
March 26, 2018

Lecture 5 – Basic Iterative Methods II

The following two exercises show that eigenvalue problems and linear systems of equations are
closely related. From a certain point of view, they are the same once the eigenvalue has been
detected. Detection of the eigenvalue makes the eigenvalue problem (weakly) non-linear. Usu-
ally, when using iterative methods for solving these problems, convergence of the approximate
eigenvalues is much faster than convergence of the eigenvectors: eigenvalues are detected before
the associated eigenvectors.

Exercise 5.1. Let A be an n× n with rank n− 1. Note that the vector that spans the null
space of A is an eigenvector with eigenvalue 0. Here, we will see that the problem of finding
this vector can be reformulated as problem of solving a linear system.

(a) Let A′ be the matrix that arises by replacing, say, row ℓ of A by some row vector of
dimension n such that A′ is singular. Prove that the solution x of A′x = eℓ spans the null
space of A.

(b) Select an ℓ. Let, in Matlab notation, I ≡ [1 : ℓ− 1, ℓ+1 : n] and A′ ≡ A(I, I). Construct
a vector that spans the null space of A from the solution of the equation A′x = A(I, ℓ).

Exercise 5.2. Let A be a non-singular n×n matrix and b an n-vector. Consider the matrix

Ã ≡
[

0 0∗

−b A

]

(a) Show that the solution x of the linear system Ax = b can be obtained from an eigenvector

(with eigenvalue 0) of Ã.

(b) Suppose there is an α0 ∈ C and an ρ ∈ [0, 1) such that |1−α0λ| ≤ ρ for all eigenvalues λ of

A. Apply the power method to the shifted matrix I−α0Ã. Scale the resulting vectors uk such
that the first coordinates are 1 (i.e., e∗1uk = 1 rather than ‖uk‖2 = 1). Relate the generated
vectors to the approximate solutions of the system Ax = b as produced by Richardson with
parameter α0.

A Two term iterative methods for eigenvalue problems

With convergence to an eigenvector, we mean directional convergence (as explained in the
introduction of Lecture 4A.)

It can not be controlled to what eigenpair Rayleigh quotient iteration (RQI) converges.
RQI does not even have to converge (as we saw in Exercise 4.12). But if it converges, then it
converges fast. From the following theorem we learn that convergence is cubic if the matrix is
Hermitian. In this theorem, we select an initial shift and an initial approximate eigenvector.
If the shift is close to some eigenvalue or the approximate eigenvector is in direction close to
some eigenvector, then the errors (with appropriate scaling) decrease (at least) cubically.

Note that the initial shift need not be a Rayleigh quotient in the theorem. This formulation
makes the theorem also applicable to other types of iteration (as displayed in Alg. 5.1).

For general matrices, RQI converges quadratically if it converges.

Theorem 5.1 (Convergence RQI) Let A be an n× n Hermitian matrix.

Let (λ,x) be an eigenpair of A with distance γ from λ to the other eigenvalues of A.

Let u0 be a normalised vector and ρ0 be a scalar. Let u1 be such that

(A− ρ0I)ũ1 = u0, u1 =
ũ1

‖ũ1‖2
, and ρ1 ≡

u∗
1Au1

u∗
1u1

. (5.1)

1

Shift-and-Invert

Select

u0 ∈ C
n
, ϑ0 ∈ C

u = u0, ϑ = ϑ0

r = Au− ϑu

while ‖r‖2 > tol do

Solve

(A− ϑ0I)ũ = u

for ũ

u = ũ/‖ũ‖2
ϑ = u∗Au

r = Au− ϑu

end while

λ = ϑ, x = u

Rayleigh Quotient I.

Select

u0 ∈ C
n
, ϑ0 ∈ C

u = u0, ϑ = ϑ0

r = Au− ϑu

while ‖r‖2 > tol do

Solve

(A− ϑI)ũ = u

for ũ

u = ũ/‖ũ‖2
ϑ = u∗Au

r = Au− ϑu

end while

λ = ϑ, x = u

Dominant Pole Alg.

Select

u0 ∈ C
n
, ϑ0 ∈ C

u = u0, ϑ = ϑ0

r = Au− ϑu

while ‖r‖2 > tol do

Solve

(A− ϑI)ũ = u0

for ũ

u = ũ/‖ũ‖2
ϑ = u∗Au

r = Au− ϑu

end while

λ = ϑ, x = u

Algorithm 5.1. Variants of shift and invert power method for computing an eigenpair (λ,x) of a
general square matrix A with residual accuracy tol. For an initial approximate eigenpair (ϑ0,u0), these
algorithms compute updated approximate eigenpairs (ϑ,u). The algorithm at the left, Wielandt iteration or
shift-and-invert (S&I), keeps the shift ϑ0 fixed in each step. The algorithm in the middle, Rayleigh quotient
iteration (RQI), updates the approximate eigenvector as well the eigenvalue in each step. The algorithm at
the right, dominant pole algorithm (DPA), keeps the right hand side vector fixed in each step.

Put

αi ≡
|ρi − λ|

γ − |ρi − λ| and ti ≡ tan∠(ui,x) (i = 0, 1).

If |ρ0 − λ| < γ, then we have that

α0t0 < 1 ⇒ α1 ≤ (α0t0)
2, t1 ≤ α0t0, α1t1 ≤ (α0t0)

3.

Iterating (5.1) for i = 2, . . . with ρ0 and ρ1 replaced by ρi−1 and ρi, respectively, and u0

and u1 by ui−1 and ui defines Rayleigh Quotient Iteration (RQI; the middle algorithm
in Alg. 5.1): RQI updates both ρi as well as ui. Keeping ρ0 fixed and replacing u0 and u1

by ui−1 and ui, respectively, is Wielandt iteration, also called Shift-and-Invert iteration
(S&I; the algorithm at left in Alg. 5.1). S&I only updates ui. S&I converges linearly. It
favours the eigenpair with eigenvalue closest to ρ0. Keeping u0 fixed and updating ρi is a
third variant, Dominant pole algorithm (DPA; the algorithm at the right in Alg. 5.1). It
converges quadratically, favouring the eigenpair with eigenvector closest to u0.

Exercise 5.3. Consider the setting of Theorem 5.1.

(a) Show that the theorem implies that RQI converges cubically towards (λ,x) if ρ0 is close
to λ or if u0 is directionally close to x (note that the theorem has a statement on the product
of an ‘error’ in eigenvalue times the error in the eigenvector. Discuss the implications for the
eigenvalue and eigenvector separately).

(b) Show that the theorem implies that S&I converges linearly towards (λ,x) if ρ0 is close to
λ and u0 is directionally close to x (ti+1 ≤ α0ti all i).

(c) Show that the theorem implies that DPA converges quadratically towards (λ,x) if ρ0 is
close to λ and u0 is directionally close to x (αit

2
0 ≤ (αit

2
0)

2 all i).

(d) Note that the algorithms in Alg. 5.1 require a ‘solve’ of a shifted system in each step, but
not a matrix vector multiplication: explain how Au (or Aũ) (to update ϑ and the residual r)
can be computed with an AXPY (vector update) only.

2

Exercise 5.4. Proof of Theorem 5.1. Let A be n×n Hermitian with eigenvalues λj and
associated normalised eigenvectors xj .
For simplicity, we assume the eigenvalues to be simple.

Here, we will not prove the precise result of Theorem 5.1. But, with some less technical
details, we will prove that if RQI converges then it converges cubically.

We are interested in an eigenvalue λ = λj0 and associated eigenvector x = xj0 . Put
γ ≡ infj 6=j0 |λj − λj0 |: γ is the spectral gap, that is, the gap between the ‘wanted’ eigenvalue
λj0 and the other eigenvalues.
We analyse one step of RQI. With u0, let u1 be such that

(A− ρ0I)u1 = u0, where ρ0 ≡
u∗
0Au0

u∗
0u0

.

(a) Show that, except for scaling factors, the ui can be written as ui = x+yi for some vectors
yi ⊥ x (assuming ui has a non trivial component in the direction of x). Conclude that, for
some scaling factor τ we have that

τ(A − ρ0I)(x + y1) = x+ y0.

Note that ‖y0‖2 = t ≡ tan(∠(x,u0)),
‖y0‖

2
2

1+‖y0‖2
2
= s2 ≡ sin2(∠(x,u0)), and the scaling factor of

u0 does not affect the angle ∠(x,u0).

(b) Prove that

|ρ0 − λ| = |u
∗
0(A− λI)u0|

u∗
0u0

≤ |y
∗
0(A− λI)y0|
1 + ‖y0‖22

≤ (λmax − λmin)
‖y0‖22

1 + ‖y0‖22
.

Hence,
|ρ0 − λ|

λmax − λmin

≤ sin2(∠(x,u0)) :

approximate eigenvalues tend to be much more accurate than approximate eigenvectors.

