sherman-Morrison-Woodbury formula for the solution y of (3.6):

y = x+V(I − T )−1W∗x if I − T is non-singular. (3.7)

For more insight, assume M is non-singular and decompose the solution y of (3.6) into its
orthogonal projection onto span(V) and its orthogonal complement (cf., Exercise 3.6(a)):

y = (I−VM−1V∗)y +VM−1V∗y.

(c) Show that (I−VM−1V∗)y = (I−VM−1V∗)x.

(d) Show that (I − VW∗)VM−1V∗y = V(I − T )M−1V∗y = VW∗x + V(I − T )M−1V∗x.
Hence, if I − T is non-singular, we have that M−1V∗y = (I − T )−1W∗x+M−1V∗x.

(e) Now, prove (3.7) using the above decomposition of y and the results of (c) and (d).

Exercise 3.8. Conditioning. For α, β ∈ C such that |α|2 + |β|2 = 1, consider the 2 × 2
matrix

A ≡
[

α 1

β 0

]
= [r, s]
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with r the first column of A and s the second column.

(a) Show that the 2-norm condition number C2(A) of A is equal to

C2(A) =
√

1 + |α|
1− |α| =

1

tan 1
2∠(r, s)

.

(b) Consider the n × ℓ matrix A = [r,v2, . . . ,vℓ] with V ≡ [v2, . . . ,vℓ] orthonormal and r
normalised. Prove that C2(A) is equal to the reciprocal of the tangent of half the angle between
r and the space spanned by V. (Hint let s be the normalised vector VV∗r. Show that the
condition number of A and of the matrix [r, s] are the same.)

(c) With A as in (b), put rℓ ≡ r−VV∗r. Suppose that ‖rℓ‖2 ≪ 1, prove that

C2(A) ≈ 2

‖rℓ‖2
.

(d) Let A be an n×ℓ matrix. Show that the condition number ofA is larger than the reciprocal
of the tangent of half the angle between the ith column of A and the space spanned by the
other columns of A.

C Singular value decomposition

Let A be an n× k matrix. The decomposition

A = VΣQ∗ (3.8)

is a singular value decomposition (SVD) of A if

V is n× n unitary, Q is k × k unitary,

Σ = diag(σ1, . . . , σk) is n× k diagonal, i.e., Σij = 0 if i 6= j and σj ≡ Σjj

such that σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0.

The σk are singular values of A, the columns of V are left singular vectors, the columns
of Q are right singular vectors.

The following theorem states the existence of an SVD.

Theorem 3.1 Let A be an n× k matrix.
There are an orthonormal n×k matrix V1, a unitary k×k matrix Q and an k×k diagonal

matrix Σ1 = diag(σ1, . . . , σk) such that

A = V1 Σ1 Q
∗ and σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0. (3.9)

V1 can be extended to a unitary n× n matrix V = [V1,V2], Σ1 can be extended with rows
of zeros to an n × k diagonal matrix Σ = [ΣT

1 ,0
T]T. Then A = VΣQ∗, the SVD of A. In

particular, σ1, . . . , σk are the singular values of A. The singular values are unique.
Let ℓ be the largest index for which σℓ > 0 (i.e., σℓ+1 = . . . = σk = 0). Let V3 and

Q3 consist of the first ℓ columns of V1, and Q, respectively, and let Σ3 be the ℓ × ℓ diagonal
matrix Σ3 ≡ diag(σ1, . . . , σℓ). Then, V3 is n × k orthonormal, Q3 is k × ℓ orthonormal and
A = V3Σ3 Q

∗
3.

The last decomposition in the theorem, A = V3 Σ3 Q
∗
3, is the economical form of the

SVD.
In contrast to the singular values, the singular vectors are not unique: they allow multipli-

cation by a sign, i.e., by a ζ ∈ C with |ζ| = 1. If singular values coincide, then any orthonormal
basis of the space spanned by left singular vectors with the same singular value can replace
these left singular vectors. Similarly for the right singular vectors.
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Exercise 3.9. Proof of Theorem 3.1.

(a) Prove that there is an k × k unitary matrix Q such that Q∗A∗AQ = Λ is k × k diagonal.
The diagonal entries λi of Λ or positive. We may assume they are in decreasing order.

(b) Let Σ1 ≡ diag(σ1, . . . , σk) with σj ≡
√
λj . Put V1 ≡ AQΣ−1

1 . Prove that V1 is orthonor-
mal. Prove (3.9).

(c) Show that any n× k orthonormal matrix V1 can be extended to an n× n unitary matrix
V = [V1,V2].

(d) Show that the SVD in economical form exists.

The economical form of the SVD allows us to characrterize the Moore–Penrose pseudo
inverse (as introduced in Exercise 0.14).

