
March 26, 2018

Lecture 4 – Basic Iterative Methods I

A The Power Method

Let A be an n× n with eigenvalues λ1, . . . , λn counted according to multiplicity.
We assume the eigenvalues to be ordered in absolute decreasing order:

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

Let ũ = u0 be a non-zero vector. The Power Method iterates as

uk =
ũ

‖ũ‖
, ũ = Auk, ρk ≡ u∗

kAuk = u∗
kũ (k = 0, 1, 2, . . .).

With uk = ũ/‖ũ‖, the iterated vectors are scaled. This might be necessary to avoid overflow
(if |λ1| > 1) or underflow (if |λ1| < 1), but it does not affect convergence. In particular, there
is no preference for a specific norm. A scaling with respect to a reference vector, say w (as
w = e1, the first standard basis vector) may also be convenient:

uk =
ũ

w∗ũ
, ũ = Auk, ρk ≡ w∗Auk = w∗ũ (k = 0, 1, 2, . . .).

Multiples of eigenvectors are also eigenvectors with the same eigenvalues. Therefore, for
convergence of eigenvectors it is more appropriate to consider directional convergence, i.e.,
convergence towards 0 of the angle between the approximate eigenvectors and the eigenvector.

Convention 4.1 We will talk about converging sequences of approximate eigenvectors without
explicitly stating that the convergence is supposed to be directionally.

The following theorem discusses the convergences of the Power Method.

The left eigenvector y1 associated to the eigenvalue λ1, i.e., y∗
1A = λ1y

∗
1 , plays a role

for the following reason. Suppose for ease of explanation that there is a basis x1, . . . ,xn of
(right) eigenvectors, Axj = λjxj . Then u0 can be decomposed into eigenvector components:
u0 = α1x1 + . . .+ αnxn for appropriate scalars αj ; αjxj is the jth eigenvector component

of u0, that is, it is the component of u0 in the direction of the eigenvector xj . To find the
dominant eigenvector x1 with the power method, the component of u0 in the direction of x1

has to be non-trivial. Since y1 ⊥ xj for all j > 1 if λ1 6= λj (j > 1) (see Exercise 0.22(b)),
we have that y∗

1u0 = α1y
∗
1x1. Therefore, the component of interest is non-zero if and only if

y∗
1u0 6= 0 (why is y∗

1x1 6= 0?): the x1-component of u0 can be computed without computing
the other eigenvector components provided the left eigenvector is available. Note that left and
right eigenvectors need not to coincide if A is not Hermitian (actually, if A is non-normal).

Theorem 4.2 Assume |λ1| > |λ2|. In particular λ1 is simple.
Let x1 be a right eigenvector and y1 a left eigenvector associated to λ1.
To simplify notation, put x ≡ x1 and y ≡ y1. For each ν > |λ2|/|λ1|, we have

y∗u0 6= 0 ⇒ ∠(uk,x) ≤ νk, |ρk − λ1| ≤ νk for all k large enough. (4.1)

If A is Hermitian and x∗u0 6= 0, then, for all k ∈ N,

tan∠(uk,x) ≤
|λ2|

|λ1|
tan∠(uk−1,x) and |ρk − λ1| ≤ 2 ‖A‖2 sin2∠(uk,x). (4.2)

1

Exercise 4.1. Proof of Theorem 4.2. Let x and y be scaled such that y∗x = 1.

(a) Prove that
u0

y∗u0
= x+w for some w ⊥ y.

(b) Prove that for all k

uk

y∗uk

= x+ fk, where fk ≡
1

λk
1

Akw.

(c) Prove that Akw ⊥ y.

(d) 1
λ1
A maps y⊥ to y⊥. Show that the spectral radius of this map is |λ2|

|λ1|
.

(e) Prove (4.1).

(f) With proper scaling, the error in the approximate eigenvector uk can be viewed as iterates
in a Power Method: fk+1 = 1

λ1
Afk. In particular, for k large, we have that ‖fk+1‖2 ≤ ν‖fk‖2,

and, if |λ2| > |λ3|, then ‖fk+1‖2 .
|λ2|
|λ1|
‖fk‖2.

(g) Assume A is Hermitian and ‖x‖2 = 1. Prove that

tan∠(uk,x) = ‖fk‖2 = ‖
1

λk
1

Akw‖2 ≤
|λ2|

|λ1|
‖

1

λk−1
1

Ak−1w‖2.

