
March 26, 2018

Lecture 7 – Krylov methods for Hermitian matrices

Let A be an Hermitian non-singular n× n matrix.
For a given n vector b, we want to solve Ax = b for x.

Recall that a complex positive definite (PD) matrix is Hermitian (see Exercise 0.29(a)).

A The Conjugate Gradient method

A pseudo code for a preconditioned version of CG (conjugate gradient method) is displayed in
Alg. 7.1. Without preconditioner (take M = I in Alg. 7.1), we have the standard CG algorithm.
This method has very favourable properties: only three additional vectors have to be stored;1

each step requires, next to the matrix-vector multiplication, only three vector updates and two
inner products; when A is positive definite, then it computes an approximate solution in step
k that is the best in the kth order Krylov subspace x0 +Kk(A, r0), when measuring the error
in the A-norm; and in case of positive definiteness, the method is robust (the scalars for none
of the denominators in the algorithm will be zero).

Exercise 7.1. CG and breakdowns.

(a) Show that CG can not break down if A is complex positive definite (PD), unless rk = 0
(which is called a lucky breakdown).

(b) In which step can CG break down if A is not PD? Why?

Let A be an n×n Hermitian matrix. Let M be a PD preconditioner. To preserve symmetry,
the decomposition M = LL∗ could be used (cf., Exercise 0.29(c)) to precondition the problem
Ax = b as

(L−1AL−∗)y = L−1b and x = L−∗y. (7.1)

Here, L−∗ ≡ (L∗)−1. However, efficiency in solving the preconditioning system Ms = r for s
may require the call of a subroutine. For instance, M may represent the Laplace equation and
solving is efficient with a multigrid method, fast Poisson solver or another iterative method. In
these cases, a decomposition ofM is not available. The following exercise (Exercise 7.2) explains
how to incorporate a PD preconditioner in CG in case A is PD. The approach exploits M, but
is (mathematically) equivalent to applying standard CG to (7.1) (see Exercise 7.2(f). It relies
on the fact that M−1A is self adjoint with respect to the M-inner product (see Exercise 7.2(a)).

Exercise 7.2. Let A be Hermitian and let M be a PD preconditioner.

(a) Show that M−1A is self-adjoint in the M-inner product, (x,y)M ≡ y∗Mx (x,y ∈ C
n).

Now, assume A is PD.

(b) Prove that M−1A is PD in the M-inner product.

(c) The CG method can be applied to the preconditioned system M−1Ax = M−1b by working
with the M-inner product. Let sk ≡ M−1rk. Show that this leads to the following algorithm
(ignoring the initialisation step):

sk = M−1rk

ρk = (sk, sk)M , βk = − ρk

ρk−1

uk = sk − βkuk−1, ck = Auk

σk = (M−1ck,uk)M , αk = ρk

σk

xk+1 = xk + αkuk, rk+1 = rk − αkck

1The vectors b and x have to be stored anyway: they are part of the linear system. Note that r could
take the place of b of b is not needed for other purposes (as for checking the accuracy ‖b −Axk‖2),
which would reduce the number of additional vectors tot two.

1

PCG

Select x0 ∈ C
n

x = x0, r = b−Ax

u = 0, ρ = 1

while ‖r‖2 > tol do

Solve Mc = r for c

ρ′ = ρ, ρ = c∗r, β = − ρ
ρ′

u← c− βu, c = Au

σ = u∗c, α = ρ
σ

x← x+ αu

r← r− αc

end while

Algorithm 7.1. PCG, preconditioned CG, i.e., CG with implicit preconditioning for solving Ax = b

for x with residual accuracy tol using a preconditioner M.
Both the system matrix A and the preconditioner M are assumed to be Hermitian, see Exercise 7.3.

(d) Show that (sk, sk)M = (rk, sk)2 and that (M−1Auk,uk)M = (Auk,uk)2.

(e) Show that (for PD matrices A and M) the above algorithm is equivalent to the algorithm
Alg. 7.1 (which is expressed in the standard inner product).

(f) Let yk be the approximate solution obtained by applying standard CG to solve the equation
in (7.1), with y0 = L∗x0. Prove that the xk produced by the above algoithm and the yk relate
as xk = L−∗yk.