Theorem 3.2 Let A be an n× k matrix.
Let A = VΣQ∗ be the SVD in ecomical form, i.e., Σ is an ℓ× ℓ non-singular diagonal matrix
with ℓ ≤ k. Then, for the Moore–Penrose pseudo-inverse A† we have that

A† = QΣ−1V∗

If A∗A is non-singular (i.e., n ≥ ℓ = k), then

A† = (A∗A)−1A∗.

Exercise 3.10. Proof of Theorem 3.2.

(a) Prove the first claim of Theorem 3.2.

(b) Prove the second claim.

Exercise 3.11. SVD and least square problems. For an n×k matrix A, let A = VΣQ∗

be its singular value decomposition (economical form): V is n×k orthonormal,Q is k×k unitary,
Σ is k × k diagonal. For a b ∈ C

n, consider the least square problems

Ax = b and Σy = b̃ ≡ V∗b

with solution x and y, respectively, where the least square solution x of the problem Ax = b

is x ≡ argmin{‖b−Ax′‖2 x′ ∈ C
k}.

(a) Give an expression that relates x and y.

(b) Give an expression for the least square, least norm solution of Σy = b̃ in terms of b̃ = (̃bj).
Is the least square, least norm solution unique?

(c) Interpret the y results for x.

Exercise 3.12. The SVD can be used to discuss the sharpness of the estimates in Theorem 1.9.
Let A be an n× n matrix and x and n-vector.

(a) Let δ > 0.
Show there is an n× n matrix ∆ such that ‖∆‖2 = δ and ‖A∆x‖2 = ‖A‖2 ‖∆‖2 ‖x‖2
(b) Characterise the situation where ‖Ax‖2 = ‖A‖2 ‖x‖2.

Exercise 3.13. Let A be n× k.
Put σmin ≡ min{‖Ay‖2 ‖y‖2 = 1}, σmax ≡ max{‖Ay‖2 ‖y‖2 = 1}.
(a) Prove that σmin = 1/‖A−1‖2 in case k = n and A is non-singular.

(b) Prove that σmin is the smallest singular value of A and σmax is the largest singular value.

(c) Let A = QR be the (economical form) QR-decomposition. Show that R∗R is the Cholesky
decomposition of A∗A.
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Exercise 3.14. Angles between subspaces. Let V and W be linear subspace of Cn.
Let x ∈ C

n,x 6= 0. Then the angle ∠(x,V) between x and V is defined by

∠(x,V) ≡ min{∠(x,v) v ∈ V ,v 6= 0}. (3.10)

Let V be an n× k orthonormal matrix that spans V .
(a) Let xV be the orthogonal projection onto V . Show that xV = V(V∗x).
Prove that ∠(x,V) = 1

2π if xV = 0 and ∠(x,V) = ∠(x,xV ) if xV 6= 0.

(b) Define

φ(W ,V) ≡ max{∠(w,V) w ∈ W,w 6= 0}. (3.11)

Is the definition ∠(W ,V) ≡ φ(W ,V) acceptable? (Hint: Consider a 2-dimensional space V and
a 1-dimensional space W and conclude that with this definition, ∠(W ,V) 6= ∠(V ,W).)

Define
∠(W ,V) ≡ min(φ(W ,V), φ(V ,W)). (3.12)

Let W be an n× ℓ orthonormal matrix that spans W .

(c) Assume ℓ ≤ k.
Prove that

cos(∠(W ,V)) is the smallest singular value of V∗W. (3.13)

Prove that
sin(∠(W ,V)) = ‖(I−VV∗)WW∗‖2. (3.14)

(d) Prove that ∠(W ,V) ≡ φ(W ,V) if ℓ ≤ k, while φ(W ,V) = 1
2π if ℓ > k.

D Orthonormalisation

Let A be an n× k matrix, n ≥ k.

A = QR = Q′ R′ where R ≡
[

R′

0

]

is a QR-decomposition or QR-factorisation of A if Q is n×n unitary and R is n×k upper
triangular.

Let R′ be the ℓ × k upper block of R with ℓ ≤ k such that R can be obtained from R′

by appending R′ with zeros. Let Q′ be the left n × ℓ block of Q. Then A = Q′ R′. This
decomposition is a so-called ‘economical form’ of the QR-decomposition of A.
In Matlab [Q,R]=qr(A) and [Qp,Rp]=qr(A,’0’), respectively.

Theorem 3.3 Let A be an n× k matrix.
Then A has a QR-decomposition and span (A) = span (Q).
If A = QR is a QR decomposition and D is a k × k diagonal such that |D| = I,
then A = (QD)(D−1R) is also a QR decomposition. If A has full rank, then these are the only
QR-decompositions: the QR-decomposition is unique up to signs.1

The Gram–Schmidt process proves the existence of a QR-decomposition. Alg. 3.2 produces
the (economical form of the) QR-decompostion: it relies on (a variant of) the Gram–Schmidt
process (of Alg. 3.1).