(c) Show that τ(A− ρ0I)x = x and τ(A − ρ0I)y1 = y0. Conclude that τ = 1/(λ− ρ0).
Note that y0 and y1 are in the span of all xj with j 6= j0. Show that

‖y0‖2 = |τ | ‖(A− ρ0I)y1‖2 ≥ |τ | γ̃ ‖y1‖2,

where γ̃ ≡ γ − |ρ0 − λ|. Hence, if |ρ0 − λ| < γ then

‖y1‖2 ≤ |λ− ρ0|
‖y0‖2
γ̃
≤ ‖y0‖32

1 + ‖y0‖22
λmax − λmin

γ̃
.

(d) Show that RQI convergences at least cubic if there is convergence: except for some constant,
the angle between the approximate eigenvector and the eigenvector reduces by at least a power
of three in each step. (Hint: put C ≡ 2(λmax − λmin)/γ. Then ‖y1‖2 ≤ C‖y0‖22 if |ρ0 − λ| ≤
1
2γ C ‖y0‖22).

What can you tell about the convergence of the associated approximate eigenvalues?

B Two term iterative methods for solving linear systems

Let A be an n× n matrix and b and n-vector.
If p is the polynomial p(ζ) = α0 + α1ζ + . . . + αkζ

k (ζ ∈ C), then p(A) is the matrix
p(A) ≡ α0I+ α1A+ . . .+ αkA

k.

Exercise 5.5. Richardson. Consider Richardson’s method in Alg. 5.2.

(a) Prove that the kth residual rk in Richardson equals rk = pk(A)r0 for pk(ζ) ≡ (1− αζ)k.

Assume the eigenvalues of A are contained in {ζ ∈ C |α0 − ζ| ≤ ρ} with 0 ≤ ρ < |α0|.
(b) Prove that ‖rk‖2 → 0 for k →∞. Show that for large k, ‖rk+1‖2 . ρ

|α0|
‖rk‖2.

3

Richardson iteration

Select x0 ∈ C
n
, α0 ∈ C

x = x0, r = b−Ax0

while ‖r‖2 > tol do

u = r

c = Au

α = α0

r← r− α c

x← x+ αu

end while

Local Minimal Residuals

Select x0 ∈ C
n

x = x0, r = b−Ax0

while ‖r‖2 > tol do

u = r

c = Au

α = c
∗
r

c
∗
c

r← r− α c

x← x+ αu

end while

Algorithm 5.2. Two term iterations for solving Ax = b for x with residual accuracy tol. Upon
termination, x is the approximate solution with residual r, ‖r‖2 < tol.
Note that both algorithms are identical except for the choice of α. Richardson iteration (at the left) is based

on the assumption that all eigenvalues of the matrix A are contained in the disc {ζ ∈ C |α0 − ζ| ≤ ρ}
with 0 ≤ ρ < |α0| and α0 is available. Local minimal residual (LMR, at the right), selects α to minimise
‖r− α c‖2, or, equivalently, r− α c ⊥ c.

(c) Assume that A is Hermitian and all eigenvalues are in [α0−ρ, α0+ρ] = [λ−, λ+] ⊂ (0,∞).
Prove that

‖rk‖2 ≤
(
λ+ − λ−

λ− + λ−

)k

‖r0‖2 ≤ exp

(
−2kλ−

λ+

)
‖r0‖2.

Exercise 5.6. Local minimal residual. Consider the LMR method in Alg. 5.2.

(a) Prove that the kth residual in LMR equals rk = pk(A)r0 for pk(ζ) ≡ (1−α1ζ)· . . . ·(1−αkζ)
where αj is the α as computed in step j.

(b) Assume 1
2 (A+A∗) is definite with absolute smallest eigenvalue σ. Prove that

‖rk+1‖22 = ‖rk‖22
(
1− |r∗kArk|2
‖Ark‖22 ‖rk‖22

)
≤ ‖rk‖22

(
1− σ2

‖A‖22

)
.

(c) Prove that LMR does not break down (i.e., no division by 0) in case 1
2 (A+A∗) is definite.

(d) Prove that LMR converges in case 1
2 (A+A∗) is definite.

(e) Show that LMR need not to converge if 1
2 (A+A∗) is indefinite.

(f) Prove that the statement in Exercise 5.5(c) is also correct for LMR.

C Residual polynomials

Let A be an n× n matrix. Let b a non-trivial n-vector.
The Krylov subspace Kk+1(A,b) of order k + 1 generated by A and the n-vector b is

the subspace of Cn spanned by b,Ab, . . . ,Akb:

Kk+1(A,b) ≡ span (b,Ab, . . . ,Akb) = {p(A)b p ∈ Pk},

where Pk is the space of all polynomials of degree at most k.

The methods that we discussed for solving Ax = b, Krylov subspace methods, find
approximate solutions xk in x0 +Kk(A, r0),

xk ∈ x0 +Kk(A, r0),

4

Polynomial iteration

Select x0 ∈ C
n

Select ζ1, . . . , ζ ℓ

k = 1, x = x0, r = b−Ax

while ‖r‖2 > tol do

u = r

c = Au

α = 1/ζk

r← r− α c

x← x+ αu

k ← k + 1, if k > ℓ, k = 1, end if

end while

Algorithm 5.3. Polynomial iteration: two term iteration with a fixed polynomial for solving Ax = b

for x with residual accuracy tol. The ζj are zeros of a polynomial p of degree ℓ. The zeros have to be
selected such that |p(λ)| < |p(0)| for all eigenvalues λ of A.

that is, xk = x0 +yk for some yk ∈ Kk(A, r0). Here, x0 is some initial guess in C
n (as x0 = 0)

and r0 ≡ b−Ax0. In particular, yk = q(A)r0 for some q ∈ Pk−1, and

rk = b−Axk = r0 −Ayk = pk(A)r0 ∈ Kk+1(A, r0),

where pk(ζ) ≡ 1 − ζ q(ζ) (ζ ∈ C). Note that pk ∈ Pk and pk(0) = 1. Conversely, if pk ∈ Pk

and pk(0) = 1, then there is some polynomial q ∈ Pk−1 such that pk(ζ) ≡ 1 − ζ q(ζ) (ζ ∈ C)
and pk(A)r0 = r0 −A(q(A)r0): pk(A)r0 is a residual. Therefore, we call polynomials that are
1 in 0, residual polynomials. We put

P0
k ≡ {p p is a polynomial of degree ≤ k, p(0) = 1}

Conclusion: the residuals that we compute are of the form rk = pk(A)r0 with pk ∈ P0
k.

To simplify notation, we will often take x0 = 0.
We would like to have small residuals for the system Ax = b.

To estimate ‖rk‖2 for a residual rk = pk(A)r0 ∈ Kk+1(A, r0), note that, in case A is diagonal-
izable,

‖rk‖2 ≤ CE νk(Λ(A)) ‖r0‖2, where νk(G) ≡ max{|pk(ζ)| ζ ∈ G} (G ⊂ C),

Λ(A) the spectrum of A, and CE ≡ ‖V‖2‖ ‖V−1‖2 is the conditioning of the (best conditioned)
basis of eigenvectors: V is n × n such that AV = VΛ. In particular, if A is normal (then
there is an orthonormal basis of eigenvectors), then ‖rk‖2 ≤ νk(Λ(A)) ‖r0‖2 and the size of the
residual is (essentially) determined by the size of the polynomial pk on the spectrum Λ(A).

To have small residuals, we would like to have residual polynomials that are as small as
possible on the spectrum. The polynomial, that is the zeros of the polynomial, can be the input
for an algorithm, as is the case in Alg. 5.3. The zeros have to be strategically selected in an
area that contains the spectrum of A. It assumes some information about the spectrum.

Exercise 5.7. In every ℓth step of Alg. 5.3, i.e., if k = mℓ, the residual rk is given by

rmℓ = p(A)mr0, where p(ζ) ≡ (1− ζ
ζ1
) · . . . · (1− ζ

ζℓ
) (ζ ∈ C).

Methods as GCR and GMRES determine the polynomials itself. Unfortunately, the steps
of GCR and GMRES are expensive (the costs per step are proportional to the step number).

5

For methods as Chebyshev iteration costs per step are limited by providing the residual
polynomial as input. Since the spectrum of the matrix will not be known, a subset G of C
has to be estimated that contains all eigenvalues Λ(A) ⊂ G, and polynomials are obtained as
solution of

argminmax{|pk(ζ)| ζ ∈ G}, (5.2)

where the minimum is taken over all pk ∈ P0
k.