With t ≡ tan∠(uk,x), note that sin2∠(uk,x) =
t2

1+t2
. Prove that

|ρk − λ1| =
|f∗k (A− λ1I)fk|

1 + ‖fk‖22
≤

t2

1 + t2
‖A− λ1I‖2.

(h) Prove (4.2).

Proposition 4.3 All limit points1 of the sequence (uk) of normalized vectors generated by the
power method are in the span of all eigenvectors with eigenvalue that are equal to |λ1| in absolute
value.

Exercise 4.2. The Power Method.

(a) Discuss convergence of the Power Method for the following matrices




λ 1 0

0 λ 1

0 0 λ


 ,




λ 0 0

0 λ 0

0 0 λ


 ,

[
0 1

1 0

]
,




2 1 0

0 2 0

0 0 2


 .

What are the limit points?

(b) Suppose a matrix has real entries and the Power Method is started with a real vector. Can
complex eigenvalues be detected?

(c) Let A be a Jordan block. Show that the sequence (uk) of normalized vectors generated by
the power method converges (directionally) towards e1. (Hint. Use a generalisation of (0.9)

with p(ζ) = ζk (ζ ∈ C) and show that i!
j!

p(j)(λ)
p(i)(λ)

→ 0 for k →∞ and j < i.)

(d) Prove Proposition 4.3.

If one eigenpair, (λ1,x1), say, has been detected, then deflation techniques, as discussed in
the next exercise, can be used to allow detection of other eigenpairs. In exact arithmetic, it
suffices to deflate the detected eigenvector x1 only once (cf., Exercise 4.3.a). However, after

1w is limit point of (un), if there is a sequence (kj) of positive integers for which kj → ∞ if j → ∞
and ‖w − ukj

‖ → 0 of j → ∞.

2

deflation, rounding errors will (initially) introduce a (tiny) component of x1 in the subsequent
process and that will probably lead to a repeated detection of (λ1,x1): it may prevent the power
method from detecting other eigenpairs. Repeated deflation (as in (b) and (c) of Exercise 4.3)
can avoid amplification by the power method of tiny x1-components.

In lectures to come, we will discuss methods that implicitly incorporate some form of
deflation. The insights that we obtain in the next exercise can help to explain why not all
methods are equally successful in ‘dealing’ with rounding errors.

Exercise 4.3. Deflation. The Power Method can be used to approximate dominant eigen-
values. In this exercise three methods are given to approximate the eigenvalue λ2 if λ1 and
associated eigenvector x1 are known (available). We assume that |λ1| > |λ2| > |λ3| (though not
needed, you also may assume that there is a basis of eigenvectors). To simplify notation, we
put λ ≡ λ1 and x ≡ x1. Note that A is a general matrix (in particular, we do not assume A to
be normal or Hermitian, or, more specific, we do not assume that the eigenvectors are mutually
orthogonal. The result in Exercise 0.22(b) might be useful, decomposing A into a Schur form,
as in (0.7) and Theorem 0.6, may provide some insight).

(a) Take u0 = (A− λ1I)ũ, where ũ is an arbitrary vector (with a component in the direction
of x2: y∗

2ũ 6= 0. Here xj and yj are right eigenvector and left eigenvecors, respectively, of A
associated to the eigenvalue λj). Show that the Power Method applied to this starting vector
leads to an approximation of λ2 (Annihilation Technique).

(b) Show that if the Power Method is applied with the matrix B,

B ≡ A

(
I−

xx∗

x∗x

)
= A−

λ

x∗x
xx∗,

one gets an approximation of λ2 (Hotelling Deflation).

The deflation technique that is incorporated in codes for the QR-algorithm (to be discussed
in Exercise 4.13 below) can be viewed as an implementation of Hotelling deflation.

(c) Suppose a left eigenvector y = y1 with eigenvalue λ1 is also available: y∗A = λy∗. Show
that if the Power Method is applied with the matrix A′

A′ ≡

(
I−

xy∗

y∗x

)
A = A

(
I−

xy∗

y∗x

)
= A−

λ

y∗x
xy∗,

then an approximation of λ2 is obtained. Note that (a) can be proved as an application of (c).

(d) Discuss the advantages and disadvantages of the three methods for computing λ2 (What is
the amount of work per iteration? Keep in mind that A will be sparse in the applications we
are interested in. What can you tell about the stability?)