CG has been designed for positive definite matrices. However, it can also be used for non-
definite Hermitian problems. Usually, the method converges fast, but the convergence is erratic
and it can even break-down (cf., Exercise 7.1(b)) due to the fact that the LU-decomposition
of the Lanczos tridiagonal matrix may not exists (see Exercise 7.5). For non-definite matrices,
CG does not minimise. Its good convergence properties are explained by the fact that CG puts
its residuals orthogonal to a sequence of growing spaces, as we will learn in the next exercise,
where we also incorporate a preconditioner M that is required to be Hermitian, but not PD.

Exercise 7.3. CG for symmetric non-definite systems. For square non-singular matri-
ces A and M, the CG recurrence relations are determined by the coupled two-term recurrences

uk = M−1rk − βk uk−1

rk+1 = rk − αk Auk

(7.2)

(with u−1 ≡ 0) and the orthogonality requirement

rk, Auk ⊥M−1rk−1. (7.3)

Note that (7.3) describes orthogonality with respect to the M−1 inner product in case M is
positive definite, see Exercise 7.2. However, here, we do not assume definiteness. We only
assume that both A and M are square, non-singular, Hermitian.

(a) Show that

span(u0, . . . ,uk−1) = M−1Kk(AM−1, r0) and span(r0, . . . , rk) = Kk+1(AM−1, r0).

(b) Prove that
rk, Auk ⊥M−1Kk(AM−1, r0). (7.4)

2

(c) Put

ρk ≡ r∗kM
−1rk and σk = u∗

kAuk.

Show that

αk =
ρk
σk

and βk = − ρk
ρk−1

.

Conclusion. It suffices to put rk and Auk orthogonal to only one vector (namely, M−1rk−1)
at the cost of only two inner products (ρk and σk, ρk−1 is available from the previous step),
to get a residual rk that is orthogonal to a k-dimensional space (M−1Kk(AM−1, r0)). We can

efficiently produce a sequence of residuals that are orthogonal to a sequence of ‘growing’ spaces.

(d) Derive Alg. 7.1.

(e) Assume A is also positive definite. Then ‖y‖A−1 ≡
√
y∗(A∗)−1y defines a norm (the

A−1-norm). Prove that that CG (as described here) finds the smallest residual in A−1-norm:
‖rk‖A−1 ≤ ‖b−Ax̃‖A−1 for all x̃ ∈ x0+M−1Kk(AM−1, r0) and the smallest error in A-norm.

B Lanczos and CG

In case A is Hermitian, the (k + 1) × k upper Hessenberg matrix Hk in the Arnoldi relation
AVk = Vk+1Hk can shown to be tri-diagonal. To emphasise tri-diagonality, Hk is denoted by
Tk and the Arnoldi relation is referred to as the Lanczos relation:

AVk = Vk+1Tk with Vk n× k orthonormal. (7.5)

Tk is the Lanczos matrix. Tri-diagonality of Tk leads to the Lanczos recursion

Avk = βkvk−1 + αkvk + βk+1vk+1 (vk+1 ⊥ vk, ‖vk+1‖2 = 1), (7.6)

with αk the kth diagonal entry of Tk and βk its co-diagonal coefficients. Note that the coefficient
αk orthogonalises Avk against vk, while βk+1 leads to a normalised vector vk+1, and the
normalisation coefficient βk for vk implicitly orthogonalises Avk against vk−1: as indicated in
(7.6), vk+1 ⊥ vk,vk−1, ‖vk+1‖2 = 1. The algorithm that explicitly uses (7.6) to determine
the Lanczos relation is called the Lanczos algorithm; see Alg. 7.2. The vectors vk when
computed with the Lanczos algorithm are called Lanczos vectors.

Exercise 7.4. The Lanczos relation. Suppose A is Hermitian (i.e., A∗ = A).
For a normalised vector v1, consider the Arnoldi relation

AVk = Vk+1Hk,

where Vk+1 is an orthonormal n× k matrix and Hk is a (k + 1)× k Hessenberg.

(a) Prove that Hk is tri-diagonal. Put Tk ≡ Hk.

(b) Show that the Arnoldi vectors satisfy the three term recurrence relation (7.6). Conversely,
the orthonormality condition in (7.6) leads to Arnoldi vectors.

(c) Derive the Lanczos algorithm Alg. 7.2 by making use of the fact that the Lanczos vectors
form an orthonormal basis of the Krylov subspace.