If the spectrum is known to be contained in some interval [λ−, λ+] of (0,∞), with boundaries
λ− and λ+ available, then a shifted and scaled version of the Chebyshev polynomial Tk solve
the minimisation problem (5.2) for G = [λ−, λ+]:

Theorem 5.2 For the interval [λ−, λ+] with centre µ ≡ 1
2 (λ−+λ+) and radius ρ ≡ 1

2 (λ+−λ−),
the polynomial

x
1

Tk(
µ
ρ
)
Tk

(
µ−x
ρ

)
(x ∈ C)

solves problem (5.2) for G ≡ [λ−, λ+] = [µ− ρ, µ+ ρ] and

νk(G) = max

{
1

|Tk(
µ
ρ
)|
∣∣∣Tk

(
µ−x
ρ

)∣∣∣ x ∈ G
}

=
1

|Tk(
µ
ρ
)| ≤ 2 exp

(
−2k

√
λ−

λ+

)
.

Exercise 5.8. Chebyshev polynomials. Let Tℓ(x) ≡ 1
2 (ζ

ℓ + ζ−ℓ) if x = 1
2 (ζ + ζ−1)

(x, ζ ∈ C).

(a) Prove that T0(x) = 1, T1(x) = x,

Tk+1(x) = 2 xTk(x)− Tk−1(x) for all x ∈ C and k = 1, 2, (5.3)

Conclude that Tℓ is a polynomial of exact degree ℓ. Tℓ is the ℓth Chebyshev polynomial.

(b) Show that x ∈ [−1,+1] is of the form x = cos(φ) and that Tℓ(x) = cos(ℓφ). Conclude that

|Tℓ(x)| ≤ 1 for all x ∈ [−1,+1].

Show that Tℓ takes the values (−1)k at the ℓ+ 1 values xk = cos(πk/ℓ) (k = 0, 1, . . . , ℓ).

(c) For ε > 0 and y ≡ 1+ε
1−ε

, consider a polynomial q of degree ≤ ℓ that is equal to Tℓ at y.
Show that |q(x)| ≥ 1 for some x ∈ [−1,+1]:

q ∈ Pℓ & q(y) = Tℓ(y) ⇒ max
x∈[−1,+1]

|q(x)| ≥ 1.

(Hint: If |q(x)| < 1 for all x ∈ [−1, 1] then the graph of q intersects the graph of Tℓ on [−1,+1]
in at least ℓ points (Why? Draw a picture for ℓ = 3). Conclude that q − Tℓ has at least ℓ + 1
zeros. Argue that this is not possible.) Conclude that Tℓ/Tℓ(y) is the ‘smallest’ polynomial of
degree ℓ on [−1,+1] (smallest max | · | with maximum over x ∈ [−1,+1]) with value 1 at y.

(d) If ζ = 1+δ
1−δ

, then x = 1
2 (ζ + ζ−1) = 1+δ2

1−δ2
. Prove this and show that

|Tℓ(y)| ≥
1

2

(
1 +
√
ε

1−√ε

)ℓ

≥ 1

2
exp

(
2ℓ
√
ε
)
.

Hence,
|Tℓ(x)|
|Tℓ(y)|

≤ 2 exp
(
−2ℓ
√
ε
)

(x ∈ [−1,+1]).

(e) Prove Theorem 5.2.

(f) Consider the subset Eδ ≡ { 12 (ζ+ ζ−1) ζ ∈ C, 1−δ
1+δ
≤ |ζ| ≤ 1+δ

1−δ
} of the complex plane. Show

that this set defines the interior of an ellipse that contains [−1,+1]. If ζ ∈ Eδ then ζ̄ ∈ Eδ.
Prove that

|Tℓ(x)|
|Tℓ(y)|

≤ 2 exp
(
−2ℓ(

√
ε−
√
δ)
)

(x ∈ Eδ).

6

Select µ > ρ, ℓ ∈ N

for k = 1, . . . , ℓ,

ζk = µ− ρ cos
(
π 2k−1

2ℓ

)

end for

Algorithm 5.4. The selection of the zeros of a fixed shifted ℓth degree Chebyshev polynomial for use
in Alg. 5.3. This selection is based on the assumption that all eigenvalues of the matrix A are contained
in the interval [µ− ρ, µ+ ρ] ⊂ (0,∞) and that both µ and ρ are available.

This result shows that the scaled and shifted Chebyshev polynomials are also small on the
spectrum of A if the eigenvalues are in the ellipsoid µ− ρEδ (that does not contain 0).

Exercise 5.9. Polynomial iteration with a fixed ‘Chebyshev’ polynomial. Consider
the situation as in Theorem 5.2.

(a) Show that the Chebyshev polynomial Tℓ has zeros at cos
(
π 2k−1

2ℓ

)
(k = 1, 2, . . . , ℓ). Con-

clude that the zeros ζk of the shifted and scaled Chebyshev polynomial of Theorem 5.2 are
µ− ρ cos

(
π 2k−1

2ℓ

)
for k = 1, . . . , ℓ.

(b) Prove that

1

Tℓ(
µ
ρ
)
Tℓ

(
µ−ζ
ρ

)
= (1− ζ

ζ1
)(1− ζ

ζ2
) · . . . · (1− ζ

ζℓ
) with ζk ≡ µ− ρ cos

(
π 2k−1

2ℓ

)
.

(c) In every ℓth steps of polynomial iteration (Alg. 5.3) using the zeros of the shifted and scaled
Chebyshev polynomial (of (b); see Alg. 5.4), we have for the residual rk

‖rk‖2 ≤ CE 2m exp

(
−2k

√
λ−

λ+

)
‖r0‖2 (k = mℓ,m = 0, 1, 2, . . .)

(d) What is the effect on the convergence history, that is, on the norm of the residuals in the
sequence (rk) of changing the order of selecting the αj , i.e., αk = 1/(µ+ ρ cos

(
π 2k−1

2ℓ

)
) rather

than αk = 1/(µ− ρ cos
(
π 2k−1

2ℓ

)
)? Distinguish the cases k = mℓ and k 6= mℓ.

Exercise 5.10. Chebyshev iteration (three term recurrences). We are interested in
methods for the numerical solution of x from Ax = b. We derive an algorithm to compute
approximate solutions xk with residuals rk with (cf., Theorem 5.2)

rk = b−Axk =
1

γk
sk, where sk ≡ Tk

(
1
ρ
(µI−A)

)
r0 and γk ≡ Tk(

µ
ρ
).

To simplify notation, we take x0 = 0, whence r0 = b.

(a) Show that γ0 = 1, γ1 = µ
ρ
, γk+1 = 2 µ

ρ
γk − γk−1 (k = 1, 2, . . .) and

s0 = r0, s1 = 1
ρ
(µr0 −Ar0), sk+1 = 2

ρ
(µsk −Ask)− sk−1 (k = 1, 2, . . .).

(b) Put ζk ≡ γk

γk−1
. Prove that ζ1 = µ

ρ
, ζk+1 = 2µ

ρ
− 1

ζk
, and

r1 = r0 − 1
µ
Ar0, ζk+1 rk+1 = 2

ρ
(µrk −Ark)− 1

ζk
rk−1 (k = 1, 2, . . .). (5.4)

(c) Use an induction argument to show that the (xk) satisfy

x1 = 1
µ
r0, ζk+1 xk+1 = 2

ρ
(µxk + rk)− 1

ζk
xk−1 (k = 1, 2, . . .). (5.5)

7

Chebyshev It. (3-term)

Select µ > ρ > 0, x0 = 0

ζ = µ
ρ
, r0 = b

x = 1

µ
r0, r = r0 −Ax

while ‖r‖2 > tol do

s = 2

ρ
(µr−Ar)− 1

ζ
r0

y = 2

ρ
(µx+ r)− 1

ζ
x0

r0 = r

x0 = x

ζ ← 2µ
ρ
− 1

ζ

r = 1

ζ
s

x = 1

ζ
y

end while

Chebyshev I. (coupled 2-term)

Select µ > ρ > 0, x0 ∈ C
n

r0 = b−Ax0

u = r0, c = Au, ζ = µ
ρ

r = r0 − 1

µ
c, x = x0 − 1

µ
u

while ‖r‖2 > tol do

β = 1

ζ2

u← r+ βu

c = Au

ζ ← 2µ
ρ
− 1

ζ
, α = 2

ζµ

r← r− αc

x← x+ αu

end while

Algorithm 5.5. Chebyshev iteration for solving Ax = b for x with residual accuracy tol. The
algorithm is based on the assumption that all eigenvalues of the matrix A are contained in the interval
[µ− ρ, µ+ ρ] ⊂ (0,∞) and that both µ and ρ are available. At the left we have the three term variant and
at the right the two coupled two term variant.

(d) Note that old quantities (xj and rj for j < k−1) are not needed anymore to compute xk+1

and rk+1. Derive the left algorithm in Alg. 5.5. It is possible to save 2n flop (floating point
operation) per step (i.e., two scalar vector multiplications). How?

