
March 26, 2018

Lecture 6 – Optimal Iterative Methods

Let A be an n × n matrix. If our interest is solving a linear system Ax = b, we assume that
A is non-singular. For eigenvalue computations, A can be singular.

A GMRES, FOM and Arnoldi’s method

Select a non-trivial initial vector r0.
The kth step Arnoldi’s approach leads to the Arnoldi relation

AVk = Vk+1Hk

of order k, where Vk = [v1, . . . ,vk ] is an n × k orthonormal matrix of Arnoldi vectors vi

with r0 = ‖r0‖2 v1 and Hk is a (k + 1) × k upper Hessenberg matrix. Hk will denote the
k × k upper block of Hk. Note that span(Vk) = Kk(A, r0). An Arnoldi relation is also called
Arnoldi factorisation or Arnoldi decomposition.

Both the Generalised Minimal Residual method (GMRES) and the Full Orthogo-
nalisation Method (FOM) for solving the linear system Ax = b are based on the Arnoldi
relation. They both take r0 = b−Ax0 and in both methods xk is obtained as xk = x0 +Vk ~yk
for some vector ~yk ∈ C

k. In particular, xk − x0 = Vk ~yk ∈ K(A, r0). The methods differ in the
way ~yk is computed. Note that with an approximation xk of this form, we have that

‖rk‖2 = ‖b−Axk‖2 = ‖r0 −AVk ~yk‖2
= ‖Vk+1 (‖r0‖2 e1 −Hk ~yk) ‖2 = ‖ ‖r0‖2 e1 −Hk ~yk‖2.

The following three properties are equivalent: they characterise GMRES.

1) ‖rk‖2 = min{‖r0 −Ax̃‖2 x̃ ∈ span(Vk)} = min{‖r0 −Ax̃‖2 x̃ ∈ Kk(A, r0)}.
2) rk ⊥ AVk or, equivalently, rk ⊥ AKk(A, r0) = Kk(A,Ar0).

3) ~yk = argmin{‖ ‖r0‖2 e1 −Hk ~y ‖2 ~y ∈ C
k}.

GMRES obtains ~yk as the least square solution of Hk ~yk = ‖r0‖2 e1.
The following two equivalent properties characterise FOM.

1) rk ⊥ Vk or, equivalently, rk ⊥ Kk(A, r0).

2) Hk ~yk = ‖r0‖2 e1.
FOM uses the solution ~yk of Hk ~yk = ‖r0‖2 e1.
For ease of notation, assume x0 = 0. Then x = Vk ~yk ∈ Kk(A, r0). The FOM orthogonality
condition is equivalent to requiring that the

xk ∈ Kk(A, r0) satisfies v∗Axk = v∗b for all v ∈ Kk(A, r0). (6.1)

This is known as a Galerkin condition: the search subspace (Kk(A, r0) in this case) is equal to
the test subspace. In GMRES the approximate solution from the search subspace Kk(A, r0)
is tested against AKk(A, r0) (see 2) of the properties that characterise GMRES). This ‘skew’
way of testing where search subspace differs from the test subspace leads to a so-called Petrov–
Galerkin condition.
Note that the residuals rk can be expressed as rk = pk(A)r0 for some residual polynomial
pk, i.e., a polynomial pk of degree k that takes the value 1 at 0: pk(0) = 1. The FOM residual
polynomial differs from the GMRES residual polynomial. These polynomials play a role in
theoretical discussion on convergence. They are never (explicitly) computed.

In Arnoldi’s method for solving the eigenvalue problem Ax = λx, the initial vector r0
is usually selected randomly (unless eigenvalue approximations are computed as a side product
of GMRES. Then r0 = b−Ax0). Approximate eigenpairs (ϑk,uk) are obtained by solving the
eigenvalue problem Hk ~yk = ϑk~yk, and taking uk = Vk~yk, or, equivalently, uk ∈ span(Vk) such
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that the Galerkin condition Auk − ϑk uk ⊥ Vk is satisfied (cf., Exercise 6.4). The eigenvalue
ϑk of Hk is a so-called Ritz value (of order k), the associated vector uk is a Ritz vector,
(ϑk,uk) is a Ritz pair. Note that this method leads to k Ritz pairs, i.e., neglecting scalings
(or, assuming ‖~yk‖2 = 1), to k approximate eigenpairs in step k. Arnoldi’s method extract
Ritz pairs from the Krylov search subspace as approximate eigenpairs. The variant, where on
uk ∈ span(Vk) the Petrov–Galerkin condition Auk−ϑkuk ⊥ AVk is imposed leads to harmonic
Ritz pairs (see also Exercise 6.4).