B Classical iterative methods for linear systems

Gauss–Seidel (GS) and Gauss–Jacobi (GJ) are classical iterative methods. Their algo-
rithmic representation is given in Alg. 4.1. Both methods cycle through the rows of equations
of the linear system Ax = b and compute the correction uj of the jth coordinate of the ap-
proximate solution x that is needed to satisfy the jth equation. Unfortunately, by meeting
the jth equation, the other equations may not be satisfied anymore and repeatedly recycling
may be required. In Gauss–Seidel the correction uj is applied as soon as it is available. In
Gauss–Jacobi the correction is postponed until all rows of the equations have been visited.

Both methods have been invented by Gauss (around 1823), but have been reinvented half
a century later by Seidel (1874) and Jacobi (1845), respectively. Richardson’s method is from
1920. Jacobi applied his method (GJ) to systems that are strongly diagonal dominant (cf.,
Theorem 4.7), that is, to situations where fast convergence is guaranteed. He obtained such
systems by first rotating large off-diagonal elements to zero (Jacobi’s method; cf., Exercise 4.14).

In Alg. 4.1, we suppressed the iteration index k. Note that this is in line with the fact that
quantities can be replaced (in computer memory, indicated by ←) by their updated version.

3

Gauss–Seidel

Select x0 ∈ C
n

x = x0, r = b−Ax

while ‖r||2 > tol do

for j = 1, . . . , n do

uj =
1
ajj

rj

r← r−A(ujej)

xj ← xj + uj

end for

end while

Gauss–Jacobi

Select x0 ∈ C
n

x = x0, r = b−Ax

while ‖r||2 > tol do

for j = 1, . . . , n do

uj =
1
ajj

rj

end for

r← r−Au

x← x+ u

end while

Richardson

Select x0 ∈ C
n

x = x0, r = b−Ax

Select α ∈ C

while ‖r||2 > tol do

u = α r

r← r−Au

x← x+ u

end while

Algorithm 4.1. Gauss–Seidel (at the left), Gauss–Jacobi (in the middle) and Richardson iteration (at
the right) for numerically solving Ax = b for x with residual accuracy tol: upon termination, the residual
r of the computed solution x has norm less than tol. Here, A = (aij) is an n× n matrix with entries aij ,
r is the residual vector with approximate solution x, and u is an update vector, with jth coordinate rj , xj ,
and uj , respectively.

We will say that a method converges for a problem Ax = b, if the sequence (xn) of
approximate solutions converges to the solution x for all initial approximations x0.

Exercise 4.4. Let A be a non-singular n×n matrix. For an n×n matrix M, put R ≡M−A.
With x0 ∈ C

n and r0 = b−Ax0, consider the following two recursions

{
Solve Muk = rk for uk, ck = Auk,

rk+1 = rk − ck, xk+1 = xk + uk

(k = 0, 1, . . .), (4.3)

and
Solve Mxk+1 = Rxk + b for xk+1 (k = 0, 1, . . .). (4.4)

Prove the following claims.

(a) The two basic iterative methods (4.3) and (4.4) are equivalent.

(b) The errors and residuals are iterated by

x− xk+1 = M−1R(x− xk) and rk+1 = RM−1rk. (4.5)

In view of (4.4), M−1R is called the iteration matrix. In view of (4.5), this matrix is also
called the error reduction matrix, while RM−1 is called the residual reduction matrix.
Note that these reduction matrices M−1R and RM−1 share the same eigenvalues.

(c) The method converges ⇔ ρ(M−1R) = ρ(I−M−1A) < 1 ⇔ ρ(RM−1) < 1.

Write A as A = D− L −U, where D is diagonal, L is strictly lower triangular, and U is
strictly upper triangular.

(d) Recursion (4.3) (and (4.4)) represents Gauss–Jacobi if M = D, Gauss–Seidel if M = D−L,
and Richardson iteration if M = 1

α
I

(e) Are there computational advantages involved in the representation here (i.e., in (4.3)) versus
those in Alg. 4.1?

Exercise 4.5. Geometric interpretation of Gauss–Seidel. Let A be a non-singular
n× n matrix with ith row a∗i ≡ e∗iA. Let b be an n-vector with coordinates βi.

Consider the hyperplanes Lj ≡ {x ∈ C
n a∗jx = βj}.