(e) Show that every residual rk equals

rk =
1

Tk(
µ
ρ
)
Tk

(
1
ρ
(µI−A)

)
b, ‖rk‖2 ≤ CE 2 exp

(
−2k

√
λ−

λ+

)
‖b‖2.

(f) Compare (convergence, computational costs per step) the method in Alg. 5.5 (left) (of this
exercise) with the one in Alg. 5.4 (of Exercise 5.9).

Exercise 5.11. Chebyshev iteration (coupled two term recurrences). This exercises
continues the preceding one.
The process in in the previous exercise is a three term iteration: the new residual rk+1 is defined
by three vectors (two preceding residuals rk and rk−1 plus Ark). Here we will derive a two
coupled two term recurrence process.

(a) Use ζk+1 = 2µ
ρ
− 1

ζk
to show that

rk+1 = rk − 2
ρζk+1

(
Ark + ρ

2ζk
(rk−1 − rk)

)

(b) Assume uk is such that xk = xk−1 +
2

ρζk
uk−1. Show that rk−1 − rk = 2

ρζk
Auk−1.

(c) Conclude that

rk+1 = rk − 2
ρζk+1

Auk, xk+1 = xk + 2
ρζk+1

uk, where uk = rk +
1
ζ2
k

uk−1.

(d) Recall that ζ1 = µ
ρ
. Since r1 = r0 − 1

µ
Ar0, we have that

r1 = r0 − 1
µ
Au0, x1 = x0 +

1
µ
u0, where u0 = r0.

(e) Check that this leads to the left algorithm in Alg. 5.5. Compare the costs per step and
the memory requirements of this algorithm, with the one in Alg. 5.4.

8

D Optimal residual polynomials

In LMR, the next residual rk+1 is obtained as an update of rk with one vector ck. With
respect to this residual update vector ck, the update is optimal, that is, the updated vector
rk+1 has smallest 2-norm. However, residual update vectors c0, . . . , ck−1 from preceding steps
have been computed as well and the LMR residual rk+1 need not to have smallest norm with
respect to these ‘old’ update vectors (see Exercise 5.12). The new residual rk+1 can be obtained
as the residual of the least square problem Ck+1~α = [c0, . . . , ck]~α = rk. For computational
reasons (stability), it is convenient to first orthogonalize ck against c0, . . . , ck−1. This leads
to the generalised conjugate residual (GCR) method (see the left algorithm in Alg. 5.6 and
Exercise 5.13).

Since GCR improves on LMR, we have that ‖rGCR

k ‖2 ≤ ‖rLMR

k ‖2 all k (provided that both
methods used the same initial guess). In particular, the residual decreases at least with a fixed
factor per step if 1

2 (A +A∗) is definite (cf., Exercise 5.6(b)) in which case we can prove that
the method does not break down (see Exercise 5.15(c)).

Exercise 5.12. Consider the system

[
1 0

1 1

][
x1

x2

]
=

[
1

0

]
.

(a) Perform a few steps of LMR with x0 = 0 to solve this system.

(b) What can you tell about the convergence?

(c) Suppose we modify LMR. We update rk with the two vector ck and ck−1: rk+1 = rk −
αkck+α′

kck−1 and we select the scalars αk and α′
k such that ‖rk+1‖2 has smallest norm. Apply

this modified process to the above system.

Exercise 5.13. Generalised conjugate residuals. Consider the left algorithm inAlg. 5.6.
To ease discussion, we add an index k to the update of the residual and of the approximate
solution: rk+1 = rk − αkck and xk+1 = xk + αkuk. Moreover, we denote the uk and ck before
the orthogonalization by ũk and c̃k, respectively: ũk ≡ rk and c̃k ≡ Ark.

Assume ck 6= 0 for all k = 0, . . . ,m. Prove the following statements for k = 0, . . . ,m.

(a) ck = Auk, rk = b−Axk.

(b) span (r0, . . . , rk−1) = span (u0, . . . ,uk−1) = Kk(A, r0).

(c) c0, . . . , ck−1 forms an orthogonal basis of AKk(A, r0).

(d) u0, . . . ,uk−1 forms an A∗A-orthogonal basis of Kk(A, r0).

(e) ‖rk‖2 ≤ ‖pk(A)r0‖2 for all residual polynomials pk of degree k.

(f) rk ⊥ AKk(A, r0).

(g) Assume A is Hermitian and all eigenvalues are in [λ−, λ+] ⊂ (0,∞). Then

‖rk‖2 ≤ 2 exp

(
−2k

√
λ−

λ+

)
‖r0‖2.

Compare this result with those in Exercise 5.5(c) and Exercise 5.10(e). Compare GCR with
Richardson as in Exercise 5.5 and with Chebyshev iteration as Exercise 5.10 for Hermitian
systems (and for general systems).

Exercise 5.14. GCR: variants, matrix formulation.

(a) Give a variant of the GCR-algorithm that relies an orthonormal vectors cj , i.e., ‖cj‖2 = 1.
Discuss the computational advantages or disadvantages of this variant.

In this exercise, we refer to this ‘normalised’ variant. Consider the sequence r0, r1, . . . , rk
of GCR residuals. Let Rk+1 be the n × (k + 1) matrix with columns of rj . The matrices Uk

and Ck are defined similarly.

9

GCR

Select x0 ∈ C
n

x = x0, r = b−Ax0

k = 0

while ‖r‖2 > tol do

uk = r

ck = Auk

for j = 0 : k − 1 do

βj =
c
∗

jck

σj

ck ← ck − βjcj

uk ← uk − βjuj

end for

σk = c∗kck, α =
c
∗

k
r

σk

r← r− α ck

x← x+ αuk

k ← k + 1

end while

Flexible GCR

Select x0 ∈ C
n

x = x0, r = b−Ax0

k = 0

while ‖r‖2 > tol do

Select uk st Auk ≈ r

ck = Auk

for j = 0 : k − 1 do

βj =
c
∗

jck

σj

ck ← ck − βjcj

uk ← uk − βjuj

end for

σk = c∗kck, α =
c
∗

k
r

σk

r← r− α ck

x← x+ αuk

k ← k + 1

end while

Algorithm 5.6. Generalised conjugate residuals (GCR) for solving Ax = b for x with residual
accuracy tol. The ‘for-loop’ (here in Matlab notation) is skipped if k − 1 < 0. Note that the scalar βj is
the same in the update of uk and of ck. The version at the left is the standard version (GCR or standard
GCR), at the right we have a flexible variant (flexible GCR, cf., Lecture 5.F below).

(b) Let ARk = QkBk be the QR-decomposition of ARk (in economical form): Bk is k × k
upper triangular. Prove that the columns of Qk are equal to the cj except for signs (that is,
qj = ζj cj for some sign ζj , i.e., a scalar ζj ∈ C for which |ζj | = 1). Assume the signs are all 1,
i.e., ARk = CkBk

(c) Prove that Uk = RkB
−1
k and rk+1 = (I−Ck C

∗
k)rk = (I−Ck C

∗
k)r0

Exercise 5.15. Orthodir. We apply (unpreconditioned) GCR of Alg. 5.6 to the system
Ax = b with A square, non-singular. Here, we denote the u-vectors and c-vectors before

orthogonalization by u′
k and c′k, while uk and ck are the u-vectors and c-vectors after orthog-

onalization (i.e., c′k ≡ Au′
k is orthogonalised against c0, . . . , ck−1 to compute ck).

Note that the u′
k are used to expand the search subspace, whereas the uk vectors are

used to extract the approximate solution from the search subspace, i.e., xk is computed as a
linear combination of the uj . Though not discussed here, we note that the fact that the basis
for expansion differs form the basis for extraction complicates the effect (and its analysis) of
rounding errors on the accuracy.

(a) What happens (depending on the initial guess x0) when GCR is applied to solve the system

[
0 1

1 0

][
x1

x2

]
=

[
1

0

]
?

(b) Discuss the effect of c∗krk = 0 at step k.

(c) Prove that c∗krk = r∗kA
∗rk and conclude that c∗krk = 0 does not occur if the the Hermitian

part, 1
2 (A+A∗), of A is positive definite, unless rk = 0.

(If A is normal, then the Hermitian part is positive definite if and only if the spectrum ofA is in

10

the right complex half plane, i.e., Re(λ) > 0 for all eigenvalues λ. Why? Does this equivalence
also holds for general, non-normal, A?).

(d) Breakdown can be avoided by selecting u′
k = ck−1 (k ≥ 1) for expansion rather than

u′
k = rk. The resulting method is called Orthodir (Orthogonal directions). Explain the

naming. Prove that Orthodir does not break down (unless xk = x; for ease of discussion, you
may assume that x0 = 0).