Both Ritz values and harmonic Ritz values provid approximate eigenvalues, which is useful
in itself, but, as such they are also of importance in the analysis of the convergence of FOM
and GMRES, see the discussion in the paragraph before Exercise 6.8,

If Hk = (hij) is unreduced, i.e., hi+1,i 6= 0 for all i, then Hk has a left kernel vector

~γk+1 ∈ C
k+1 that is unique up to scaling (see Exercise 6.1). It is convenient to scale ~γk+1 to

have first coordinate equal to 1:

~γk+1 = (1, γ2, . . . , γk+1)
T such that ~γ∗

k+1Hk = ~0∗k. (6.2)

Here, ~0k is the k-vector of zeros. This vector ~γk+1 plays an important role in the convergence
analysis of GMRES, FOM and Arnoldi as we will learn below.

Exercise 6.1. Hessenberg matrices and residuals. LetH = (hij) be an n×n unreduced
upper Hessenberg matrix. Hk is the k + 1 by k upper left block of H. Let ~γk+1 be as in (6.2).

(a) Show that, for each k, there exists a ~γk with the required properties and that ~γk+1 can be
obtained by extending ~γk by one coordinate:

~γk+1 = (1, γ2, . . . , γk, γk+1)
T = (~γT

k , γk+1)
T.

Express ‖~γk+1‖22 as an update of ‖~γk‖22.
Let yGMRES

k be the minimal residual solution ofHky = e1 (i.e. ‖e1−Hky
GMRES

k ‖2 is minimal)
and let yFOM

k denote the solution of Hky = e1.

(b) Prove that e1 −Hky
GMRES

k ⊥ R(Hk) = N (Hk
∗)⊥ to show that, for some scalar τ , (see also

Exercise 0.4(c))
e1 −Hky

GMRES

k = τ~γk+1.

Show also that, for some scalar τ̃ ,

e1 −Hky
FOM

k = τ̃ ek+1.

Prove that

ρG

k ≡ ‖e1 −Hky
GMRES

k ‖2 =
1

‖~γk+1‖2
, ρF

k ≡ ‖e1 −Hky
FOM

k ‖2 =
1

|γk+1|
. (6.3)

Note that the norms of the GMRES residuals and FOM residuals can be computed without
computing the solutions (nor the residuals).

(c) Show that ρG

k ≤ ρG

k−1, ρG

k < ρF

k and

ρF

k =
1√

1− δ2
ρG

k , with δ ≡ ρG

k

ρG

k−1

.

Explain why near stagnation in GMRES corresponds to a high ‘bump’ in the convergence
history of FOM, while the norm of the FOM and GMRES residuals almost coincide at steps
where the norm of the GMRES residual decreases significantly (Hint: conclude that ρF

k ≈ ρG

k

if ρG

k ≪ ρG

k−1, while ρF

k is huge if ρG

k ≈ ρG

k−1. If ρG

k = ρG

k−1, then ρF

k =∞).

Consider the Arnoldi relation AVk = Vk+1Hk. Assume Hn is unreduced.

(d) Describe the relation for k = n. Explain how the above results are applicable to GMRES
and FOM for this general matrix A. Deduce Alg. 6.1 (pay attention to the case where ‖r0‖2 6=
1).
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GMRES (and FOM)

ρ0 = ‖b‖2, v = b/ρ0,

V = [v], k = 1, H = [ ],

ρ = ρ0, ~γ = 1

while ρ > tol do

%% Update the Arnoldi expansion

w = Av

[v,~h ] = Orth(V,w)

V← [V,v ], k ← k + 1

H ← [H ;~0∗k−2
], H ← [H ,~h ]

%% Update H’s left singular vector

γ = [~γ; 0]∗~h, γ ← γ

e∗
k
~h
, ~γ ← [~γ ; −γ̄].

%% Compute the residual norm

ρ = ρ0
‖~γ‖2

%% or ρ = ρ0
|γ| for FOM

end while

%% Solve the projected problem

Solve H ~y = ρ0 e1 for ~y in Least Square sense

%% or for FOM, solve H~y = ρ0e1 for ~y

%% Lift the pre-solution to C
n

~y ← (~y; 0), x = V~y

Algorithm 6.1. GMRES (and FOM) for solving Ax = b for x with residual accuracy tol. A is a
general square matrix.
Here, we used Matlab’s notation for defining extensions of matrices: [~y; 0] indicates that the vector ~y is

extended with a 0, [H ;~0∗k−2 ] is H extended with a row of length k − 2 of zeros, [H,~h] extends H with a

column. Note that k is the number of columns of V. If k = 2, then ~0∗k−2 is empty. ‘Orth’ is as defined in
Alg. 3.1. H is the square upper block of H . GMRES solves H ~y = ρ0 e1 in the least square sense. The
backslash operator in Matlab, H\(ρ0e1), returns the least square solution.

(e) Prove that the following four statements are equivalent:

1) GMRES stagnates in step k, i.e., ‖rGMRES

k−1 ‖2 = ‖rGMRES

k ‖2
2) γk+1 = 0 (the size of the FOM residual is ∞)

3) Hk is singular

4) 0 is a kth order Ritz value.
Does the FOM process break down if the norm of its residual is ∞?