(a) x is at the intersection of all hyperplanes.

4

(b) Select an x0. The approximate solution x
(1)
0 after the first GS update is at the intersection

of the line {x0 + αe1 α ∈ C} and L1, the next approximate solution, x2
0, is at the intersection

of the line {x1 + αe2 α ∈ C} and L2, etc.. After n updates x1 ≡ x
(n)
0 .

(c) For n = 2, we also consider the system where we switched the first equation a∗1x = β1 with
the second one a∗2x = β2:

Ax =

[
a11 a12

a21 a22

]
x = b =

[
β1

β2

]
and Ãx ≡

[
a21 a22

a11 a12

]
x = b̃ ≡

[
β2

β1

]
.

Use the geometrical interpretation of the GS process to show that GS converges for Ax = b if
and only if GS diverges for Ãx = b̃.

As we learnt in Exercise 4.5, GS does not always converge. However, for some classes of
problems that are important in practice, GS does converge. For instance, we have convergence
if A is positive definite. Note that least square problems lead to matrices of this type.2 Recall
that any positive definite matrix is Hermitian (cf., Exercise 0.29).

Theorem 4.4 Gauss–Seidel converges if A is positive definite.

Exercise 4.6. Proof of Theorem 4.4. Let A = (aij) be positive definite. Prove the
following claims.

(a) One can write A = D− L− L∗ with D diagonal and L strictly lower triangular.

(b) aii > 0 for each i = 1, . . . , n and D− L is non-singular.

Put G ≡ (D− L)−1L∗ and S ≡ (D− L)−1A. Note that G is the error reduction matrix
of the Gauss–Seidel process (cf., Exercise 4.4).

(c) G = I− (D− L)−1A = I− S.

(d) A−G∗AG = S∗(AS−1 −A+ (S∗)−1A)S = S∗DS.

(e) Let λ be an eigenvalue of G with eigenvector x. Then x∗S∗DSx > 0, whence |λ| < 1.

(f) Theorem 4.4 is correct.

In convergence statements for Gauss–Seidel (GS) and Gauss–Jacobi (GJ) the sign of the
matrix entries often plays a role. The following result is useful then. The result is of more
general interest.

Theorem 4.5 Let A = (aij) be an n× n matrix.

Then, with |A| ≡ (|aij |) and λ(A) ≡ argmax{|λ| λ ∈ Λ(A)}, we have that

|λ(A)| ≤ λ(|A|). (4.6)

Exercise 4.7. Proof of Theorem 4.5. Let A be as in Theorem 4.5.

(a) Let ε > 0. Use the theorem of Perron–Frobenius (cf., Th. 0.14) to prove that there is an
n-vector y with all coordinates > 0 such that yT(|A|+ ε11∗) = λ(|A|+ ε11∗)yT.

(b) Let (λ,x) be an eigenpair of A: Ax = λx.
Show that |λ| |x| ≤ |A| |x| ≤ (|A|+ ε11∗) |x|. Conclude that |λ| ≤ λ(|A| + ε11∗).

(c) Use Theorem 1.13 to prove Theorem 4.5.

In general GS will converge faster than GJ. Nevertheless, for a large (and important) class
of matrices GS converges if and only if GJ converges.

2The least square solution of Ax = b satisfies A∗Ax = A∗b and A∗A is positive definite.

5

Theorem 4.6 Let A be an n× n matrix with diagonal D such that
D > 0 and either A−D ≥ 0 or D−A ≥ 0 (all diagonal entries are strict positive and all off
diagonal entries have the same sign). Then, GS converges ⇔ GJ converges.

Exercise 4.8. Proof of Theorem 4.6. Let A = be a non-singular n × n matrix. Write
A = D− L−U with D diagonal, L strictly lower triangular, and U strictly upper triangular.

(a) To investigate convergence of GS and GJ we may assume that D = I. Why?

Assume that L+U ≥ 0.
Let λ and µ be the absolute largest eigenvalue of (I−L)−1U and U+L respectively. Let x, y
and z be non-trivial n-vectors such that (U+λL)x = λx, (U+L)z = µz, and y∗(U+L) = µy∗.

(b) We may assume that x ≥ 0, y ≥ 0, and z ≥ 0, λ > 0 and µ > 0. Why?