(e) Prove that (in exact arithmetic) GCR and Orthodir are equivalent (i.e., they have the same
residuals at corresponding steps at the same computational costs) in case GCR does not break
down.

(f) Discuss pros and cons of Orthodir versus GCR.

The Krylov subspace Kk(A, r0) is the search subspace in the kth step of (standard) GCR:
the method ‘searches’ for an approximate solution xk+1 in x0+Kk(A, r0). In step k, the search
subspace is expanded by ũk = rk. Before updating the residual and approximate solution, the
vector ũk is A∗A-orthogonalised against Kk(A, r0).

For each k, GCR computes an approximate solution xk in the shifted Krylov subspace
x0 +Kk(A, r0). In this subspace, x0 is the best in the sense that it is the vector with residual
with smallest norm. Usually matrix-vector multiplications (MVs) are combined with precondi-
tioning. Certainly, in these cases, (preconditioned) MVs are the most expensive computational
ingredients of Krylov subspace methods. The other high dimensional operations are vector up-
dates (AXPYs of the form αx + y) and inner products (DOT of the form x∗y). When k MVs
can be used, then, among all Krylov subspace methods, GCR (and GMRES, to be discussed
in the next lecture) is the Krylov subspace method that finds the approximate solution with
smallest residual. Nevertheless, this does not necessarily imply that GCR is the fastest method
in (computational) time.

The number of AXPYs and DOTs that GCR needs per step grows proportionally

with the step number.

If many iteration steps are needed (think of 30 or more), then the computational time for
performing AXPYs and DOTs dominates the time for MVs (and even for preconditioned MVs,
cf., §Lecture 5.F below).

In following three subsections and the following lectures, we will learn that methods that do
not aim to find the ‘best’ approximation in the shifted Krylov subspace, can be more efficient
(in time) by keeping the number of AXPYs and DOTs per step fixed.

E Optimal methods for Hermitian matrices

In the next exercise, we will learn that the number of AXPYs and DOTs per step can be
limited if additional information on the algebraic structure of the matrix is known and can
be exploited. To be more precise, we will focus on the case where A is Hermitian, leading to
conjugate residuals (CR), and, whereA is positive definite, leading to conjugate gradients
(CG).

Exercise 5.16. CR. Assume A is n × n Hermitian. Consider the kth step of GCR:
c0, . . . , ck−1 have been constructed (and form an orthogonal basis of AKk(A, r0), see Exer-
cise 5.13).

(a) Prove that Ark ⊥ AKk−1(A, r0). (Hint: use Exercise 5.13(f).)

(b) Select β such that Ark−βck−1 ⊥ ck−1. Prove that Ark−βck−1 ⊥ AKk(A, r0). Conclude
that c0, . . . , ck−1,Ark − βck−1 form an orthogonal basis of AKk+1(A, r0).

(c) Derive the CR algorithm (see Alg. 5.7) and prove that it is mathematically equivalent to
GCR (in this case, where A is Hermitian).

Note that in CR c = Au. Replacing the two lines c̃ = Ar̃ and c ← c̃ − βc in the
CR algorithm of Alg. 5.7 by one line c = Au, would save one AXPY. Unfortunately, this

11

Conjugate Residuals

Select x0 ∈ C
n

x = x0, r = b−Ax0

u = 0, c = 0, σ = 1

while ‖r‖2 > tol do

ũ = r, c̃ = Aũ

β = c∗c̃/σ

c← c̃− β c

u← ũ− β u

σ = c∗c, α = c∗r/σ

r← r− α c

x← x+ αu

end while

Conjugate Gradients

Select x0 ∈ C
n

x = x0, r = b−Ax0

u = 0, ρ = 1

while ‖r‖2 > tol do

ρ′ = ρ, ρ = r∗r

β = −ρ/ρ′
u← r− β u

c = Au

σ = c∗u, α = ρ/σ

r← r− α c

x← x+ αu

end while

Algorithm 5.7. Conjugate residuals (CR) (at the left) and conjugate gradients (CG) (at the right)
for solving Ax = b for x with residual accuracy tol. A is assumed to be Hermitian for CR and positive
definite for CG.

replacement is not possible since c̃ is needed in the computation of β. If A is positive, we can
compute β from u by switching to the A−1-inner product. This leads to the CG algorithm.

Exercise 5.17. CG. Assume that A is an n× n positive definite matrix.

(a) Formulate CR with respect to the A−1 inner product rather than with the standard inner
product, i.e., replace expressions as z∗y by z∗A−1y. Show that the resulting expressions can
be evaluated without inverting A.

(b) Note that now, rk is the smallest residual with respect to the A−1-inner product, rather
than the standard 2-norm. Prove that the residuals form an orthogonal system (orthogonal
with respect to the standard inner product), in particular,

rk ⊥ span (r0, . . . , rk−1) = span (u0, . . . ,uk−1).

(c) Rearrange the lines, to save one AXPY per step.

(d) Note that αk−1ck−1 = rk−1 − rk and uk−1 = rk−1 − βk−1uk−2. Use the orthogonality
relations to prove that

βk =
c∗k−1rk

c∗k−1uk−1
= − r∗krk

r∗k−1uk−1
= − r∗krk

r∗k−1rk−1
and αk =

u∗
krk

c∗kuk

=
r∗krk
c∗kuk

.

This saves one DOT per step. As a side product, ‖rk‖22 is computed (saving another DOT).

(e) Derive the CG algorithm in Alg. 5.7.

(f) Assume all eigenvalues of A are in [λ−, λ+] ⊂ (0,∞). Prove that

‖rk‖A−1 ≤ 2 exp

(
−2k

√
λ−

λ+

)
‖r0‖A−1 (k = 0, 1, 2, . . .).

(g) Compare the computational costs and memory requirements of CR, CG and Chebyshev
iteration (in the coupled two term variant of Exercise 5.11 and the right algorithm in Alg. 5.5).
Discuss pros and cons.

There are several ways to derive CG. Here, we saw CG as a variant of GCR that exploits
positive definiteness of the matrix. In following lectures, we will discuss other derivations.

12

They all lead to the same CG algorithm in case A is positive definite, but they allow different
generalisation (for non-symmetric A and even for non-linear systems of equations) each with
their own pros and cons.

F Nesting and preconditioning

Note that if in LMR the update vector uk is selected to be the solution of the system Au = rk
rather than u = rk, then rk+1 = 0. Similarly, selecting the solution of Aũ = rk for expanding
the search subspace in GCR rather than ũk = rk leads to rk+1 = 0 (Why?). Of course solving
Aũ = rk is as hard as solving Ax = b. However, often better approximations of A−1rk than
ũ = rk are available (or easy to obtain). The flexible variant of GCR at the right in Alg. 5.6
allows to expand the search subspace by any vector ũk.

Examples:

• ũk = rk (standard GCR)

• ũk solves Mũk = rk with M ≈ A (preconditioned GCR)

• ũk is the approximate solution of Aũ = rk obtained with s steps of standard GCR (nested
GCR), where s is the same (fixed) for each k

• ũk is an approximate solution of Aũ = rk such that ‖rk −Aũk‖2 ≤ 0.1‖rk‖2.

Of course, if solutions (x̃) of “nearby” systems (Ãx̃ = b̃) are available, then these solutions
can also be taken for ũk (for the first few k).

Flexible GCR allows to use preconditioners Mk that vary per step (replace M by Mk in the
second example). Actually, the third and fourth example can be viewed as examples of varying
preconditioners: here M−1

k = qk(A) where q is some polynomial (of, in example 3, degree s)
that depends on rk (ũk = q(A)r̃k).

Exercise 5.18. Preconditioned GCR.
Consider the flexible GCR algorithm at the right in Alg. 5.6. Take x0 = 0.
Let M be an n× n matrix (possibly in factorized form) such that

• M approximates A in some sense and

• systems Mũ = rk are easy to solve,

• M (or its factors) could “easily” be constructed.

For each k, let, in step k, ũk be the solution of the preconditioner system Mũ = rk. We
refer to this variant of flexible GCR as preconditioned GCR with preconditioner M.

(a) Prove that the resulting residuals rk are equal to the residuals of standard GCR applied to
the right preconditioned system AM−1y = b (with initial approximate y0 = 0).

(b) Relate the approximate solutions of these two methods.

(c) Show that preconditioned GCR computes approximate solutions in the Krylov subspace
Kk(M

−1A, r0) with residuals in Kk+1(AM−1, r0).

The purpose of preconditioning is to reduce the number of MVs that is required to have the
solution to certain accuracy (or, equivalently, to have the residual that is in norm sufficiently
small). More effective preconditioners will generally better reduce the required number of
iteration steps, but they will also increase the computational costs per (preconditioned) MV.
Note that by reducing the number of iteration steps, the costly steps (with a high number of
AXPYs and DOTs) are somewhat avoided. It is hard to tell in advance what the best (most
efficient) procedure will be. It very much depends on the (class of) linear systems that are to
be solved. But it is safe to state that iterative methods are efficient only in combination with
some preconditioning strategy. We will discuss preconditioners in detail in Lecture 10.A.