The previous exercise showed that the left kernel vector ~γk+1 of the Hessenberg matrix
Hk is usefull to access the accuracy of the FOM and GMRES processes. The next exercise
generalises this result to the case where r0 is not necessarily a multiple of v1, a situation that
may be useful for restarts. This exercise also suggests an easy way to compute yGMRES

k .

Exercise 6.2. Consider the Arnoldi relation AVk = Vk+1Hk.

Assume Hk is unreduced and let ~γk+1 be as in (6.2). Assume b ∈ span(Vk+1). Let ~β be
the vector of coordinates of b with respect to the Arnoldi vectors, i.e., the columns of Vk+1:
~β ≡ V∗

k+1 b and b = Vk+1
~β. Note that in the standard approach ~β = ‖b‖2 e1.

(a) Prove that the solution x of Ax = b belongs to span(Vk) if and only if ~β ⊥ ~γk+1.
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Arnoldi (and Ritz pairs)

Select a b ∈ C
n, b 6= 0.

ρ0 = ‖b‖2, v = b/ρ0

V = [v], k = 1, H = [ ]

ρ =∞, ~γ = 1

while ρ > tol do

%% Update the Arnoldi expansion

w = Av

[v,~h ] = Orth(V,w)

V← [V,v ], k ← k + 1

H ← [H ;~0∗k−2
], H ← [H ,~h ]

%% Solve the projected problem

Solve H ~y = ϑ~y with ‖~y‖2 = 1

Select a pre Ritz pair, say (ϑ, ~y)

%% Compute the residual norm

ρ = |(e∗k~h) (e∗k−1
~y)|

end while

%% Lift the pre-solution to C
n

λ = ϑ, ~y ← (~y; 0), x = V~y

Algorithm 6.2. Arnoldi’s method, using Ritz pairs for computing an eigenpair (λ,x) with residual
accuracy tol of a general square matrix A. For notations, see the caption of Alg. 6.1.

(b) Put

~βk+1 ≡ ~β − ~ρk+1 with ~ρk+1 ≡
~γ∗
k+1

~β

~γ∗
k+1~γk+1

~γk+1.

Show that for an xk = Vk~yk ∈ span(Vk) the following statements are equivalent:

1) xk is the GMRES solution, i.e., xk = argmin{‖b−Ax̃‖2 x̃ ∈ span(Vk)},
2) ~yk exactly satisfies Hk ~yk = ~βk+1,

3) rk ≡ b−Axk = Vk+1 ~ρk+1.

(c) Let xk = Vk~yk ∈ span(Vk) be the GMRES solution. Show that ~yk is the solution of the

upper triangular k× k system R~yk = ~β′, where R is the lower k× k block of Hk and ~β′ is lower

k-vector of ~βk+1.

Note that ‖rk‖2 = |~γ∗
k+1

~β|/‖~γk+1‖2 which is ‖b‖2 times the cosine of the angle between ~β and
~γk+1. Observe that this is in line with the fact that ‖rk‖2 is ‖b‖2 times the sine of the angle
between b and span (AVk) (why do we have this fact?).

Exercise 6.3. Unreduced Hessenberg matrices and GMRES. Suppose Arnoldi’s pro-
cess in the GMRES (FOM) or Arnoldi context yields hi+1,i = 0 for some i. Here, Hk = (hij)
is the Hessenberg matrix for this process. Discuss the consequences for GMRES (and FOM).

Exercise 6.4. Arnoldi, Ritz values and harmonic Ritz values. Consider the Arnoldi
relation AVk = Vk+1Hk. Assume Hk is unreduced and let ~γk+1 be as in (6.2). Put η ≡ hk+1,k.
The n-vector u and k-vector ~y are related by u = Vk ~y, ϑ is a scalar, ~y is normalised: ‖~y ‖2 = 1.
r is the residual: r ≡ ϑu−Au.

(a) Show that ‖u‖2 = 1.
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(b) Prove that the following two properties are equivalent

1) ϑu−Au ⊥ Vk.

2) Hk ~y = ϑ~y, where Hk is the k × k upper block of Hk.

Then ϑ is an Ritz value with Ritz vector u and pre Ritz vector ~y (of order k).

(c) Show that, for Ritz pairs (i.e., one of the properties of (b) holds), we have that

‖r‖2 = |η| |e∗k~y | :

the residual norm can be computed in k-dimensional space. Actually, only the last coordinate
of (the normalised) ~y is needed and the right bottom element of Hk.

(d) Deduce Alg. 6.2. Note that the problem Hk ~y = ϑ~y is a low dimensional one. It can
efficiently be solved with the QR-algorithm (Matlab’s eig) yielding k pre Ritz pairs (ϑ, ~y). If
the eigenvalue λ of A with, say, smallest real part1 is the one that is of interest, then, among
all pre Ritz pairs of order k, the ϑ with smallest real part will be an appropriate choice (an
appropriate selection strategy).