(c) λy∗x = y∗(U+ λL)x = µy∗x+ (λ− 1)y∗Lx and y∗(U+L)x = y∗Ux+ λ−µ
λ−1y

∗x = µy∗x.
Whence,

λ
µ− 1

λ− 1
=

y∗Ux

y∗x
≥ 0.

(d) Conclude that λ < 1 ⇒ µ ≤ 1 and λ > 1 ⇒ µ ≥ 1.

(e) Assume that λ < 1 and µ = 1. For ρ > 1, consider ρU and ρL instead of U and L,
respectively. Then, the associated µ is > 1, whereas the associated λ is < 1 for ρ ≈ 1 (use
the fact that the absolute largest eigenvalue depends continuously on ρ). Conclude that λ <
1 ⇒ µ < 1.

(f) Prove Theorem 4.6.

An n× n matrix A = (aij) is strict diagonal dominant if |aii| >
∑

j 6=i |aij | for all i.

Theorem 4.7 Both GS and GJ converge for matrices that are strict diagonal dominant.

Exercise 4.9. Proof of Theorem 4.7. For an n × n strict diagonal dominant matrix
A = D− L−U, with D diagonal, L strict lower triangular and U is strict upper tridiagonal,
prove the following claims.

(a) A is non-singular.

(b) Put L̃ ≡ D−1L and Ũ ≡ D−1U. Then ‖ |L̃|+ |Ũ| ‖∞ < 1 and |λ(L̃ + Ũ)| < 1.

(c) GJ converges.

(d) |λ((I − L̃)−1Ũ)| ≤ λ((I − |L̃|)−1|Ũ|) < 1. (Hint: use the results of Exercise 4.8.)

(e) GS converges.

Successive over-relaxation (SOR) is the modification of Gauss–Seidel, where a ‘relax-
ation parameter’ ω is selected before the start of the iteration process and each uj is replaced
by ωuj. With ω > 1, we talk about over-relaxation, with ω < 1 we have under-relaxation.
Often SOR converges faster than GS for some appropriate parameter ω ∈ (1, 2). What the best
value of ω is, is problem dependent.

Gauss–Seidel and SOR, cycle repeatedly through all rows of the system from top to bottom
(the ‘for j = 1, . . . , n do’ loop). Of course, we can also cycle from bottom to top or reverse
the order alternatingly. The SOR version, where the order of running through the rows of the
system is reversed after each cycle is called Symmetric SOR (SSOR). Note that the word
‘symmetric’ refers to a symmetric way of applying the process and not to a property of the
matrix.

Exercise 4.10. Let A be a non-singular n×n matrix. Write A = D−L−U with D diagonal,
L strictly lower triangular, and U strictly upper triangular.

(a) Show that SOR is a basic iterative method with M = 1
ω
D− L.

6

(b) Adapt the arguments in Exercise 4.6 to show that, for a positive definite matrix A, we have
that SOR converges ⇔ ω ∈ (0, 2).

(c) Show that SSOR is a basis iterative method with

M = (1
ω
D− L)([2

ω
− 1]D)−1(1

ω
D−U).

Exercise 4.11. Consider the basic iterative method (A = M −R)

Mxk+1 = Rxk + b.

(a) Explain how the residual can be computed from the vectors Rxk + b with simple vector
updates (no additional matrix vector multiplications).

However, we are interested in having small errors and the residuals may give a wrong
impression of the error. We would therefore like to use a (cheap) termination criterion, based
on the true error instead of on the residual. Below we derive such a criterion.

(b) Show that the spectral radius of the iteration matrix G ≡M−1R approximately satisfies

ρ(G) ≈
‖xk+1 − xk‖

‖xk − xk−1‖
.

(c) Show that if ρ(G) is known, an estimate for the error is given by

‖x− xk‖2 ≤
ρ(G)

1− ρ(G)
‖xk − xk−1‖2.

(Hint: bound ‖xj − xk‖2 in terms of ρ(G) and ‖xk − xk−1‖2. Then take the limit x =
limj→∞ xj .)

C Solvers of eigenvalue problems for non-high dimensional matrices

Let A be an n× n matrix.
Since, for scalars σ, the shifted matrix A− σI and shift-and-inverted matrix (A− σI)−1

have the same eigenvectors as A, they can also be used to compute eigenvectors of A. σ is
called a shift (in (A − σI)−1 it is also sometimes called a pole). For well choosen shifts, the
power method with such a modified matrix may converge faster or may detect other eigenvec-
tors (eigenvectors that are dominant with respect to the modified matrix): for instance, the
eigenvector of A with eigenvalue closest to σ will be dominant for the shift-and-inverted matrix.
The power method with the shift-and-inverted matrix is called Shift-and-Invert iteration or
also Shift-and-Invert power method and Wielandt iteration.