In nested GCR (i.e., the third and fourth variant in the above list of examples), there is
an outer loop, where k is increased and the uk and ck are being formed, and there are inner
loops, where GCR is used to solve Aũ = rk by s steps (third example) or to some residual
accuracy (fourth example).

13

For some classes of (practical relevant) linear problems, it appears that, with nested GCR, the
number of MVs that is required to have a certain reduction of the residual norm, is (almost)
independent of the number s of GCR steps in the inner loops. Suppose m MVs lead to the
required residual reduction. If s is small, then the computational costs in the outer loop are
high, while the inner loops are cheap. On the other hand, if s is large (but s ≤ m), then the
inner loops are expensive and the outer loop is cheap. For some intermediate s (as s =

√
m?)

the to total computational costs will be minimised.

G Restarts and truncation

In the above derivation of CR and CG, for problems with an A with some symmetry, mathe-
matical properties have been exploited to find an implementation of GCR that limits memory
requirements and computational costs per step. For certain non-symmetric problems, such lim-
itations can also be achieved by nesting. There are more “brute force” approaches that achieve
such limitations without relying on symmetry. These approaches give up the idea of finding the
best solution in the Krylov search subspace. As a consequence, they usually need (many) more
steps. But, nevertheless, since the steps are (relatively) cheap, they can often be very successful.
These “brute force” approaches include restart, truncation and nesting (as mentioned above
as example of a flexible GCR variant). In Lecture 8 and Lecture 11.A, we will derive memory
friendly and step-wise efficient methods for general matrices based on mathematical arguments.
Here (in the exercise below), we will discuss the “brute force” modification of GCR.

To avoid confusion, in the context of restarted GCR and truncated GCR, we also refer to
GCR as full GCR.

Consider the GCR algorithm of Alg. 5.6. Let ℓ be a positive integer.
We denote the version of GCR that is restarted every ℓth step by GCR(ℓ): starting with

x0 and r0, after ℓ steps, we have computed xℓ and rℓ. We then restart by taking xℓ as initial
guess for a new cycle of ℓ GCR steps (x0 ← xℓ, and, therefore, r0 ← rℓ) and repeat this restart
procedure until we have sufficient accuracy.

The version of GCR that truncates the orthogonalisation procedure to the last ℓ vectors is
denoted by ℓ-GCR, that is, ck is obtained from c′k (≡ Au′

k with u′
k ≡ rk) by orthogonalising c′k

only against the ℓ preceding vectors ck−1, . . . , ck−ℓ (if k − ℓ ≥ 0). Thus forming an orthogonal
system ck, ck−1, . . . , ck−ℓ of ℓ + 1 vectors. Note that the ck of ℓ-GCR will generally not be
orthogonal to, say, c0. In particular, this vector ck will be different from the ck of GCR. The
uk in ℓ-GCR is obtained accordingly from u′

k and uk−1, . . . ,uk−ℓ.

Exercise 5.19.

(a) Show that both GCR(ℓ) and ℓ-GCR can be obtained by replacing the line
for j = 0 : k − 1 do

in GCR of Alg. 5.6 by the line
for j = π(k) : k − 1 do,

where, in case of GCR(ℓ), π(k) ≡ m(ℓ+ 1) with m ∈ N0 maximal such that k ≥ m(ℓ+ 1), and
π(k) = max(0, k − ℓ) in case of ℓ-GCR.

(b) Analyse the storage that is required in both GCR variants.
Analyse the (average) computational costs (average with respect to the number of MVs).

(c) Show that both 0-CGR and GCR(1) coincide with LMR. Show that 1-GCR equals CR.
Generalize Exercise 5.6 and show that GCR(ℓ) converges for each ℓ ≥ 1 if 1

2 (A+A∗) is definite.
In case A is Hermitian, 1-GCR takes as many steps (MVs) as GCR. However, for non-

Hermitian A, 1-GCR need not to converge even in cases where 1
2 (A+A∗) is definite and LMR

converges quickly. Usually, GCR(ℓ) needs less steps (less MVs) to converge than GCR(ℓ′) if
ℓ > ℓ′. However, there are examples where GCR(2) needs less steps than GCR(ℓ) for ℓ > 2.
Try to illustrate the above observations with numerical examples.

The following two exercises are included for referential purposes: the results will be used in
Lecture 8 and Lecture 11.A to derive some iterative solvers for linear systems.

14

Exercise 5.20. Truncated GCR. We now consider ℓ-GCR.

(a) Show that for all k, and for some scalars αk and η
(j)
k (j = 1, . . . , ℓ), we have that

rk+1 = rk − αkArk − η
(1)
k (rk − rk−1)− . . .− η

(ℓ)
k (rk+1−ℓ − rk−ℓ).

(Hint: ck = Ark − βk−1ck−1, rj+1 = rj − αjcj).

(b) Show that these scalars αk and η
(j)
k solve

min
α,η(1),...,η(ℓ)

‖rk − αArk − η(1)(rk − rk−1)− . . .− η(ℓ)(rk+1−ℓ − rk−ℓ)‖2,

i.e., the (ℓ + 1)-vector ~αk ≡ (αk, η
(1)
k , . . . , η

(ℓ)
k)T solves the equation [Ark,∆

r
k] ~αk = rk in the

least square sense. Here, ∆r
k ≡ [rk − rk−1, . . . , rk+1−ℓ − rk−ℓ] is the ℓ × n matrix of residual

differences. In particular, the vector ~αk can be computed by solving the associated normal
equations. Conclude that ~αk is real if all entries of A, b, and x0 are real.

(c) Show that the ℓ× n matrix ∆r
k of residual differences is orthogonal.

(d) Show that for the above least square solution ~αk, we have

xk+1 = xk + αkrk + η
(1)
k (xk − xk−1) + . . .+ η

(ℓ)
k (xk+1−ℓ − xk−ℓ) = xk + [rk,∆

u
k] ~αk.

Here, ∆u
k denotes the ℓ × n matrix of approximate solution differences.

(e) Now take ℓ = 1. For each k, there is a polynomial pk of exact degree k with pk(0) = 1 such
that rk = pk(A)r0. Show that the (pk) satisfy the polynomial three-term recurrence

pk+1(ζ) = (1− αkζ)pk(ζ) + ηk(pk(ζ)− pk−1(ζ)) (ζ ∈ C).

Prove that pk and pk−1 do not share a zero (if they have a common zero, then so do pk−1 and
pk−2, etc.).

Exercise 5.21. Restarted GCR. Consider GCR(ℓ). Let m be a multiple of ℓ: m = jℓ
and k = m+ ℓ = (j + 1)ℓ.

(a) Show that for some scalars β
(1)
m , . . . , β

(ℓ)
m ,

rk = rm − β(1)
m Arm − β(2)

m A2rm − . . .− β(ℓ)
m Aℓrm.

(b) Show that these scalars

min
β(1),...,β(ℓ)

‖rm − β(1)Arm − . . .− β(ℓ)Aℓrm‖2,

i.e., the ℓ-vector ~βm ≡ (β
(1)
m , β

(2)
m , . . . , β

(ℓ)
m)T solves the equation ARm

~βm = rm in the least
square sense. Here, Rm is the ℓ × n matrix Rm ≡ [rm,Arm, . . . ,Aℓ−1rm]. In particular, the

vector ~βm can be computed by solving the associated normal equations.
Show that ~βm is real if all entries of A, b, and x0 are real.

(c) Show that

xk = xm + β(1)
m rm + β(2)

m Arm + . . .+ β(ℓ−1)
m Aℓrm = xm +Rm

~βm.

(d) There are polynomials pk such that rk = pk(A)r0. For m = jℓ, put

qj(ζ) ≡ 1− β(1)
m ζ − . . .− β(ℓ)

m ζℓ (ζ ∈ C).

Show that, pℓ = q0 and

pm+ℓ(ζ) = qj(ζ) pm(ζ) = qj(ζ) qj−1(ζ) · . . . · q0(ζ) (ζ ∈ C) :

15

pm is a product of j residual polynomials of degree ℓ.
Conclude that any zero of pm is a zero of pm+ℓ as well.
Conclude that GCR(2) and 1-GCR can not be the same (i.e., not all kth residuals can be the
same).

(e) Any polynomial of degree ℓ can be factorized as a product of ℓ polynomial factors of degree
1 (main theorem of the algebra). Show that qj is a real polynomial (i.e., all its coefficients are
real) if all entries of A, b, and x0 are real. Is that also the case for the degree 1 factors of qj?
Conclude that, for ℓ ≥ 2 GCR(1) will generally not be the same as GCR(ℓ) (i.e., not all kth
residuals can be the same for k = jℓ).