(e) Show that, for Ritz pairs, we also have that

‖r‖2 = |ϑ|
|~γ∗

k+1~y|
|γk+1|

= |ϑ| cos∠(~γk+1, ~y)
‖~γk+1‖2
|γk+1|

.

Note that the last fraction is the ratio ρF

k/ρ
G

k of the kth FOM residual norm ρF

k and the GMRES
residual norm ρG

k as discussed in Exercise 6.1, see (6.3).

(f) Prove that the following five properties are equivalent (we assume ~y to be extended with
one zero if dimensions have to be matched).

1) ϑu−Au ⊥ AVk.

2) Hk ~y − ϑ~y ⊥ Hk.

3) Hk ~y − ϑ~y = β̃ ~γk+1 for some scalar β̃.

4) (Hk − β ~γk+1e
∗
k)~y = ϑ~y, where β ≡ η/γk+1.

5) (Ik + α~γk~γ
∗
k)Hk~yk = ϑ~y, where α ≡ |γk+1|−2.

Note that the bottom row of the matrix Hk − β ~γk+1e
∗
k in 4) is a zero vector: this matrix

essentially is square, i.e., k × k. To prove 5), note that ~0∗ = ~γ∗
k+1Hk = ~γ∗

kHk + η γ̄k+1 e
∗
k.

Then ϑ is called an harmonic Ritz value with harmonic Ritz vector u and pre harmonic
Ritz vector: ~y.

(g) Show that, for harmonic Ritz pairs, we have

‖r‖2 = |η| |e∗k~y |
‖~γk+1‖2
|γk+1|

.

(h) Show that, for harmonic Ritz pairs, we also have

‖r‖2 = |ϑ| |~γ
∗
k+1~y |
‖~γk+1‖2

= |ϑ| cos∠(~γk+1, ~y).

(i) Let ϑ be the harmonic Ritz value of (f). Deduce from property 1) that ϑ =
‖Au‖2

2

u∗A∗u
. Take

y ≡ Au and conclude that
1

ϑ
=

y∗A−1y

y∗y
≤ ‖A−1‖2 (6.4)

in case A is non-singular: all harmonic Ritz values ‘stay away from zero’ if A is non-singular.

For GMRES and harmonic Ritz vectors, projecting the problems onto Krylov subspaces
leads to non square systems. The following exercise shows that the projected problems can also
be formulated as square systems.

1Re(λ) ≤ Re(λ′) for all eigenvalues λ′ of A
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Exercise 6.5. Let Hk = (hi,j) be an unreduced (k + 1)× k upper Hessenberg matrix and let
~γk+1 be as in (6.2). Put ~γ ≡ ~γk/γk+1. As before (cf., Exercise 6.4), Hk is the k × k upper
block of Hk, η ≡ hk+1,k, and β ≡ η/γk+1

(a) Show that the bottom row of Hk − β ~γk+1 e
∗
k consists of zeros only. Note that this matrix

arises by subtracting a multiple of ~γk+1 from the last column of Hk, with multiple selected such
that the right-bottom element of this ‘adapted’ matrix equals 0.

(b) Show that the k × k upper block of Hk − β~γk+1e
∗
k equals (Ik + ~γ ~γ∗)Hk.

(c) Prove the following equivalences for ~y ∈ C
k, ϑ ∈ C,

(Ik + ~γ ~γ∗)Hk ~y = e1 ⇔ Hk ~y − e1 ⊥ Hk,

(Ik + ~γ ~γ∗)Hk ~y = ϑ~y ⇔ Hk ~y − ϑ~y ⊥ Hk

(extend ~y with a 0 if required for matching dimensions).

(d) Let α > 0 be such that α2‖~γ‖22 + 2α = 1. Prove that (Ik + α~γ ~γ∗)2 = Ik + ~γ ~γ∗ and
conclude that ϑ is an eigenvalue of (Ik + ~γ ~γ∗)Hk if and only if it is an eigenvalue of

(Ik + α~γ ~γ∗)Hk(Ik + α~γ ~γ∗).

Note that this matrix is Hermitean if Hk is Hermitean (which is the case if A is Hermitean).

In Lecture 13.A, we will learn that harmonic Ritz values are usefull objects in eigenvalue
computations. Here, in this Lecture 6, they have been introduced since they relate to GMRES,
as Ritz values relate to FOM.

The kth FOM residual rFOM

k equals pk(A)r0 for some residual polynomial pk of degree
k: this polynomial is called the kth FOM residual polymial or kth FOM polynomial. The
following theorem characterises this polynomial in terms of the kth order Ritz values: the Ritz
values are the zeros of the FOM polynomial. In Exercise 6.8, we will see that the harmonic
Ritz values are the zeros of the GMRES polynomial.

Theorem 6.1 Let p be a polynomial of degree k such that p(0) = 1.
The following two properties are equivalent.

1) p is the kth FOM polynomial (p(A)v1 ⊥ Vk).

2) p(j)(ϑ) = 0 for all eigenvalues ϑ of Hk and all j < µ(ϑ) (p(Hk) = 0)

Here µ(ϑ) is the multiplicity of the eigenvalue ϑ of Hk.