Exercise 3.15. Gram–Schmidt. Let A = [a1, . . . , ak] be an n× k matrix, n ≥ k.

(a) Prove that the columns of Q′ form an orthonormal basis of R(A), the space spanned by
the columns of A.

1For each j, let π(j) be such that rπ(j),j 6= 0 and rij = 0 for all i > π(j). If we assume the
decomposition to be ordered such that π is not decreasing, π(j) ≤ π(j + 1), then the decomposition is
unique up to signs, also in case A does not have full rank. If A has full rank, then π(j) = j all j.
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%% Orthogonalise:

%% Classical Gram-Schmidt

~h = Q∗a, v = a−Q~h

ν = ‖v‖2
%% Normalise:

Normalise

Select a τ > 0

%% Orthogonalise:

%% Repeated Gram-Schmidt

~h ≡ Q∗a, v = a−Q~h

ν = ‖v‖2, µ = ‖~h‖2
while (0 < ν < τ µ)

~g = Q∗v, v← v −Q~g

ν = ‖v‖2, µ = ‖~g‖2, ~h← ~h+ ~g

end while

%% Normalise:

Normalise

%% Orthogonalise:

%% Modified Gram-Schmidt

v = a

for i = 1, . . . , ℓ do

hi ≡ q∗

iv, v← v − qi hi

end for

ν = ‖v‖2
%% Normalise:

Normalise

Normalise:

If ν > 0
~h← (~h; ν), q = v/ν

elseif (EXPAND & ℓ < n)

q = Orth(Q, randn), ~h← (~h; 0)

else

q = [ ]

end if

Algorithm 3.1. [q,~h ] = Orth(Q,a): an n-vector a is orthogonalised against an n× ℓ orthonormal
matrix Q = [q1, . . . ,qℓ]. If a is not in the span of Q, then the output vector q is orthogonal to Q,

normalised, and a is in span([Q,q]): a = [Q,q]~h. The output vector ~h = (hi) is an (ℓ+ 1)-vector, hℓ+1q

is the component of a orthogonal to Q. If Q = [ ], then ~h = (h1), h1 = ‖a‖2, q = a/h1.

If a is in the span of Q, then q is an empty vector (an n × 0 vector in Matlab’s terminology) and ~h is

an ℓ-vector: a = Q~h. Or, if expansion of Q is required (i.e., EXPAND is ‘true’) and is allowed by the
dimensions (i.e., ℓ < n), then Q is expanded with a normalised random vector that is orthogonal to Q, i.e.,

a random vector is orthogonalised against Q using Orth (recursively). Then, ~h is an (ℓ + 1)-vector with
last coordinate equal to 0.
Several variants of the Gram–Schmidt process can be used for the orthogonalising (the left panels and the
top right panel). The variants have different stability properties (see Lecture 3.E below). The normalisation
step ‘Normalise’ (right bottom panel) is the same for all variants.
In practice, the condition ‘‖v‖2 > 0’ (i.e., ν > 0) in ‘Normalise’ and in repeated Gram–Schmidt has to
be replaced by one that accommodates for the effect of rounding errors as ‖v‖2 > ξ̄(ℓ+ n)

√
ℓ ‖a‖2 with ξ̄

the relative machine precision (see the discussion in the paragraph containing (1.30)).

Consider the variants in Alg. 3.1 of the Gram–Schmidt process as introduced in Section C
in Lecture 0.

(b) Show that (in exact arithmetic), these variants (in combination with Alg. 3.2) are equiv-
alent to the one in Alg. 0.1, i.e, they produce the same quantities. Check that modified and
classical Gram–Schmidt require the same number of flops (if A is of full rank, then 2nk2,
neglecting costs of order nk flop).

(c) Show that the classical variant is also in rounded arithmetic equivalent to the one in
Alg. 0.1. Argue why this is not the case for the modified variant.

(d) Argue that ν
µ
is (an estimate for) the tangent of the angle between aj and the span(Q).

Note that ‖aj‖2 can be computed from ν and µ, that is, without additional n-dimensional
operations.

The DGKS (Daniel–Grag–Kaufmann–Stewart) repetition criterion, ν < τµ, in repeated
Gram–Schmidt requires repeated orthogonalisation if the tangent is smaller than τ (typical
value for τ is 0.7). In practise, repetition is required at most once. For a more extensive
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Q = [ ], R = [ ], ℓ = 0

for j = 1, . . . , k do

[q,~h ] = Orth(Q,aj)

if q 6= [ ]

Q← [Q,q], R← [R ;~0∗j−1
], ℓ← ℓ+ 1

end if

R← [R,~h ]

end for

Algorithm 3.2. The QR-decomposition of an n×k matrix A = [a1, . . . ,ak] is computed: A = QR.
Q is an orthonormal n × ℓ matrix with ℓ ≤ k; ℓ = k if A is of full rank. R is an ℓ × k upper triangular
matrix.
The algorithm uses the orthogonalisation procedure Orth from Alg. 3.1. Here, [R ; ~0∗j−1] indicates that

the ℓ× (j − 1) matrix R is extended with a row of zeros: ~0j−1 is the (j − 1)-vector of zeros. [R,~h ] is the

matrix R extended with one column by the vector ~h.

discussion on the stability of this Gram–Schmidt variant, see Lecture 3.E below.