H Krylov subspaces and Hessenberg matrices

Let A be an n× n matrix. Let b a non-trivial n-vector.

Note that the order of the Krylov subspace equals the number of generating vectors. The
order need not be equal to the dimension:

Exercise 5.22. Let m be the largest number for which Km−1(A,b) 6= Km(A,b).

(a) Prove that m ≤ n.

(b) Show that Kk(A,b) = Kℓ(A,b) for all k ≥ m.

(c) Show that the order k of Kk(A,b) equals the dimension Kk(A,b) ⇔ k ≤ m.

The following theorem tells us that we may assume that all eigenvalues are simple (i.e., A
is simple) if A is diagonalizable (semi-simple) and we work with a Krylov subspace method.
More general, we may assume that in the Jordan normal form of A, different Jordan blocks
have different eigenvalues (see Exercise 5.31).

Theorem 5.3 Assume A is diagonalizable.

Then all eigenvalues of the restriction of A to K(A,b) ≡ span{Akb k = 0, 1, 2, . . .} are simple.

In particular, the dimension of the Krylov subspace of order k is less than k and less than or

equal to the number of different eigenvalues of A.

Exercise 5.23. Proof of Theorem 5.3. Let A be an n×n diagonalizable matrix and let
b be an n-vector.

It is convenient for this exercise to express b as a linear combination

b = v1 + . . .+ vm

of eigenvectors vj with mutually different eigenvalues, i.e., Avj = λjvj and λi 6= λj for all
i, j = 1, . . . ,m, i 6= j.

(a) Show that such a decomposition exists in case A is the 2× 2 identity matrix. What is the
value for m in this case?

Show that such a decomposition exists if A is diagonalizable. Note that the eigenvectors
depend on b.

(b) Let V be the span of v1, . . . ,vm. Show that A maps V into V : the space V is invariant
under multiplication by A. In particular, we have that the Krylov subspace

Kk(A,b) ≡ span(b,Ab, . . . ,Ak−1b)

of order k is a subspace of V . Show that v1, . . . ,vm form a basis of V .
(c) Consider the Vandermonde matrix

V =




1 λ1 λ2
1 . . . λk−1

1

1 λ2 λ2
2 . . . λk−1

2
...

...
...

...

1 λm λ2
m . . . λk−1

m




16

Show that the columns of V represent basis vectors of Kk(A,b) with respect to the vi.
Note that, if p is the polynomial p(x) = α0 + α1x + . . . + αk−1x

k−1, and ~α is the vector
~α = (α0, α1, . . . , αk−1)

T, then V~α is the vector with coordinates p(λj). Since p is of degree
< k, this implies that V is of full rank if k ≤ m (Why?).

(d) Conclude that the order k of the Krylov subspace Kk(A,b) equals its dimension if and
only if k ≤ m, where m is number of eigenvector components of b corresponding to different
eigenvalues.

Exercise 5.24. Let m be the maximal order for which the dimension of Km(A,b) equals m
(see Exercise 5.22).

Assume A is on Jordan normal form (cf., Theorem 0.7) and assume that all eigenvalues
are the same: A consists of several Jordan blocks Jλ (with Jλ as in Theorem 0.7) possibly of
different size, but with the same λ. Let ℓ be the size of the largest Jordan block, i.e., the largest
Jλ is ℓ× ℓ.

(a) Prove that m ≤ ℓ.

(b) Show that the Jordan normal form of A restricted to Km(A,b) consists of exactly one
Jordan block Jλ of size m.

As a combination of the above result with the one in Theorem 5.3 suggests, we have the
following result for a general matrix A.

Property 5.4 Let m be the maximal order for which the dimension of Km(A,b) equals m.

Let, for each eigenvalue λ of A, ℓ(λ) be the size of the largest Jordan block Jλ in the Jordan

normal form of A. Then, m ≤
∑

ℓ(λ), where we sum over all different eigenvalues λ of A.

Krylov subspaces and Hessenberg matrices are closely related.
Theorem 3.4 tells us that it make sense to try to construct a partial Hessenberg decompo-

sition, as in the Arnoldi process.

Below A is an n× n matrix and v0, . . . ,vk is a set of k+1 linearly independent n-vectors.
We put Vj ≡ [v0, . . . ,vj−1] and Vj ≡ span(Vj) (j ≤ k).

Theorem 5.5 The following three properties are equivalent.

1) A(Vk) ⊂ span (Vk)⊕ [vk].
2) There is a (k + 1)× k matrix Hk such that AVk = Vk+1 Hk.

3) Vk+1 is Krylov subspace or order k + 1.

The set v0, . . . ,vk is said to be a Krylov basis or Krylov flag if

Kj+1(A,v0) = span(v0, . . . ,vj) all j ≤ k. (5.6)

An Hessenberg matrix Hk is unreduced if Hi+1,i 6= 0 all i.1

Theorem 5.6 Assume AVk = Vk+1 Hk. Then,

Hk is unreduced Hessenberg ⇔ v0, . . . ,vk is a Krylov basis. (5.7)

Theorem 5.7 Assume AVk = Vk+1 Hk, v0, . . . ,vk is a Krylov basis and A is non-singular.

Then, Hk has full rank and

vj are residuals (j ≤ k) ⇔ 1∗Hk = 0∗. (5.8)

1The naming ‘unreduced’ comes from the theory for the QR-algorithm, where the purpose is to
‘reduce’ an upper Hessenberg matrix to an upper triangular matrix (Schur form). A 0 on the first
lower co-diagonal means a step towards the reduction of the matrix to upper triangular form: the
QR-algorithm can be reduced to (two) processes on lower dimensional matrices.

17

Exercise 5.25. Proof of Theorem 5.6. Assume AVk = Vk+1 Hk. Prove (5.7).

Exercise 5.26. Proof of Theorem 5.7. Assume AVk = Vk+1 Hk, and v0, . . . ,vk is a
Krylov basis, or, equivalently, Hk is unreduced Hessenberg.

(a) Prove that Hk has full rank if A is non-singular.

(b) For each j ≤ k, there is a polynomial pj of exact degree j such that vj = pj(A)v0.
Prove this and show that

ζ [p0(ζ), p1(ζ), . . . , pk−1(ζ)] = [p0(ζ), p1(ζ), . . . , pk(ζ)]Hk (ζ ∈ C).

Note that [p0(ζ), p1(ζ), . . . , pk(ζ)] is a row vector.

(c) Put ~γk ≡ [p0(0), p1(0), . . . , pk(0)]
∗. Show that

e∗1~γk = 1 and ~γ∗
k Hk = 0∗. (5.9)

Prove that (5.9) determines ~γk for any (k + 1)× k unreduced Hessenberg matrix.

(d) Since vj is a residual (i.e., vj = v0 − Axj for some xj is Kj−1(A,v0)) if and only if
pj(0) = 1 (then xj = qj(A)v0 with qj such that pj(ζ) = 1− ζqj(ζ)), conclude that (5.8) holds.

(e) Let Hk = JU be the LU-decomposition of Hk with J a lower triangular (k + 1)× k matrix
with 1 on the diagonal and U upper triangular k × k matrix. Show that J is Hessenberg and
bi-diagonal. Show that

1∗ Hk = 0∗ ⇔ the lower diagonal of J consists of −1.

(f) Let ~γk be as in (5.9). Put Dk+1 ≡ diag(~γk). Show that 1∗Dk+1Hk = 0∗ = 1∗Dk+1HkD
−1
k

and conclude that 1
e∗
j
~γk

vj (i.e., the columns of Vk+1D
−1
k+1) are residuals.

In case v0, . . . ,vk is an orthonormal system (as in the Arnoldi relation), the vj scaled in the
indicated way, are the residuals of th FOM-process.

The following exercise proves Theorem 5.5. This exercise also gives an explicit construction
of the Krylov basis of Vk+1 (using Householder reflections).

Exercise 5.27. Proof of Theorem 5.5. For ease of notation, we adopt the following con-
ventions in this exercise. If v is an ℓ-vector and we use the vector in an m-dimensional setting,
with m > ℓ, then we assume that v has been expanded with 0’s to an m-vector ((vT, 0, . . . , 0)T).
If an ℓ × ℓ matrix A is used in an m-dimensional context, then we assume that A has been
expanded with zeros to an m×m matrix, except on the new diagonal entries which are equal
to 1.

Let G be an (ℓ+ 1)× ℓ matrix.

(a) Let gT be the (ℓ+1)th row of of G. Construct a ‖ · ‖2-normalised ℓ-vector v such that the
Householder reflection H1 ≡ Iℓ − 2vv∗ maps g to a multiple of the ℓth standard basis vector
eℓ. Let G1 ≡ H1GH1. What is the form of the last row of this matrix?.