The next exercise suggests a proof of this theorem. Exercise 6.7 provides an easier proof
for the simpler situation where all eigenvalues of Hk are simple.

Exercise 6.6. Ritz values and zeros of FOM polynomials (Proof of Th. 6.1).

(a) Show that rk ⊥ Vk: rk is the kth FOM residual. Show that there are a polynomial q
of degree k − 1 and a polynomial pk of degree k such that pk(ζ) = 1 − ζq(ζ) (ζ ∈ C) and
rk = (I−Aq(A))r0 = pk(A)r0 ⊥ Vk: pk is the kth FOM polynomial.

(b) Show that, AVkej = VkHkej for all j < k, AjVke1 = VkH
j
ke1 for all j < k,

and AkVke1 = Vk+1 Hk H
k−1
k e1, V∗

k A
jVk e1 = Hj

k e1 for all j ≤ k.
The problem of finding a linear operator Ak on Kk(A,v1) for which

Aj
kv1 = Ajv1 (j < k), and Ak

kv1 = VkV
∗
k A

kv1

is known as the Vorobyev moment problem for Arnoldi.
Solve this problem (in terms if Hk and Vk).

(c) Show that V∗
k p(A)Vk e1 = p(Hk)e1 for any polynomial p of degree k.

(d) Prove Theorem 6.1. (Hint. Use also Theorem 5.9.)

Exercise 6.7. An alternative proof of Theorem 6.1. To avoid technical details, we
assume that dim(Kk+1(A, r0)) = k + 1 and that all eigenvalues ϑ1, . . . , ϑk of Hk are simple.
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Let pk be the FOM residual polynomial in step k, i.e., pk(0) = 1, pk is of degree k and
rk = rFOM

k = pk(A)r0.

(a) If ϑ = ϑj is a zero of pk, then pk(λ) = (λ− ϑ)q(λ) for some polynomial q of degree k − 1.

Put u ≡ q(A)r0.

(b) Prove that Au− ϑu = rk ⊥ Kk(A, r0).
Conclude that (ϑ,u) is a Ritz pair (for A, w.r.t., Kk+1(A, r0)).

(c) Use a dimension argument to show that this approach leads to all Ritz pairs (neglecting
scalings of the Ritz vectors). In particular, if (ϑ,u) is a Ritz pair, then ϑ is a zero of pk and

pk(λ) =

k∏

j=1

(
1− 1

ϑj

λ

)
(λ ∈ C). (6.5)

Note that this polynomial does not exists if a ϑj is equal to zero: at such a point, the FOM
process cannot produce an approximate solution xFOM

k or residual rFOM

k . However, the Arnoldi
process can continue and in the subsequent steps FOM may be able to produce approximations
and resiuduals. The convergence curve of the FOM process (the curve of ‖rk‖2) exhibits a
(huge) peak in step k if a Ritz value in this step is (very) near zero.

The formula pk(λ) = (λ − ϑj)q(λ) in Exercise 6.7(a) is useful for several reasons:
1) As we learnt form the above exercise, it shows that zeros of the FOM polynomial are Ritz
values. And, conversely, that Ritz values are zeros of the FOM polynomial. For GMRES, we
have a similar result for harmonic Ritz values rather than Ritz values (see Exercise 6.8).
2) If a Ritz value ϑj is close to an eigenvalue, then rk = (A − ϑjI)u (see Exercise 6.7(b))
shows that the component of the associated eigenvector is deflated from the residual (cf., Exer-
cise 4.3(a)). This implies that from this step k on this eigenvector does not play a role anymore
in the convergence: the spectrum that effectively determines convergence is the original spec-
trum from which the ‘detected’ eigenvalue has been removed. Here, we also used the fact that
once an eigenvector is (almost) in the Krylov subspace, this eigenvector will also be (almost) in
the Krylov subspaces of higher order. This explains the super linear convergence of FOM
(and of CG, the positive definite version of FOM). Similar arguments (using harmonic Ritz
values) can be used to explain the super linear convergence of other optimal Krylov methods
as GMRES, GCR and CR.
3) Repeated factorisation and using the fact that pk is a residual polynomial, i.e., pk(0) = 1,
leads to (6.5). This formula shows that pk(λ), and therefore rk = pk(A)r0 will be huge if a Ritz
value ϑj is almost zero. Then we have a peak in the convergence history of FOM. Harmonic
Ritz values will not be close to zero: in absolute value, they are at least the smallest singular
value of A (see (6.4)). This is in line with the fact that GMRES converges monotonically.

Exercise 6.8. Harmonic Ritz values and zeros of GMRES polynomials. Let rk
be the GMRES residual: rk ⊥ AVk. There is a polynomial pk of exact degree k such that
pk(A)r0 = rk and pk(0) = 1: pk is the kth GMRES polynomial.

(a) Adapt the arguments in Exercise 6.7 to prove that harmonic Ritz values are the zeros of
the GMRES polynomial.