(e) Argue that, in contrast to modified and classical Gram–Schmidt, repeated Gram–Schmidt
is (much less) insensitive to perturbations of (the orthogonality of) Q. (Hint: see Exercise 3.6)

(f) Show that rjj 6= 0 is each step j (ℓ = j) if A is of full rank.

(g) Show that the QR-decomposition of a full rank matrix A is unique up to signs (i.e., prove
the last statement of Theorem 3.3).

The following exercise gives a procedure,Householder QR, to construct a QR-decomposition,
using Householder reflections. This construction is in some sense optimal stable. The reason is
that a Householder reflection is unitary no matter how inaccurate the vector v is.

Exercise 3.16. Householder QR. Let A be an n× k matrix.
We show that the QR decomposition can be computed by the application of k (or k − 1 if

n = k) appropriate Householder reflections:

A(0) ≡ A, A(j) = Hvj
A(j−1) (j = 1, . . . , k)

where

Hv ≡ I− 2

v∗v
v v∗, i.e., Hvx = x− vβ with β ≡ 2

v∗x

v∗v
(3.15)

and vj as to be discussed below.

(a) Show that there is an n-vector v1 such that Hv1
(Ae1) = τe1 for some scalar τ (e1 and e1

are the standard basis vectors of dimension k, n, respectively).

(b) Show there are vectors v1, . . . ,vk such that the lower triangular part of the left n× j block
of A(j+1) consists of zeros (j = 1, . . . , k). Note that the first j − 1 coordinates of vj consists of
zeros.

(c) Show that with

Q ≡ Hv1
· . . . ·Hvk

, (3.16)

we have that A = QA(k) is a QR-decomposition of A: R ≡ A(k) is upper triangular.

Exercise 3.17. Costs of Householder QR. Notation as in Exercise 3.16.
Note that the storage of v1, . . . ,vk and of R requires the same memory as for storing A

plus the storage for one additional k-vector.
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(a) Suppose the n-vector v and the scalar v∗v/2 is available. Show that Hvx can be computed
with 4n flop. Conclude that the computation ofA(1) (given v1 and ρ1 ≡ v∗

1v1) requires 4nk+2k
flop.

(b) If we neglect lower order cost terms, then Householder QR requires 2nk2 − 2
3k

3 flop to
compute v1, . . . ,vk and R. (Actually, the costs to compute the vj and ρj is in the neglected
lower order terms.) Note that the term ‘− 2

3k
3’ is missing in the costs of Gram–Schmidt (cf.

Exercise 3.15(b)). In particular, if k ≪ n then the costs of Gram–Schmidt and Householder
QR are comparable.

(c) In many applications, we can work with the factorised form of Q (cf., (3.16)). If an explicit
expression for Q is required, then this can be obtained by Q = Q(k) where

Q(0) = Ik, Q(j) = Hvk+1−j
Q(j−1) (j = 1, 2, . . . , k),

where Ik is the left n× k block of the n× n identity matrix I. This requires 2nk2 flop.
For k ≪ n, this doubles the costs would make Householder twice as expensive as Gram–

Schmidt. Moreover, the high stability of Householder QR is somewhat affected.

The following exercise contains an application of QR-decompositions.

Exercise 3.18. Least square problems.
Let A be an n× k matrix, k ≤ n, and let b ∈ C

n, b 6= 0.

(a) Prove Theorem 0.5

(b) Show there is an x ∈ C
k (a so-called least square solution) such that

‖b−Ax‖2 ≤ ‖b−Ay‖2 for all y ∈ C
k.

Show that x is characterised by the property

b−Ax ⊥ Ay (y ∈ C
k)

which is equivalent to (normal equations)

A∗Ax = A∗b.

Let A = QR be the QR decomposition (in its most economical form, i.e., Q is n×m and
R is m× k with m ≤ k and R has full row rank).

(c) Show that the least square solution x satisfies

Rx = Q∗b.

Prove that QQ∗b is the orthogonal projection of b onto the range of A. Show that

Ax = QQ∗b, r ≡ b−Ax = b−QQ∗b :

the residual r is orthogonal complement of b with respect to range of A.

(d) Is the least square solution unique?

(e) Note that x+ y is a least square solution if x is a least square solution and Ay = 0.