The following exercise explains how the Lanczos relation (7.5) can be obtained as a side
product of the CG process. It also explains how CG can be viewed as an efficient implementation
of Lanczos combined with a method for solving the projected (lower dimensional) system Tky =
‖r0‖2e1 with an LU-decomposition (Gaussian elimination).

Exercise 7.5. From CG to Lanczos. Consider the two coupled two term CG-recurrences

uk = rk − βkuk−1 (Auk ⊥ rk−1)

rk+1 = rk − αkAuk (rk+1 ⊥ rk)
(7.7)

3

Lanczos

ρ = ‖r0‖2, v1 = r0/ρ

β1 = 0, v0 = 0

for k = 1, 2, . . . do

ṽ = Avk − βk vk−1

αk = v∗

k ṽ, ṽ← ṽ− αk vk

βk+1 = ‖ṽ‖2, vk+1 = ṽ/βk+1

end while

Algorithm 7.2. The Lanczos algorithm [Lanczos ’50] for computing the Lanczos decomposition
AVk = Vk+1 Tk

for a Hermitian matrix A. The matrix Vk = [v1, . . . ,vk] is orthonormal and T
k

is
(k + 1) × k tridiagonal with diagonal entry (i, i) equal to αi and both codiagonal entries (i, j + 1) and
(i+ 1, j) equal to βj+1.

The scalars βk and αk are determined by the orthogonality restrictions as indicated in (7.7):
αk = ρk

σk
and βk = − ρk

ρk−1

, where ρk = r∗krk = ‖rk‖22 and σk ≡ u∗
kAuk.

(a) Prove that the rj (j < k) form an orthogonal basis of Kk(A, r0), while the uj (j < k) form
an A-orthogonal basis. In particular, the vj ≡ 1√

ρj
rj form an orthonormal basis, while 1√

σj
uj

form an A orthonormal basis.

(b) Show that Auk = 1

αk
(rk − rk+1) and

Ark =
1

αk

(rk − rk+1) +
βk

αk−1

(rk−1 − rk). (7.8)

With vk ≡ 1√
ρk
rk, show that the Lanczos relation holds

Avk = γk+1vk+1 + α′
kvk + γkvk−1, where γk+1 = −

√
ρk+1√
ρk αk

, α′
k =

1

αk

− βk

αk−1

, (7.9)

(c) Put Rk ≡ [r0, . . . rk−1] and Uk ≡ [u0, . . .uk−1]. Let Jk be the (k+1)×k bi-diagonal matrix
with 1 on the main diagonal and −1 on the first lower diagonal, let Bk be the k× k bi-diagonal
matrix with 1 on the main diagonal and βk on the first upper diagonal. Show that (7.8) reads
as

Rk = UkBk, AUkDα = Rk+1Jk. (7.10)

Here, Dα ≡ diag(α0, . . . , αk−1). Conclude that ARk = Rk+1JkD
−1
α Bk represents (7.8). Also,

prove that AUk = Uk+1Bk+1JkD
−1
α .

Let Dρ ≡ diag(
√
ρ0, . . . ,

√
ρk−1). We suppress the index k for diagonal matrices. The dimension

should be obvious from the context. Hence, (7.9) is represented by

AVk = Vk+1 Tk with Tk ≡ Dρ JkD
−1
α BkD

−1
ρ .

Note that Tk is a product of a lower triangular Dρ JkD
−1
α and an upper triangular matrix

BkD
−1
ρ . Is this a standard LU-decomposition? Note that the (any) LU-decomposition of Tk

fails iff a 1/αj is 0, that is, if a σj = 0. For this reason, σj = 0 is referred to as a breakdown
of the LU-decomposition.

(d) Show that Bk = D−2
ρ J∗

kD
2
ρ , where Jk is the k × k upper block of Jk. Give a Cholesky

decomposition of Tk.

(e) Suppose AVk = Vk+1 Tk and Tk = LkUk is an LU-decomposition of Tk. Show that CG
computes xk as xk = (VkU

−1

k)(L−1

k [
√
ρ0 e1]) = Uk(L

−1

k [
√
ρ0 e1]). Note that the fact that CG

does not rely on the standard LU-decomposition of the Lanczos tridiagonal matrix Tk only
affects the scaling of the uk.