(b) Prove that the property in (a) characterises GMRES polynomial (as is the case for FOM
polynomials in Theorem 6.1).

Exercise 6.9. Stability of Arnoldi and GMRES. Consider an n × ℓ matrix X, with
QR-decomposition (in economical form) X = QR, with Q an n× ℓ orthonormal matrix and R
an ℓ× ℓ upper triangular matrix.

Let A be n× n, with Arnoldi relation

AVk = Vk+1Hk.
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(a) Prove that Vk+1 is the ‘Q-factor’, in the QR-decomposition of

X ≡ [v1,Av1,Av2, . . . ,Avk] = [v1,AVk].

Relate the ‘R-factor’ to Hk (cf., (e) of Exercise 3.19).

The computed version Q̂ ofQ will not be exactly orthonormal. The ‘loss of orthogonality’

ν ≡ ‖Q̂∗
Q̂− I‖2,

depends on the orthogonalisation strategy. In floating point arithmetic, with relative machine
precision u, we have (you do not have to prove this, see the discussion in Section E of Lecture 3)

• classical Gram–Schmidt: ν ≤ ck2uC22(X);

• modified Gram–Schmidt: ν ≤ ck2uC2(X);

• repeated Gram–Schmidt: depends on repetition strategy;

• with Householder: ν ≤ ck2u.

Here c is some modest constant (as c = 4).

(b) Prove that the loss of orthogonality in GMRES with modified Gram–Schmidt is approxi-
mately

ν ≈ 2u

‖rGMRES

k ‖2
.

(Hint: see (c) of Exercise 3.8 ).

(c) What orthogonalisation strategy should we use in GMRES?

(d) What orthogonalisation strategy should we use in Arnoldi (for computing several eigen-
pairs)?

B (Lack of) Convergence of GMRES

The following theorem gives an upper bound on the norm of the GMRES residual in terms
the spectrum of A in case A is diagonizable. The bound contains the condition number CE of
the eigenvector basis. A similar result holds for other methods that compute residuals that are
minimal with respect to some norm, methods as MINRES, SYMMLQ and CG, to be discussed in
the next lecture. Moreover, since GMRES finds approximate solutions in the Krylov subspace
with smallest residual 2-norm, no other Krylov subspace method (including the ones the be
discussed in the next two lectures) will exhibit fast convergence for a specific problem Ax = b
if GMRES fails to converge quickly (in terms of the number of Matrix-Vector multiplications)
for this problem.

Theorem 6.2 If A is diagonizable and rk = rGMRES

k is the kth GMRES residual then

‖rk‖2 ≤ CE νk(Λ(A)) ‖r0‖2, where νk(G) ≡ min
p∈P0

k

max{|p(ζ)| ζ ∈ G} (G ⊂ C), (6.6)

and CE is the (smallest) condition number a a basis of eigenvectors.2

Exercise 6.10. Prove Theorem 6.2.

MINRES is the Hermitian variant of GMRES, SYMMLQ computes approximation with
minimal errors for Hermitian matrices, and CG minimises the error in the A-norm if A is
positive definite. These methods have been designed for Hermitian matrices where CE = 1. For
these methods the distribution of the eigenvalues gives excellent information on the convergence:

2CE ≡ ‖X‖2 ‖X
−1‖2 with AX = XΛ and CE smallest. Note that the value of CE is affected by the

scaling of the eigenvectors. Moreover, in case of a semi-simple eigenvalue with multiplicity > 1, the
associated eigenvectors could be selected to be skew.
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the size of the kth residual can be bounded by the size of the residual polynomial of degree k
on the spectrum of the matrix.3

In the non-normal case, the conditioning of the eigenvectors may be very large. If the
matrix is not diagonizable (i.e., if the Jordan form contains non-trivial Jordan blocks), then
the estimate is even not applicable. The following exercise gives an alternative that also covers
this case.

Exercise 6.11. Cauchy’s integral formula. Let f be a complex-valued function that is
analytic on some simply connected4 open subset G. Let Γ be a closed smooth curve (a contour)
in G that encircles λ once counterclockwise. From Cauchy’s integral formula in complex
function theory we know that

f(λ) =
1

2πi

∮

Γ

f(ζ)

ζ − λ
dζ.

This representation of f in terms of a contour integral allows us to turn f into a matrix-valued
function for n× n matrices with spectrum in the area in G with boundary Γ:

f(A) =
1

2πi

∮

Γ

(ζI−A)−1f(ζ) dζ (6.7)

Note: it is essential that all eigenvalues of A are the same side of Γ.
The function ζ  (ζI−A)−1 is the resolvent of A.

(a) For polynomials p, we already have definition of p(A). Prove that this definition is con-
sistent with the one by (6.7) in case A is diagonizable. (Hint: diagonalise A and apply the
counter integral expression matrix entry wise.)