Assume some approximate eigenvector u is available. Consider the Rayleigh quotient

ρ(u) ≡
u∗Au

u∗u
.

In some sense the Rayleigh quotient forms the best approximate eigenvalue associated with the
approximate eigenvector. It gives the smallest residuals (why?):

ρ(u) = argminϑ‖Au− ϑu‖2.

The following ‘variant’ of Shift-and-Invert is called Rayleigh Quotient Iteration (RQI).
Select a ũ = u0 ∈ C

n, u 6= 0. For k = 0, 1, . . . do

uk =
ũ

‖ũ‖2
, solve (A− λ(k)I)ũ = uk for ũ, λ(k) = ρ(uk).

In Shift-and-Invert, the shift is fixed throughout the iteration. Selecting the shift close to
an eigenvalue guaranties fast convergence towards that eigenvalue (why?). Rayleigh Quotient

7

The QR-algorithm

Select U unitary. S = U∗AU,

m = size(A, 1), N = [1 : m], I = Im.

repeat until m = 1

1) Select the Wilkinson shift σ

2) [Q,R] = qr(S(N,N)− σ I)

3) S(N,N) = RQ + σI

4) U(:, N)← U(:, N)Q

5) if |S(m,m− 1)| ≤ ε |S(m,m)| %% Deflate

S(m,m− 1) = 0

m←m− 1, N← [1 : m], I←Im

end if

end repeat

Algorithm 4.2. The QR-algorithm for computing the Schur decomposition AU = US of a general
square matrix A with accuracy ε. The initializing U is selected such that the initial S is upper Hessenberg.
Upon convergence we have that AU = US with U unitary and S upper triangular. Note that we used
Matlab conventions to indicate submatrices. As the Matlab function routine qr, qr on line 2) refers to
a sub-algorithm that computes the QR factors Q and R of the QR-decomposition. The Wilkinson shift is
an eigenvalue of the 2× 2 right lower block S([m− 1,m], [m − 1, m]) of the ‘active’ part S(N,N) of S.

Iteration “tries” to improve on this approach by taking the shift in each step equal to the ‘best’
eigenvalue approximation that is available in that step, that is, it takes as shift the Rayleigh
quotient of the approximate eigenvector.

Exercise 4.12. Consider the matrix

A =




0 1 0

1 0 0

0 0 1


 .

(a) Discuss the convergence of the Power Method and the inverse Power Method, i.e., iterate
with A−1.

(b) Discuss the convergence of the shifted Power Method and the shift-and-inverted Power
Method with shift σ = 1.5, i.e., iterate with A− σI and with (A− σ I)−1.

(c) Discuss the convergence of Rayleigh Quotient Iteration for u0 = e1 and for u0 = e1 + e2.

(d) Can Rayleigh Quotient Iteration be used to compute complex (non-real) eigenvalues if A
is real and u0 is real?

The QR-algorithm. Let A be a linear map from C
n to C

n.
We denote the matrix of this map A represented with respect to the standard basis by A.
Let A0 be the matrix of A with respect to an orthonormal basis u1, . . . ,un (in this exercise,
we use the same basis for image space as for domain space). Then, AU0 = U0A0, where U0

is the unitary matrix U0 ≡ [u1, . . . ,un] with columns the basic vectors uj . Note that a switch
of basis does not change the eigenvalues (nor the eigenvectors. It only changes the way these
vectors are beings represented).

8

The essential steps of the QR-algorithm that we will discuss in the following exercise can
be described as:

for k = 0, 1, . . . do

• select a shift σk,

• factorise Ak − σkI = QkRk,

• multiply Ak+1 ≡ RkQk + σkI,

• multiply Uk+1 ≡ UkQk.

(4.7)

The factorisation in the second sub-step is a QR-factorisation, that is, Qk is unitary and Rk

is upper triangular. An extended version of the QR-algorithm (in pseudo code), including
deflation, can be found in Alg. 4.2. Note that the QR-algorithm exploits a QR-decomposition
in each step (to be more specific, in the second sub-step; do not confuse the naming of ‘QR-
algorithm’ and ‘QR-decomposition’ !).