Let x be a least square solution with smallest ‖ · ‖2-norm. Prove that x ⊥ {y Ay = 0} and
x = A∗z for some z ∈ C

n.

(f) Is the least square, least norm solution unique?

Hessenberg decomposition.
The matrix R in a QR-decomposition of A, is the matrix of A with repect to the standard basis
in domain space and the orthonormal basis q1, . . . ,qk in image space. The resulting matrix
R has a simple structure (upper triangular). For many applications where A is square, for
instance in eigenvalue computations, it is desirable to have the same basis in domain space as
in image space. Unfortunately, the matrix of A with respect to such a basis can not be as
simple as triangular. But it can be upper Hessenberg: H = (Hij) is upper Hessenberg if its
lower triangular entries, except for the first lower co-diagonal are zero: Hij = 0 if i− j > 1.

The following theorem tells us that Hessenberg decompositions exist.
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Theorem 3.4 Let A be an n× n matrix. There is an Hessenberg decomposition, that is,
there are n× n matrices V and H such that

AV = VH, V∗V = I, and H is Hessenberg. (3.17)

If the first column of V is fixed, then the Hessenberg decomposition is unique up to signs, that
is, the vj are unique up to scaling of the vj with factors of the form eiφ (±1 in the real case).

The following exercise gives an explicit construction of an Hessenberg decomposition using
Householder reflections. For matrices of low dimension, this construction can be very useful.
For general matrices, it proves the above theorem.

Exercise 3.19. Hessenberg decomposition. Let A be an n× n matrix.

(a) Let a1 = (a11, ã
T
1 )

T be the first column of A. Construct a ‖ · ‖2-normalised vector v1 of the
form v1 = (0, ṽT

1 )
T such that the Householder reflection H1 ≡ I − 2v1v

∗
1 maps a1 to a vector

of the form (a11, ∗, 0, . . . , 0)T. What is the form of the first column the matrix A2 ≡ H1AH∗
1.

(b) Repeat this procedure with a normalised vector v2 of the form (0, 0, ∗, ∗, . . . , ∗)T such that
the associated Householder reflection maps the second column of A2 to a vector of the form
(∗, ∗, ∗, 0, . . . , 0)T. What is the form of the first two columns of A3 ≡ H2A2H

∗
2?

(c) Repeat this procedure and conclude that there is a unitary matrix Q (= Hn−1 . . .H2H1)
such that QAQ∗ is upper Hessenberg: there is a Hessenberg decomposition (3.17).

(d) Is the Hessenberg decomposition unique (consider 2× 2 matrices)?

(e) Relate the Hessenberg decomposition to a QR-decomposition of [v1,AV]. Select the first
column of V. Show that then the Hessenberg decomposition (5.10) is unique up to signs.

(f) Show that the computation of v1, . . . ,vn and the upper Hessenberg matrix QAQ∗ requires
8
3n

3 flop (neglecting O(n2) terms). Note that a vector cn ≡ Qb can be recursively computed as
cj+1 = Hjcj (j = 1, 2, . . . , n− 1), where c1 ≡ b. Show that in this way Qb can be computed
with 2n2 flop. Conclude that there is no need to form the matrix Q explicitly.

Bi-diagonalisation. IfA is n×n and we accept to work with a basis (say,Q = [q1, . . . ,qn])
in image space that differs from the one in domain space (as, e1, . . . , en), then the QR-
decomposition shows that we can obtain a matrix representation of A that is upper triangular:
A = QR. With an appropriate non-trivial orthonormal basis in domain space we can sim-
plify the matrix structure even further: the matrix can be bidiagonal (see Th. 3.5). A matrix
B = (Bij) is upper bidiagonal if there are non-zeros only on the diagonal and the first upper
co-diagonal: Bij = 0 if i− j < −1 or i− j > 0.

Theorem 3.5 There are n× n matrices V, U and B such that

V∗AU = B, V∗V = I, U∗U = I, and B upper bi-diagonal. (3.18)

In the following exercise we use a procedure similar to the one in Exercise 3.19 to perform the
bi-diagonalisation: both V and U can be obtained as products of Householder reflections.

Exercise 3.20. Proof of Theorem 3.5. Let A be an n× n matrix.

(a) Let a be the first column of A. Construct a ‖ · ‖2-normalised vector v1 of the form v1 such
that the Householder reflection H1 ≡ I− 2v1v

∗
1 maps a1 to a vector of the form (∗, 0, . . . , 0)T.

(b) With A(1) ≡ H1A, Let a∗ = (a11, ã1) be the first row of A(1). Construct a ‖ ·‖2-normalised
vector u1 of the form u1 = (0, ũT

1 )
T such that the Householder reflection H′

1 ≡ I− 2u1u
∗
1 when

applied to the right maps a∗ to a vector of the form (a11, ∗, 0, . . . , 0) (a∗H′
1 = (a11, ∗, 0, . . . , 0);

cf., Exercise 3.19).