4

The Lanczos relation (7.5) can be used for iteratively solving linear systems. As we saw
in Exercise 7.5, CG is an implementation of this idea that relies on an LU-decomposition
of Tk. It leads to two coupled two term recurrences for iterating residuals. Since the
residuals are multiples of the Lanczos vectors (the columns of Vk), CG can also be viewed as
an implementation for computing the Lanczos relation with two coupled two term recurrences
for generating the Lanczos vectors, cf., Exercise 7.5. In the following exercise, we will see a
method, the so-called Lanczos’ method, that relies on one three term recurrence relation
for generating residuals.

Exercise 7.6. Lanczos’ method. With v−1 ≡ 0 and v0 ≡ b/‖b‖2, consider the Lanczos
relation

Avk = βk+1vk+1 + αkvk + βkvk−1 (vk+1 ⊥ vk,vk−1) (k = 0, 1, 2, . . .)

with scalars βk, βk+1 and αk such that the orthogonality restrictions as indicated above hold.
Then, the vectors v0,v1, . . . ,vk+1 form an orthonormal system,

Let (ρk) be sequence in (0,∞). Put rk ≡ ρkvk.

(a) Show that

γkrk+1 = Ark − αkrk − β′
krk−1 for γk ≡ βk+1

ρk
ρk+1

, β′
k ≡ βk

ρk
ρk−1

Show that for each k there is a polynomial pk of degree k such that rk = pk(A)b.
In particular, ζpk(ζ) = γkpk+1(ζ) + αkpk(ζ) + β′

kpk−1(ζ) for all k (ζ ∈ C).

(b) Show that pk(0) = 1 for all k ⇔ γk + αk + β′
k = 0 for all k.

Show that
pk(0) = 1 ⇔ rk = b−Axk for some polynomial qk of degree < k, where xk = qk(A)b.
Hence, rk are residuals (all k) ⇔ γk + αk + β′

k = 0 (all k).
Note that we here have a special case of (5.8). See also Exercise 5.25.

(c) Assume that γk + αk + β′
k = 0 all k. Note that γkb+ αkb+ β′

kb = 0. Prove that

r0 = b, x0 = 0

γ0r1 = Ar0 − α0r0 ⊥ r0, γ0 + α0 = 0, γ0x1 = −r0
γkrk+1 = Ark − αkrk − β′

krk−1 ⊥ rk, rk+1,

γk + αk + β′
k = 0, γkxk+1 = −rk − αkxk − β′

kxk−1

(7.11)

(d) Show that the condition r̃k+1 ≡ Ark − αkrk − β′
krk−1 ⊥ rk, rk−1 determines αk and β′

k,
while γk ≡ −αk − β′

k and rk+1 ≡ r̃k+1/γk, defines rk+1.

(e) Of course, there is no need to compute the rk explicitly. Prove that (7.11) is equivalent to

v−1 = 0, v0 = b/‖b‖2, x−1 = 0 x0 = 0

Avk = βk+1vk+1 + αkvk + βkvk−1 (vk+1 ⊥ vk,vk−1)

βk+1

ρk+1

= −αk

ρk
− βk

ρk−1

,
βk+1

ρk+1

xk+1 = −vk −
αk

ρk
xk −

βk

ρk−1

xk−1

(f) Derive an algorithm for an iterative solver based on the above ideas (Lanczos’ method).

C MINRES and SYMMLQ for indefinite systems

CG can be viewed as being a method based on Lanczos recursions (see Exercise 7.5), whereas
MINRES and SYMMLQ are methods that are explicitly built on top of the Lanczos recursion.
These methods avoid the breakdown dangers of CG and they minimise the norm of residuals
in case of MINRES and the norm of errors in case of SYMMLQ. Both methods converge
‘smoothly’, where the convergence of CG can be erratic for Hermitian indefinite systems.