In the next exercise we will learn that, with a proper shift selection strategy, we will have
convergence towards a Schur decomposition of A (cf., (0.7) and Exercise 0.17): the Uk will
converge to a unitary matrix U and the Ak to an upper triangular matrix S such that

AU = US.

Note that the first three sub-steps do not rely on the fourth. Therefore, there is no need to
perform this sub-step if we are interested in eigenvalues only: they will eventually show up at
the diagonal of Ak.

Exercise 4.13. The QR-algorithm. Consider the above situation.

(a) Show that AU0Q0 = U0Q0A1. Interpret A1 as the matrix of A with respect to the basis

u
(1)
1 , . . . ,u

(1)
n of columns of U1 ≡ U0Q0.

(b) Show that (A0 − σ0I)
∗Q0 = R∗

0.

(c) Show that the first column of U1 can be viewed as arising from an application of one step
of the shifted Power Method applied to the first column of U0, while for the last column of
U1 one step of Shift-and-Invert (by what matrix?) has been applied to the last column of U0.
Note that this has been achieved without doing the inversion explicitly!

(d) Interpret the left top element a
(1)
11 of A1 and the right bottom element a

(1)
nn as Rayleigh

quotients for vectors in the Power Methods of (c).

(e) Use the interpretation in (a), to explain how the QR-algorithm incorporates the shifted
Power Method as well as the shift-and-invert Power Method.

(f) Suggest a choice for σk to obtain fast (quadratic) convergence. How do you compute σk?

To avoid the type of stagnation as discussed in Exercise 4.12(c), a Wilkinson shift is
selected, that is an eigenvalue of the 2× 2 right lower block of A0 (in step 0 and of Ak is step
k).

Suppose A0 = (a
(0)
ij) is upper Hessenberg (that is, a

(0)
ij = 0 if i > j + 1).

(g) Prove that Q0 and A1 are upper Hessenberg.

(h) Show that the following expressions for the norm of the residuals are correct

‖A0q
(0)
1 − a

(1)
11 q

(0)
1 ‖2 = |a

(1)
21 |, ‖A∗

0q
(0)
n − a(1)nnq

(0)
n ‖2 = |a

(1)
n,n−1|.

Assuming Householder reflections (see Exercise 3.16) or Givens rotations (see Exercise 3.5)
are used for orthonormalisations (in the QR-decompositions), then the QR-algorithm is back-
ward stable, that is, if Uk is the unitary matrix computed at step k−1, Uk = U0Q0Q1 · · ·Qk−1,
and Sk is the upper Hessenberg matrix, Sk = Ak, then for some perturbation matrix ∆ of size
of O(ε) (i.e., ‖∆‖2 = O(ε)) we have that

(A+∆)Uk = UkSk :

9

Jacobi’s method

A(0) ≡ A.

For k = 1, 2, . . . do

1) (i, j) = argmax{|A
(k−1)
ij | (i, j), i > j}.

2) Construct a Givens rotation G such that A
(k)
ij = 0,

where A(k) ≡ G∗A(k−1)G.

Algorithm 4.3. Jacobi’s method iterates an Hermitian matrix A to diagonal by recursively rotating
large off-diagonal elements to zero.

the computed quatities are the exact ones of a slightly perturbed matrix A.3 The same holds
for the unitary matrix U, U = Uk, and the upper triangular matrix S, S is the upper triangular
part of Sk, at termination when the lower diagonal of Sk is of O(ε).

As the QR-algorithm, the methods in the exercises below are for computing eigenvalues
of low dimensional matrices (of dimension at most a few thousand). However, unlike the QR-
algorithm, they are for Hermitian matrices only and they are not based on the Power Method.
They are mentioned here for completes and since the methods to be discussed later in this course
project high-dimensional problems to low dimensional ones. The low dimensional problems are
solved with methods as the QR-algorithm or the ones below.

Exercise 4.14. Jacobi’s method for diagonalising Hermitian matrices. Let A be an
n× n Hermitian.

For notational convenience, first take (i, j) = (2, 1). From Exercise 3.5(c) we know that
there is a Givens rotation that rotates in the (1, 2)-plane such that the (2, 1)-entry of G∗AG

is 0.