(b) Prove that

‖rGMRES

k ‖2 ≤ ℓ(Γ) max
ζ∈Γ
‖(ζI−A)−1‖2 νk(Γ) ‖r0‖2, (6.8)

where ℓ(Γ) is the length of the curve Γ.

Formula (6.7) is often useful, but leads to statements as (6.8) with the same disadvantage
as (6.6): they do not only involve eigenvalue information (and the size of r0) but also quantities
that are hard to access and that are extremely large for some non-normal matrices. These
quantities can completely dominate the bound. Then, these formulas do not allow to extract
any information at all on the convergence from the distribution of the eigenvalue. The following
theorem shows that that is not just because of an inaccurate bound. The GMRES residuals
decrease monotonically, ‖rGMTRES

k+1 ‖2 ≤ ‖rGMTRES

k ‖2 for all k, and ‖rGMTRES

n ‖2 = 0, but, except
for these restrictions, any convergence curve is possible for any distribution of eigenvalues.

The matrices in this theorem are far from normal, that is, ‖AA∗ − A∗A‖2 is large
(relative to ‖A‖22), while that is usually not the case for matrices that we encounter in practice.
In practice, it appears that the distribution of the eigenvalues usually gives good information
on the convergence of methods as GMRES.

Theorem 6.3 Let (ρ0, ρ1, ρ2, . . . , ρn−1) be a decreasing sequence of n positive real numbers,
that is ρ0 ≥ ρ1 ≥ . . . ≥ ρn−1 ≥ ρn = 0. For an n×n matrix A consider the following statement:

there is a right-hand side vector b such that, with initial guess x0 = 0,

for the GMRES residuals rk we have that ‖rk‖2 = ρk (k = 0, . . . , n).
(6.9)

1) For any sequence λ1, . . . , λn of n non-trivial complex numbers, there is a matrix A such that
the λj are the eigenvalues of A counted according to multiplicity and (6.9) holds.

3By νk ≡ νk(Λ(A)). The size of the kth residual also depends on the initial residual r0, but this
dependence is usually rather weak, i.e., the estimate ‖rk‖ ≤ νk‖r0‖ tends to be sharp.

4between any pair of points in G there is a smooth curve that connects these points, and any closed
curve in G can be continuously contracted in G to a point: G does not have holes.

9



Before we discuss the proof, let us consider two simple examples: the matrix in the proof
of the theorem is essentially a modification of a combination of these two examples.

Let C be the circular matrix defined by Cek = ek+1, Cen = e1 and S is the shift matrix:
by Sek = ek+1, Sen = 0, with, for both matrices k = 1, . . . , n − 1. We take b = e1. We
consider two cases: a) A ≡ C with x = e1 and b) A ≡ I − S with x = 1, the n-vector of all
ones. Note that in both cases, with x0 ≡ 0 we have that b = r0 = e1 and Kk(A, r0) is spanned
by e1, . . . , ek. Therefore, in both cases ‖x − x̃k‖2 ≥ 1 for all x̃k ∈ Kk(A, r0). Actually, in
case a) we have stagnation (‖rGMRES

k ‖2 = 1) until step n (‖rGMRES

n ‖2 = 0), while in case b) we

have a slow decrease (‖rGMRES

k ‖2 = 1/
√
k. Use that ~γk+1 ≡ ~1 is the left kernel vector of the

(k + 1)× k left upper block Hk of A). In example a), the eigenvectors form a well-conditioned
basis (othonormal), but the eigenvalues cluster around 0 (the are uniformly distributed on the
unit circle). In example b), the eigenvalues cluster away from 0 (are all equal to 1), but there
is no basis of eigenvectors (you could state that CE =∞).

Exercise 6.12. Proof of Theorem 6.3. Let (λj) and (ρj) be as in Theorem 6.3. Eigen-
values are counted according to multiplicity.

(a) Show that there is a sequence γ1, . . . , γk−1 of scalars such that, with ~γk ≡ (1, γ1, . . . , γk)
T

all k < n we have that ρk = 1
‖~γk‖2

. Note that ρk+1 = ρk ⇔ γk+1 = 0.

The matrix A = H that we will construct here will be Hessenberg and the right-hand side
vector b will be the first standard basis vector e1. Moreover, with Hk the left upper (k+1)× k
block of H, the constructed H will be such that

H is unreduced, ~γ∗
kHk = ~0∗k for all k < n and λ1, . . . , λn are the eigenvalues of H. (6.10)

(b) Use Exercise 6.1 to show that the existence of an Hessenberg H satisfying (6.10) proves
Theorem 6.3.

(c) First, consider the case where the sequence of (ρk) is strictly decreasing.
Let S be the n× n shift matrix: Sek = ek+1 (k = 1, . . . , n− 1). Show that (6.10) holds for

H ≡ Γ−1(I− S)ΛΓ, where Γ ≡ diag (1, γ1, . . . , γn−1), Λ ≡ diag (λ1, . . . , λn). (6.11)

(Hint: Note that ~γ∗
n−1 = 1∗Γ.)