(c) Put A1 ≡ A(1)H′
1. Repeat this procedure with a normalised vector v2 of the form

(0, ∗, ∗, . . . , ∗)T such that the associated Householder reflection maps the second column of
A1 to a vector of the form (∗, ∗, 0, . . . , 0)T.
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(d) Repeat this procedure and conclude that the statement concerning the existence of the
bi-diagonalisation in (3.18) of Theorem 3.5 is correct.

(e) relate the singular values of A to the singular values of B.

(f) Show that the procedure in (d) can also be applied in case A is (n+ 1)× n.

As we will see in Section E below, Householder QR is optimal stable: the obtained matrix
Q, in factorised form (3.16), is unitary, rounding errors when being casted in backward error
form, can be bounded by machine precision times |A|. To analyse the stability of modified
Gram–Schmidt, the results in the following exercise are useful. Here, modified Gram-Schmidt
is related to a Householder QR, a relation that even holds in rounded arithmetic.

Exercise 3.21. Householder QR and Modified Gram–Schmidt. Let V ≡ [v1, . . . ,vk]
be an orthonormal n×k matrix. Let ej be the jth standard basis k-vector. Putwj ≡ [−eTj ,vT

j ]
T.

(a) Show that Hj ≡ I−wjw
∗
j is a Householder reflection.

(b) Prove that

Hk · . . . ·H1 = I−
k∑

j=1

wjw
∗
j =

[
0 V∗

V I−VV∗

]
.

Let A be an n×k matrix of rank k. Let 0 be the k×k matrix of zeros. Apply Householder

reflection to find the QR-decomposition of A(1) ≡
[

0

A

]
: A(j+1) = HjA

(j) for j = 1, . . . , k

with Hj Householder reflections and A(k+1) =

[
R

0

]
, where R is a k × k upper triangular

matrix and 0 is the n× k matrix of zeros (see Exercise 3.16).

(c) Show that R is non-singular.

(d) Show that A = VR, where V and the Householder reflections are related as indicated
above.

(e) Prove that, also in rounded arithmetic, this way of computing a QR-decomposition of A is
equivalent to computing the QR-decomposition with Modified Gram–Schmidt.

E Rounding errors

We follow the conventions as introduced in Section E of Lecture 1. Below we analyse the effect
of rounding errors in the algorithms for computing a QR-decomposition. For more details, we
refer to [1, Ch.18].

We first discuss the accuracy in the classical and the repeated Gram–Schmidt variant of
Alg. 3.1.

As observed in the paragraph containing (1.30), the rounding errors in the classical Gram–

Schmidt step a −Q(Q∗a) are equal to Q δ1 +∆~h + δ2, where the errors δ1, ∆, δ2 come from

computing Q∗a, Q~h, and a − a′, respectively. Here ~h ≡ Q∗a and a′ ≡ Q~h. We have the
sharp upper bounds ‖δ1‖2 ≤ n ξ̄ ‖ |Q∗| ‖2 ‖a‖2 ≤ n

√
ℓ ξ̄ ‖a‖2, ‖∆‖2 ≤ ℓ ξ ‖ |Q| ‖2 ≤ ℓ

√
ℓ ξ̄ and

‖δ2‖ ≤ ξ̄ ‖v‖2. Since ‖~h‖2 ≤ ‖a‖2, we obtain the upper bound ξ̄ (n+ℓ)
√
ℓ ‖a‖2 on the rounding

errors. In practice ℓ ≪ n. Therefore, the principal error component is Qδ1, which is in the
span of Q:

v ≡ a−Q(Q∗a) ⇒ v⋆ = v + δ with δ ≈ Q δ1, ‖δ1‖2 ≤ n
√
ℓ ξ̄ ‖a‖2.

Here, v⋆ is the version of v computed in floating point arithmetic. In particular, q⋆ =
v⋆/‖v⋆‖2 = q+δ/‖v⋆‖2, with component ≈ Qδ1/‖v⋆‖2 in the span of Q. Since ‖δ1‖2/‖v⋆‖2 .
n
√
ℓ ξ̄ (‖a‖2/‖v‖2), this component can be very large if ‖v‖2/‖a‖2 (= sin∠(Q, a)) is small. For

this reason, repeated Gram–Schmidt (see Alg. 3.1) repeats the orthogonalisation if this angle
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is small. Since the tangent of this angle is freely available (≈ ‖v‖2/‖~h‖2) as a side-product of

the process, this quantity is used in the repetition criterion: repeat if ‖v‖2 ≤ τ ‖~h‖2. Note that,
if τ ‖~h‖2 < ‖v‖2 ≤ 1

2

√
2‖a‖2, then ‖~h‖2 ≥ 1

2

√
2‖a‖2 and ‖a‖2/‖v‖2 ≤

√
2/τ . If ‖v‖2 1

2

√
2‖a‖2

then ‖a‖2/‖v‖2 ≤
√
2.