5

MINRES versus GMRES. If AVk = Vk+1Hk is the kth Arnoldi relation and x0 = 0, then
GMRES computes the kth approximate solution xk as

xk = ‖b‖2 Vk(R
−1

k (Q
k

∗e1)),

where Hk = Q
k
Rk is the economical QR-decomposition of Hk. In case A is Hermitian, Hk is

tri-diagonal (see Exercise 7.7Exercise 7.7). This allows us to compute the (vk) with a short
recurrence: Lanczos is an efficient variant of Arnoldi for Hermitian systems. To be able to use
short recurrences also for the numerical solution of linear systems, MINRES computes xk as

xk = ‖b‖2 (VkR
−1

k)(Q
k

∗e1),

see Exercise 7.8: the only difference between GMRES and MINRES is the order of the multipli-
cation of the three matrices Vk, R

−1

k and Q
k

∗. Since Rk is upper triangular and tridiagonal, the

columns wj of the matrix Wk ≡ VkR
−1

k can be computed from Vk by a three-term recurrence
relation (use the fact that WkRk = Vk). Moreover, to compute wk only the vectors vk, wk−1

and wk−2 are needed plus the last colum of Rk. From a mathematical point of view, GM-
RES and MINRES are the same. From a computational point of view, they are very different:
MINRES uses three-term recurrences and only stores seven n-vectors, while in GMRES the
recurrences and the storage requirements are proportional to the step number. On the other
hand, MINRES is slightly less stable than GMRES.

Exercise 7.7. Lanczos and decompositions.
For a normalised vector v1, consider the Lanczos relation (7.5).

(a) Show that the LU-decomposition Tk = Lk Uk exists ifA is positive definite. Show that with-

out this additional restriction, the LU-decomposition need not exist. (Hint: A =

[
0 1

1 0

]
).

(b) Prove that both Lk and Uk are bi-diagonal matrices (if the LU-decomposition of Tk exists).
If the LU-decomposition does not exists at step k, then we refer to this situation as the break-
down of the LU-decomposition.

(c) Show that the QR-decomposition Tk = Qk+1IkRk exists. Here, Rk is upper triangular,
Qk+1 is unitary and Ik is the (k + 1)× k identity matrix with a last row of zeros.

(d) Prove that Rk is tri-diagonal. Let g(φ) be the Givens rotation

g(φ) ≡
[

cos(φ) sin(φ)

− sin(φ) cos(φ)

]

Show that Qk+1 can be obtained as Qk+1 = G1 · . . . · Gk with Gj the k + 1 by k + 1 identity
matrix, except for the 2× 2 block at the entries (p, q) with p, q ∈ {j, j + 1}, which is a Givens
rotation g(φj).

(e) We will now show that Rk+1 and the decomposition Qk+2 = G1 · . . . · GkGk+1 can be
obtained as simple updates of Rk and of the G1, . . . , Gk from Qk+1. First, note that Tk+1

“equals” Tk plus a new column tk+1. Show that G∗
k · . . . · G∗

1tk+1 = G∗
kG

∗
k−1

tk+1 (here we
assume the Gj to be extended to match dimensions). Give an expression for Gk+1 in terms of
the coordinates of t′k+1

≡ G∗
kG

∗
k−1

tk+1. Give an expression for the last column of Rk+1.

(f) Discuss the situation where rk,k ≡ e∗kRkek is zero.

In Exercise 7.8 and Exercise 7.9 below, we follow the notation and we use the results of
Exercise 7.7. For x0, let r0 ≡ b −Ax0. The Arnoldi relation is generated by v1 ≡ r0/‖r0‖2.
For xk, rk ≡ b−Axk.

Exercise 7.8. MINRES. For a k-vector yk, let xk ≡ x0 +Vk yk. Then rk = r0 −AVk yk.
MINRES is characterised by the condition

yk = argminy‖r0 −AVk y‖2.

6

MINRES

x = 0, r = b, ρ=‖r‖2, v = r/ρ

β=0, β̃=0, c=−1, s=0

vold = 0, w = 0, ˜̃w = v

while |ρ| > tol do

%% Lanczos

v̂ = Av − β vold, α = v∗ v̂, v̂← v̂− αv

β = ‖v̂‖2, vold = v, v = v̂/β

%% QR-decomposition of the Lanczos matrix

l1 = s α− c β̃, l2 = s β, α̃ = −s β̃ − c α, β̃ = c β

l0 =
√

α̃2 + β2, c = α̃/l0, s = β/l0

%% The search vector

w̃ = ˜̃w − l1w, ˜̃w = v − l2 w, w = w̃/l0

%% The approximate solution

x← x+ (ρ c)w,

%% The residual norm

ρ←s ρ

end while

Algorithm 7.3. MINRES [Paige & Saunders ’75] for solving Ax = b for x with residual accuracy
tol. A is an Hermitian matrix.