(a) Show that ‖A(J, [1, 2])G([1, 2], [1, 2])‖F = ‖A(J, [1, 2])‖F. Here, J ≡ [3, 4, . . . , n] and we
used Matlab notation to denote sub-matrices. Conclude that the Frobenius norm of the part
of the matrices A and G∗AG outside the 2× 2 left upper block are the same.

Let ν(A) be the Frobenius norm of the off-diagonal part of A (ν(A) ≡ ‖A− diag(A)‖F).

(b) Prove that ν(G∗AG) =
√
ν(A)2 − 2|A2,1|2.

Consider the procedure in Alg. 4.3 (Jacobi’s method) for constructing a sequence of

matrices A(k) = (A
(k)
ij).

(c) Prove that ν(A(k)) → 0 for k → ∞. Show that (A(k)) converges to a diagonal matrix,
say D, and AQ = QD for some n × n unitary matrix Q: Jacobi’s method converges to an
eigenvalue decomposition of A.

(d) Now, assume A is not Hermitian and let ν(A) be the Frobenius norm of the strict lower
triangular part of A. Can the above procedure be use to compute the Schur form of A?

Jacobi used in 1842 a few steps of this method to make a symmetric matrix a bit more
‘diagonal dominant’ (that is, to reduce the Frobenius norm of the off-diagonal elements). In the
1950’s it was used for computing eigenvalues of symmetric matrices. After introduction of the
QR-algorithm, this approached lost importance. The method was revived after the introduction
of parallel computers: Jacobi’s method can be easily parallelised if step 1) is replaced by a cyclic
selection procedure, whereas the QR-algorithm is sequential.

Exercise 4.15. Sturm sequences. Let T be an Hermitian tri-diagonal n×n matrix with
α1, α2, . . . on its diagonal and β1, β2, . . . on its first upper co-diagonal. Note that αj ∈ R

3The algorithm can be forward unstable: entries of the obtained matrices can have no digit in
common with the corresponding matrix entries of the exact results, i.e., the ones that would have been
obtained in exact arithmetic.

10

and β̄1, β̄2, . . . are on the first lower co-diagonal. Assume T is unreduced, i.e., βj 6= 0 for all
j = 1, . . . , n− 1.

Let pk be the characteristic polynomial of the k × k left upper block Tk of T. Note that
the zeros of pk are the eigenvalues of Tk. In particular, these zeros are real.

(a) Prove that, with p0(ζ) = 1,

p1(ζ) = ζ − α1, pk+1(ζ) = (ζ − αk+1)pk(ζ)− |βk|
2pk−1(ζ) (ζ ∈ C, k = 1, 2, . . .). (4.8)

(b) Prove that pk+1 and pk do not share a common zero.
(Hint. If they do, then pk and pk−1 have a common zero).

(c) Suppose that the zeros of pk−1 interlace the zeros of pk, that is, in between two zeros of
pk, there is a zero of pk. Hence, if λ1,k < λ2,k < . . . < λk,k are the zeros of pk ordered in
increasing magnitude, then

λ1,k < λ1,k−1 < λ2,k < λ2,k−1 < . . . < λk−1,k−1 < λk,k

Note that pk+1(λ) > 0 if λ→∞. Show that pk+1 and pk−1 have opposite signs at the zeros of
pk. Conclude that the zeros of pk interlace the zeros of pk+1.
Show that the zeros of consecutive pks interlace. In particular, all zeros of a pk are simple (if
pk(λ) = 0, then p′k(λ) 6= 0).

(d) Let α ∈ R, α not an eigenvalue of T. The sequence of signs of p0(α), p1(α), p2(α), . . . , pn(α)
is a Sturm sequence at α. Let χ(α) be the number of changes in signs in the Sturm sequence
at α. Prove that there are exactly χ(α) eigenvalues of T in (α,∞). What is a sign change if a
pj(α) = 0?

Let β ∈ (α,∞), β 6∈ Λ(T). Prove that the number of eigenvalues of T in the interval (α, β)
equals χ(α) − χ(β).

Note that the number of sign changes comes for free if (4.8) is used to compute the value of
pn(α). The Sturm sequence approach give a way to compute the ‘distribution’ of eigenvalues
for Hermitian tri-diagonal matrices.

Sturm sequences can be formed for very high dimensional matrices, provided they are
Hermitian tri-diagonal. These matrices are formed by the Lanczos method (to be discussed in
Lecture 7).

11