Repetition of the orthogonalisation removes the error components in the span of Q. How-
ever, it also introduces new error components. These might require another repeated orthog-
onalisation, which would make the procedure quit costly. Fortunately, the following theorem
guarantees that we have to repeat at most once: two classical Gram-Schmidt steps is enough.
The trick is that, we should not repeat if ‖v‖2 is of order machine precision times ‖a‖2. Since
errors of this size can not be avoided anyway (see the discussion in the paragraph containing
(1.30)), a vector v of this size is numerically equal to 0 and can be replaced by 0.

Consider the practical variant of repeated Gram–Schmidt of Alg. 3.1, where now ν > 0,
that is, ‖v‖2 > 0, is replaced by ν > ξ̄ (ℓ + n)

√
ℓ ‖a‖2. Then, for the computed quantities q⋆

and ~h⋆, we have

Theorem 3.6 (Twice is enough) Assume Q is exactly orthonormal: Q∗Q = Iℓ.
Then, the number of repetitions is at most one. Moreover, we obtain maximal numerical accu-
racy, and deviation of orthogonality is bounded by (order) ξ/τ . To be more precise,

‖a− [Q,q⋆]~h⋆‖2 ≤ ξ̄ (ℓ + n)
√
ℓ ‖a‖2, ‖Q∗q⋆‖2 ≤

ξ̄

τ

√
2 (ℓ+ n)

√
ℓ.

With, say τ = 10−3, we limit the number of repetitions and, as compared to machine
precision, we loose only a few additional digits in orthogonality (say, 10−11 instead of 10−14).
Unfortunately, in practice, the matrix Q that is available will not be exactly orthonormal. It
will have been constructed with Gram-Schmidt (as in Alg. 3.2) and local rounding errors will
have been propagated (and amplified). To limit the effects of this, a larger value of τ (a τ of
order 1) appears to be required. This situation with inexaxt Q can be analysed with results
from Exercise 3.6. It turns out that a value as τ = 0.7 works well in practice. Here, also
the number of repetitions seems to be at most one (no proof). But, of course, a repetition is
required more often than with small τ .

We now generalise the results in Lecture 2.E on lower triangular solves.

Round-off in Triangular systems. Let L be a k × k lower triangular system with non-
zero diagonal entries and let A be a k × n matrix.
We follow the algorithm in Exercise 2.2 to solve U from LU = A: with ℓj ≡ Lej − ej and
Lj ≡ I+ ℓje

∗
j , consider the sequence (Aj) of n× k matrices for which

A0 ≡ A, (I+ ℓje
∗
j )Aj = Aj−1 (j = 1, . . . , k)

(Aj is to be solved). Put U ≡ Ak. Let Û be the matrix U that we actually obtain (in rounded
arithmetic) by this process.

Theorem 3.7 There is an k × n matrix ∆ such that

LÛ = A+∆ with |∆| ≤ ku |L| |Û|. (3.19)

Exercise 3.22. Proof of Theorem 3.7. Let (Âj) be the sequence of computed version of

(Aj) obtained by solving Aj from LjAj = Âj−1.

(a) Prove that Û = Âk.

(b) Prove that Âj−1 = LjÂj +∆j with |∆j | ≤ u |Lj | |Âj |.
(c) Prove (3.19).
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Discussion. (i) Note that the upper triangularity of U does not play a role.
(ii) Note also that errors on L need not be discussed: the exact L will be different from the
computed one. However in the analysis we simple use the L that becomes available.
(iii) From this analysis, we learn that we actually compute an exact LU-decomposition from a
slightly perturbed matrix. The actual size of the perturbation depends on the size of |L| and
|Û| in relation to the size of A: see Exercise 3.1.

QR-decomposition using Householder reflections. Let A be an n× k matrix.
We analyse the effect of rounding errors in the construction of the QR-decomposition using
Householder reflections as explained in Exercise 3.16.
Let R̂ the resulting computed n × k upper triangular matrix, and let a(1), a(2), . . . , a(k) be a
sequence of n-vectors of machine numbers for the Householder reflectionsH1, . . . ,Hk as actually
used in the computation. Let Q ≡ H1 · . . . ·Hk.

Theorem 3.8 There is an n× k matrix ∆A such that

(A+∆A) = QR̂ with ‖∆A‖F ≤ k c nu ‖A‖F. (3.20)

Here c is some moderate constant.

Note that the matrix Q is the exact product of exact Householder reflections based on
computed vectors of appropriate columns of the computed Â(j). This observation explains the
remarkable stability of Householder QR decomposition: the rounding errors in the preceding
steps are not reflected in a perturbed unitarity (the Householder reflection is not the one that
we would have obtained in exact arithmetic, but it is nevertheless an Householder reflection
and therefore a unitary map: the perturbation from unitarity is only from local errors from
actually applying the Householder reflection [as explained in the introduction of Exercise 3.23
below] and not from rounding errors in preceding steps).