(a) Show that
xk = x0 + ‖r0‖2

(
Vk R

−1

k

) (
Ik

∗Q∗
k+1e1

)
.

(b) Put Wk ≡ Vk R
−1

k . Show that the relationWk Rk = Vk can be used to compute the column
vectors wj of Wk with a three term vector recursion:

wk =
1

rk,k
(vk − rk−1,kwk−1 − rk−2,kwk−2).

(c) Put zk+1 ≡ ‖r0‖2Q∗
k+1

e1. Let z
′
k+1

be the vector of the first k coordinates of zk+1 and let
ζk+1 be the last coordinate: zk+1 = ((z′k+1

)T, ζk+1)
T. Show that

zk+1 =

z′k
cos(φk)ζk

sin(φk)ζk

 , z′k+1 =

[
z′k

cos(φk)ζk

]
, ζk+1 = sin(φk)ζk.

(d) Prove that
xk = xk−1 + cos(φk)ζkwk.

(e) Derive algorithm Alg. 7.3 for MINRES.

(f) prove that
‖rk‖2 = ‖r0‖2 ‖Q∗

k+1e1 − IkQ
∗
k+1e1‖ = |ζk+1|.

(g) Explain the naming ‘MINRES’ of the method.

In contrast to MINRES, the xk in SYMMLQ is not taken from x0 + Kk(A, r0), but from
x0+AKk(A, r0). This strategy allows SYMMLQ to find an approximate solution in the search

7

SYMMLQ

x = 0, r = b, ρ=‖r‖2, v = r/ρ

β=0, β̃=0, c=−1, s=0, κ = ρ

vold = 0, w = v, g=0, ˜̃g=ρ

while κ > tol do

%% Lanczos

v̂ = Av − β vold, α = v∗ v̂, v̂← v̂− αv

β = ‖v̂‖2, vold = v, v = v̂/β

%% QR-decomposition of the Lanczos matrix

l1 = s α− c β̃, l2 = s β, α̃ = −s β̃ − c α, β̃ = c β

l0 =
√

α̃2 + β2, c = α̃/l0, s = β/l0

%%

g̃ = ˜̃g − l1 g, ˜̃g = −l2 g, g = g̃/l0

%% The approximate solution

x← x+ (g c)w + (g s)v

%% The search vector

w← sw − cv,

%% The residual norm

κ =

√
g̃2 + ˜̃g2

end while

Algorithm 7.4. SYMMLQ [Paige & Saunders ’75] for solving Ax = b for x with residual accuracy
tol. A is an Hermitian matrix. Note that the “Lanczos” part and the update of the QR-decomposition of
the Lanczos matrix is the same as for MINRES.

subspace that minimises the norm of the error rather than the norm of the residual (as in
MINRES).

Exercise 7.9. SYMMLQ. For a k-vector y′k, let xk ≡ x0 +AVk y
′
k.

SYMMLQ minimises the norm of the error. Hence,

y′k = argminy′‖x− x0 −AVk y
′‖2.

Note that, with yk ≡ Tk y
′
k, we have that

xk ≡ x0 +AVk y
′
k = x0 +Vk+1 Tk y

′
k = x0 +Vk+1 yk.

(a) Show that y′k satisfies x− x0 −Vk+1Tky
′
k ⊥ AVk, whence ‖r0‖2 e1 − Tk

∗Tky
′
k = 0. Hence,

yk = ‖r0‖2 Tk(Tk
∗Tk)

−1e1, and xk = x0 + (Vk+1Qk+1) (Ik zk) ,

where zk solves R∗
kzk = ‖r0‖2 e1.

(b) Put Wk+1 ≡ Vk+1Qk+1. Show that Q∗
k+1

ek+1 = G∗
kek+1. Use Wk+1Q

∗
k+1

= Vk+1 to show
that the columns of Wk+1 satisfy a two term vector recursion:

wk+1 =
1

cos(φk)
(vk+1 + sin(φk)wk).

8

(c) With z′k the vector of the first k − 2 coordinates of zk and ζ′k, ζk the last two coordinates,
zk = ((z′k)

T, ζ′k, ζk)
T, show that ζ′k+1

= ζk and express ζk+1 in terms of the quantities from zk
and the last column of Rk+1 (this a three term scalar recurrence relation).

(d) Show that xk = xk−1 + ζk wk.