(d) With p(λ) ≡ λn− (αn−1λ
n−1 + . . .+α0) (λ ∈ C), show that the characteristic polynomial

of H equals p, where

H ≡




0 0 . . . 0 α0

1 0
. . .

... α1

. . .
. . .

...

1 0 αn−2

1 αn−1




. (6.12)

Check the following. Note that H is a (type of) companion matrix.5 The (αj) can be any
sequence of n complex numbers, implying that H can have any eigenvalue distribution.
α0 6= 0 ⇔ all eigenvalues are non-zero. With b = e1, we have that

Kk(H, e1) = span (e1, . . . , ek) and HKk(H, e1) = span (e2, . . . , ek+1) ⊥ e1 (k < n).

Hence, ‖e1 −Hxk‖22 ≥ ‖e1‖22 = 1 for all xk ∈ Kk(H, e1) and all k < n.
Conclude that GMRES can stagnates from the first steps to the last but one (ρ0 = . . . = ρn−1),
regardless the distribution of the eigenvalues.

(e) A matrix H for a general decreasing sequence of ρk is obtained as a combination of the
matrices in (c) and (d).

5In the standard form of a companion matrix, the coefficients are on the first row, rather than the
last column. Actually, if P is the permutation that reverse the ordering, then (PH̃P)T is in standard
form.
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H ≡




H1 0 . . .

F1 H2
. . .

0 F2 H3
. . .

. . .
. . .

. . .



, (6.13)

where the Hj are square matrices as in (6.12) (with a possibly different sequence of αj in the
last column), and the Fj are matrices with all entries equal to 0 except for the right top entry

which is equal to −α(j)
0 , with α

(j)
0 the right top entry of Hj . The dimension of the Hj block

matches the length of the required stagnation phase: if, in Matlab notation, Hj = H(J, J)
with J = [k+1, . . . , k+ ℓ], then ρk+1 = . . . = ρk+ℓ > ρk+ℓ+1; Hj is ℓ× ℓ. In particular, if there

is no stagnation at a step corresponding to Hj , (ℓ = 1), then Hj is 1× 1 and Hj = (α
(j)
0 ).

Show that the eigenvalues of H equal the eigenvalues of the Hj and any distribution can be
obtained by an appropriate selection of the last columns of the Hj .
Let Γ the diagonal matrix with kth diagonal entries equal to γk−1 if γk−1 6= 0 and equal to 1
if γk−1 = 0. Prove that Γ−1HΓ is unreduced and ~γ∗

kHk = ~0∗ for all k < n.

One may hope that the convergence curve of GMRES has special properties for special
matrices as Hermitian, or unitary. This is not the case, as is stated in the next proposition.

Proposition 6.4 2) There is a unitary matrix A such that (6.9) holds.
If the decrease of the ρi is strict, i.e., ρk > ρk+1 for all k = 0, . . . , n− 1, then

3) (6.9) holds for some lower triangular matrix A,
4) as well as for some positive definite matrix A.

Recall that, for normal matrices, the eigenvalues do determine the convergence (cf., Theo-
rem 6.2). In view of the above proposition, we have to conclude that the eigenvalues of these
‘nice’ matrices can have a nasty distribution.

Exercise 6.13. Consider the situation of Proposition 6.4. Prove the following claims.

(a) Prove 1) of Proposition 6.4. (Hint: consider the QR-decomposition of the matrix in (6.13))

(b) If the decrease of the ρk is strict, then there is a lower triangular matrix A and a vector b
for which (6.9) holds. (Hint: use (6.11).)

(c) If A is Hermitian, then we can not have stagnation in two consecutive steps, that is, if
‖rk‖2 = ‖rk+1‖2, then ‖rk+1‖2 > ‖rk+2‖2. (Hint: see Exercise 5.28(d)).

(d) If the sequence is such that ρk = ρk+1 ⇒ ρk+1 > ρk+2, then there is an Hermitian
matrix A and a vector b for which (6.9) is correct.

(e) If A is positive definite, then GMRES does not stagnate: ‖rk‖2 > ‖rk+1‖2 for all k.

(f) If the decrease of the ρk is strict, then there is a positive definite matrix A and a vector b
for which (6.9) holds.

Arbitrary slow convergence may occur even with eigenvalues clustering away from 0 (cf.
Theorem 6.3) and also if eigenvectors form a well conditioned basis (cf. Proposition 6.4).
Nevertheless, we may have quick convergence even in a situation where both the eigenvalues
clustered around 0 and the eigenvectors are ill-conditioned.

Exercise 6.14. For modest positive integer p, let n be a (large) multiple of 2p. Let C be the
p× p circular matrix and S the p× p shift matrix. Let A be the n× n block diagonal matrix
with ith diagonal blocks Ai of size p× p, with A2i = C and A2i+1 = 2I − S.

(a) Determine the eigenvalues of A and CE .
(b) Show that ‖rGMRES

p ‖2 = 0 (regardless b and x0).
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