Exercise 3.23. Proof of Theorem 3.8. Let a = (a1, . . . , an)
T and b be n-vectors of

machine numbers. Define

Hb ≡ b− vβ where v ≡ a+ sign(a1)‖a‖2e1, β ≡ 2
v∗b

v∗v
.

H = I− 2vv
∗

v
∗
v
is the Householder reflection that maps a to a multiple of the first standard basis

vector e1. In rounded arithmetic we have that

(Hb)̂ = (H+∆)b = Hb+ δb with ‖∆‖F ≤ cnu, ‖δb‖2 ≤ cnu‖b‖2.

Here, c is a moderate constant. The exact value of c may be different at different locations. In
the result here, it is used that v has been computed, v̂, as well as v̂∗b, v̂∗v̂, β̂ and (b − v̂β̂ )̂ .
You do not have to prove this result here, but you can used it in this exercise.

Let a(1), a(2), . . . , a(k) be a sequence of n-vectors of machine numbers and let Hj be the
corresponding Householder reflection that maps a(j) to ej .

(a) Prove that

(Hk · . . . ·H1b)̂ = Hk · . . . ·H1b+ δb with ‖δb‖2 ≤ kcnu‖b‖2

(b) Let A(1) ≡ A be an n× k matrix. Let A(j+1) ≡ HjA
(j) (j = 1, . . . , k). Prove that

Â(j+1) = Hj · . . . ·H1A+∆A with ‖∆A‖F ≤ jcnu‖A‖F.

(c) Put R̂ ≡ Â(k+1) and Q ≡ H1 · . . . ·Hk. Prove (3.20).

(d) Prove that the Householder QR factorisation leads to a computed upper triangular matrix

R̂ such that, for some n× k matrix ∆A and some n× n unitary Q we have (3.20).

14



(e) Suppose k = n and A is non-singular. We solve the system Ax = b with Householder QR:
solve x from Rx = Hk · . . . ·H1b (i.e., x = R−1Q∗b). Let x̂ be the computed solution. Assume

that we can solve systems involving R̂ exactly. Prove that

(A+∆A)x̂ = b+ δb with ‖∆A‖ ≤ cn2u‖A‖F, ‖δb‖2 ≤ cn2u‖b‖2.

QR-decomposition with modified Gram–Schmidt.
Let A be an n × k matrix of full rank. Let Q̂ be the n × k ‘orthonormal’ matrix and R̂ the
k× k upper triangular matrix as computed by applying the modified Gram-Schmidt process to
the columns of A.

Theorem 3.9 There is an n× k matrix ∆1 such that

A = Q̂R̂ +∆1 with |∆1| ≤ ku |Q̂| |R̂|. (3.21)

With C2(A) the 2-norm condition number of A, we have

‖Q̂∗Q̂− I‖2 ≤ 4k2 u C2(A). (3.22)

The loss of orthogonality as expressed in (3.22) when applying modified Gram-Schmidt to
the first k columns of a matrix A is bounded by a modest multiple of the machine precision
times the conditioning of these k columns.

The result in (3.21) also holds for classical Gram-Schmidt. However, there is no result
as in (3.22) for classical Gram-Schmidt: the loss of orthogonality can be much worse. It is
conjectured that the loss of orthogonality in classical Gram-Schmidt can be bounded by a
modest multiple of k2u C22(A): the square of the conditioning of A is involved.

Exercise 3.24. Proof of Theorem 3.9.

(a) Assume the computed R̂ matrix is available.

With r∗j ≡ e∗j R̂− e∗j , put R̂j ≡ I + ejR̂
∗
j . Put A1 ≡ A.

Show that Q̂ = Âk+1, where Âj+1 is obtained by solving Aj+1 from Aj+1R̂j = Âj (Âj+1

is the computed solution), (j = 1, . . . , k). (Note that orthonormalisation does not play a role
here).

(b) Use Exercise 3.22 to show (3.21).

(c) When using modified Gram-Schmidt, then Exercise 3.23 can be used to prove that there is
an orthonormal matrix Q, such that for some ∆2 we have that

A = QR̂+∆2 with |∆1| ≤ ku |Q| |R̂|

(You do not have to prove that here). Note that R̂ is the upper triangular matrix as computed
by the Modified Gram-Schmidt process, the same as in the part (b). Prove that

‖(Q− Q̂)R̂‖2 ≤ k u(||Q||F + ||Q̂||F)‖R̂‖F.

Argue that this (roughly) implies that (why roughly?)

‖Q− Q̂‖2 ≤ 2k2 u C2(A).

(d) Prove (3.22).
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