(e) Derive algorithm Alg. 7.4 for SYMMLQ.

(f) For a stopping criterion, we need ‖rk‖2. Show that

‖rk‖2 = ‖r0‖2 ‖e1 − Tk+1
Tk(Tk

∗Tk)
−1e1‖2.

Show that for some k + 1 vectors tk and sk we have that T ∗
k+1

= [Tk, tk, sk]. Prove that

‖rk‖2 =
√
|t∗kyk|2 + |s∗kyk|2.

Give efficient formulae to compute |t∗kyk| and |s∗kyk|.
(g) Note that y′k is the minimal-norm solution of the underdetermined system Tk

∗y′ = ‖r0‖2e1.
The QR decomposition can be used to compute the least-square solution (minimal residual
solution) of overdetermined systems. Similarly, the LQ-decomposition can be used to compute
the minimal-norm solution of underdetermined systems. Explain de naming ‘SYMMLQ’ of the
method.

Convergence of SYMMLQ versus MINRES. SYMMLQ finds an approximate solution in
x0 +AKk(A, r0), while MINRES extracts an approximate solution from x0 + Kk(A, r0). The
multiplication by A (of r0) has a demping effect on the components (of r0) in the direction of
eigenvectors of A with small eigenvalues. The solution y of the system Ay = r0 (x = x0 + y)
often has large components in these directions. As a consequence, SYMMLQ tends to converge
slower than MINRES (even though SYMMLQ aims for minimal errors): the extraction strategy
of SYMMLQ is more to our liking, however, in general, its search subspace is of lower quality
than for MINRES.

D (Nonlinear) CG as a minimisation method

There are several different ways to derive the CG algorithm. These different ways allow different
generalisations that are effective for different types of problems.

We learnt that (1) CG can be obtained as an efficient variant of GCR (cf. Exercise 5.17).
The approach in Exercise 7.3 (2) computes orthogonal residuals (cf., (7.4) with M = I) with
coupled two-term recurrences. In Lecture 8, we will see that this leads to Bi-CG for efficient
solution methods of general systems of equations (see Exercise 8.9), and from there to Bi-
CGSTAB (see Exercise 8.11). In Exercise 7.5, we saw that (3) CG can be viewed as an efficient
implementation of FOM, where symmetry allows to replace the Arnoldi relations by the three
term recurrence relations of the Lanczos process (see Exercise 7.4). The ideas in this approach
lead to MINRES and SYMMLQ for symmetric, but indefinite systems of equations (see Exer-
cise 7.8 and Exercise 7.9). A fourth approach views (4) CG as a method to compute a minimum
of a convex real valued function. This statement already indicates the type of problems to which
this approach is generalised. We discuss this minimisation approach now.

Consider a real-valued map F on (a domain in) Rn that takes its minimum in x. We want
to compute x. To guarantee that the minimum exists, F should be bounded from below and
have some (local) convexity structure. We assume F to be sufficiently smooth; continuously
differentiable for steepest descent and twice continuously differentiable for CG.

A linear system Ax = b corresponds to the minimisation problem

x = argminx̃
1

2
‖b−Ax̃‖2A−1 : F(x) ≡ 1

2
‖b−Ax̃‖2A−1. (7.12)

We will see that CG can be viewed as a method that solves a mini minimisation in each
step: it solves a second order approximate minimisation problem that is projected onto a two
dimensional space to obtain a search direction, i.e., the direction into which the approximate

9

solution is updated. CG improves on the steepest descent method, where in each step the
approximate solution x̃ is improved by ‘descending’ from there in the ‘steepest’ direction, i.e,
in the direction that locally (close to x̃) gives the strongest decrease of F-values. CG includes
the steepest direction in the two dimensional space as well as the search direction from the
preceding step.

We will exploit the Taylor expansions

F(x̃+ e) = F(x̃) + (e,∇F(x̃)) +O(‖e‖22) (‖e‖2 → 0)

and

F(x̃+ e) = F(x̃) + (e,∇F(x̃)) + 1

2
(H(x̃)e, e) +O(‖e‖32) (‖e‖2 → 0). (7.13)

The n-vector ∇F(x̃) is the gradient of F at x̃ and the symmetric n × n matrix H(x̃) is the
Hessian of F at x̃. The n-vector −∇F(x̃) gives the direction of the steepest descent: if u is
the normalized gradient, then for any other direction vector ũ, i.e., ũ is normalized, we have

F(x̃− δu) < F(x − δũ) for all δ > 0 and sufficiently small. (7.14)

In case of (7.12), −r̃ with r̃ ≡ b−Ax̃ is the gradient, i.e., r̃ is the steepest descent direction:

Exercise 7.10.