(b) Let G(1) the ℓ × (ℓ − 1) left upper block of G1. Apply the procedure from (a) to G(1) to
form an ℓ× (ℓ − 1) with last row a multiple of eTℓ−1.

(c) Repeat this procedure ℓ − 1 times and conclude that there is an ℓ × ℓ unitary matrices Q
(Q = H1 · H2 · . . . · Hℓ−1) such that H ≡ Q∗GQ is (ℓ + 1) × ℓ upper Hessenberg: there is an
Hessenberg decomposition

G = QHQ∗, (5.10)

with Q unitary and H upper Hessenberg.

(d) Assume that AWℓ = Wℓ+1G for some full rank n × (ℓ + 1) matrix Wℓ+1 = [Wℓ,wℓ] =
[w0, . . . ,wℓ]. Show that AVℓ = Vℓ+1H and span (Vℓ+1) = span (Wℓ+1). Here, Vℓ+1 ≡Wℓ+1Q.
(Pay attention to the dimensions of the matrices).

(e) Prove Theorem 5.5.

18

Exercise 5.28. Let H be a k × k unreduced Hessenberg matrix.

(a) Prove or disprove (give a counter example the following claims:

• H is irreducible (see Footnote 5).

• H has full rank.

• If H is irreducible, then H has full rank.

• If H has full rank, then H is irreducible.

(Hint: for 3× 3 counter examples, you may assume that H is of the form H =



∗ ∗ ∗
1 ∗ ∗
0 1 ∗


.)

(b) Prove: H is non-singular ⇔ ~γ∗H = ~0∗ for some vector ~γ with first coordinate 1.

(c) Prove: e1 ∈ R(H) ⇔ H is non-singular (Hint: see Exercise 0.40.2).

(d) Assume the unreduced Hessenberg matrix H is tri-diagonal. Let Hm be the m × m left
upper block of H (m ≤ k). Prove: if Hm−1 is singular, then Hm is non-singular.
(Note that the result follows from Exercise 4.15(b) in case H is Hermitian.)

Exercise 5.29. Hessenberg matrices and the power method. Let H = (Hi,j) be an
n× n upper Hessenberg matrix, i.e., except for the first co-diagonal H has a zero strict lower
diagonal part (Hij = 0 if i > j + 1). We assume H to be diagonalizable.

Suppose there is a j ∈ {1, . . . , n− 1} such that also Hj+1,j = 0. Partition H as

H =

[
H1 E

0 H2

]
,

where H1 is the left upper j × j block and H2 is the bottom right (n − j) × (n − j) block.
Partition vectors accordingly: x = (xT

1 ,x
T

2)
T.

(a) Show that the set Λ(H) of all eigenvalues of H is the union of Λ(H1) and Λ(H2).

(b) Express the eigenvectors of H in terms of eigenvectors of H1 and H2.

We now assume H to be unreduced. of order k is of dimension min(k, n).

(c) Conclude that e1 has a component in the direction of each eigenvector of H. Conclude that
the power method started with x0 = e1 will converge to the dominant eigenvector if H has a
dominant eigenvector.

I Unreduced Hessenberg matrices and minimal polynomial

Let H be a k × k upper Hessenberg matrix.
For each eigenvalue ϑ of H , let µ(ϑ) be the multiplicity of the eigenvalue.

Proposition 5.8 H is unreduced if and only if dim(Kk(H, e1)) = k.

Exercise 5.30. Prove Prop. 5.8.

Theorem 5.9 Let H be unreduced. Let p be a polynomial of degree k.
The following three properties are equivalent

1) p(H)e1 = 0.

2) p(H) = 0.

3) p(j)(ϑ) = 0 for all eigenvalues ϑ of H and all j < µ(ϑ).
If p is monic of exact degree k, then we have that

p(H)e1 = 0 ⇔ p(H) = 0 ⇔ p is the minimal polynomial.

19

Exercise 5.31. Proof of Theorem 5.9. Let p(ζ) = α0 + α1ζ + . . . + αkζ
k (ζ ∈ C) be a

polynomial. Let A be a square matrix. The matrix p(A) is defined by

p(A) ≡ α0I+ α1A+ . . .+ αkA
k

For an eigenvalue λ of A, let ℓ(λ) be the size of the largest Jordan block associated with
the eigenvalue λ.

(a) Prove that p(A) = 0 if and only if p(j)(λ) = 0 for all eigenvalues λ of A and all j < ℓ(λ):
cf., Theorem 0.9 and Exercise 0.19.

Consider a k by k unreduced upper Hessenberg matrix H = (Hi,j).

(b) Prove that the degree of the minimal polynomial QH of H is k. In particular, PH = QH ,
where PH is the characteristic polynomial of H .

(c) Show that p = q, if both p and q are monic polynomials of exact degree k with p(H)e1 =
q(H)e1 = 0.

(d) Prove Theorem 5.9.

(e) Are the eigenvalues of an unreduced Hessenberg matrix simple? (Hint: consider (a rotated
version of) the 2× 2 matrix of all 1, except for the (1, 2) entry which equals 0).

(f) Show that if an unreduced Hessenberg matrix is transformed to Jordan normal form, then
there are no two Jordan blocks with the same eigenvalue.

J Unreduced Hessenberg matrices and eigenpairs

Leslie matrices are Hessenberg matrices of special type: they have only non-zeros on the
first row and the first lower co-diagonal. In addition, these entries are non-negative, but the
sign is irrelevant for the following statement. For Leslie matrices, eigenvectors can easily be
expressed in terms of the eigenvalues. For instance, with β1 ≡ 1, βj ≡ h1 · . . . ·hj−1 = βj−1 hj−1

(j = 2, . . . , k), it can easily be checked that




α1 α2 . . . αk−1 αk

h1 0 . . . 0 0

0 h2
. . .

...
...

. . .
. . .

...

0 hk−1 0







λk−1

h1λ
k−1

β3λ
k−3

...

βk



= λ




λk−1

h1λ
k−1

β3λ
k−3

...

βk



, (5.11)

whenever λ is such that α1λ
k−1 +α2β2λ

k−2 + . . .+αkβk = λk (check this). This last equation
is equivalent to the characteristic polynomial equation det(λI −H) = 0.

The following result generalises this result to general unreduced Hessenberg matrices.

Exercise 5.32. Let Hk = (hij) be an k × k unreduced upper Hessenberg matrix.
Put β1 ≡ 1, βj ≡ h21 · . . . · hj,j−1, let Hj be the left j × j upper block of Hk (j = 2, . . . , k).

(a) Show there is a unique k-vector ~γk = (1, γ2, γ3, . . . , γk)
T such that

~γ∗
k Hk = τk e

∗
k for some scalar τk.

Note that ~γk is scaled to have first coordinate equal to 1.

To find an expression for τk and the γj , consider the LU-factorisation H = LU of H .

(b) Show that L is of the form

L =




1 0 . . . 0 0

−µ2 1 . . . 0

0 −µ3
. . .

...
...

. . .
. . .

...

0 −µk 1




.

20

Let uii be the ith diagonal entry of the upper triangular matrix U .
Show that hj,j−1 = −µj uj−1,j−1 and u11 · . . . · ujj = det(Hj) (j = 2, . . . , k).

(c) Show that γj = 1/(µ2 · . . . · µj) for j = 2, . . . , k and τk = γkukk.

(d) Show that

γj = (−1)j−1 det(Hj−1)

βj

=
det(−Hj−1)

βj

(j = 2, . . . , k) and τk = −det(−Hk)

βk

.

(e) For λ ∈ C, let ~γk(λ) be the k-vector with first coordinate 1 and other coordinates given by

γj(λ) ≡
det(λ Ij−1 −Hj−1)

βj

(j = 2, . . . , k).

Show that

~γk(λ)
∗ Hk = λ~γk(λ)

∗ − det(λ Ik −Hk)

βk

e∗k

Conclude that for each eigenvalue ϑj of Hk, the vector ~γk(ϑj) forms a left eigenvector of Hk.

(f) The permutation matrix J that renumbers the coordinates backwards, Je1 = ek, Je2 =
ek−1, etc., can be used to express right eigenvectors of Hk as left eigenvectors of a related upper
Hessenberg matrix. Prove that

(Hk ~γ)
∗J = (J~γ)∗ (JH∗

kJ) (~γ ∈ C
k), JH∗

kJ is upper Hessenberg.

(g) Prove that, for each λ ∈ C, there is a k-vector, for ease of notation also denoted by ~γk(λ),
with kth coordinate equal to 1 such that

Hk~γk(λ) = λ~γk(λ)−
det(λ Ik −Hk)

βk

e1.

Give an expression for the coordinates of this vector and describe the right eigenvectors of Hk.
Check that the result is consistent with the one in (5.11).

21