(a) Prove (7.14).

(b) Show that −∇F(x̃) = r̃ ≡ b−Ax̃ and H(x̃) = A if F is as in (7.12):

‖b−A(x̃+ e)‖2A−1 = ‖r̃−Ae‖2A−1 = ‖r̃‖2A−1 − 2(r̃, e) + (e,Ae) (e ∈ R
n).

(c) Compute the gradient and Hessian (in terms of r̃ and A) in case

F(x̃) ≡ 1

2
‖b−Ax̃‖22 (x̃ ∈ R

n). (7.15)

The steepest descent method updates in each step an approximate solution x̃ in the
direction r̃ of steepest descent, i.e., minus the gradient. It computes the optimal steplength in
that direction, that is, a scalar α such that

α = argmin{F(x̃+ αr̃) α̃ ∈ R},

and updates the approximate solution with u = α r̃ : x̃← x̃+ αr̃.
Non-linear CG exploits the second order approximation of F at x̃ (cf., (7.13)). It finds

an update direction u from a two-dimensional space V by computing the minimiser from V for
this second order approximation:

u = argmin{−2(r̃,v) + v∗H(x)v v ∈ V}. (7.16)

The space V is spanned by the steepest descent direction plus the update vector from the
preceding step. If V spans V, then u solves (7.16) if and only if u = V~β with ~β the 2-vector
that solves

V∗H(x)V~β = V∗r̃. (7.17)

The resulting algorithm is displayed in Alg. 7.5. Note that in non-linear CG the determi-
nation of the step-length α is redundant in case F is quadratic (then α = 1). A stop-criterion
has not been included in these algorithms. If F is as in (7.15), then F(x̃) is a half times the
square of the residual norm. Stopping if F(x̃) is gives an accurate solution. In case of (7.12)
(as for CG), F is the A-norm of the error and can not (readily) be computed. But in this case
‖r̃‖2 can be computed and can be used to monitor progress of the computation. If F(x̃) can
easily be computed, the decrease of this quantity can be monitored and may give information
on the quality of the approximate solution (no decrease at full accuracy).

10

Steepest descent

Select x0 ∈ R
n

x = x0

repeat

%% steepest descent direction

r = −∇F(x)
%% compute step-length

α = argmin α̃F(x+ α̃ r)

x← x+ αr %% update

end repeat

non-linear CG

Select x0 ∈ R
n

x = x0, u = 0

repeat

r = −∇F(x)
V = [r,u] %% search matrix

Solve V∗H(x)V~β = V∗r for ~β

u← V~β %% CG direction

α = argmin α̃F(x+ α̃u)

x← x+ αu

end repeat

Algorithm 7.5. Steepest descent and non-linear CG for computing the minimizer x of F, x =
argmin{F(y)}, where F is a real valued function on R

n. The left panel is steepest descend, the right one
displays non-linear CG.

For many ‘weakly non-quadratic’ functions F, the Hessian can easily be computed. Note
also that the Hessian H at x̃ is not required, only the action on the two column vectors of V.

Exercise 7.11.

(a) Prove the equivalence of (7.16) and (7.17).

(b) Show that in case of (7.12), the non-linear CG algorithm in Alg. 7.5 is equivalent to the

CG algorithm that we saw before (with CG coefficients α and β absorbed in ~β). Show that in
this is also the case if we take V = [r,x,xold] as search matrix in the non-linear CG algorithm.
Here, x is the current approximate solution in non-linear CG and xold is the preceeding one.

(c) Show that non-linear CG for the function in (7.15) is equivalent to CR.

(d) Show that steepest descent for the function in (7.15) is equivalent to LMR.

E Optimal short recurrence methods.

[This section is based on a report by Casper Beentjes, feb., 2014.] Hermitian matrices allow
an orthonormal basis of a Krylov subspace to be computed using short recurrences (at least in
exact arithmetic): Lanczos relies on a three term recurrence relation to compute the Arnoldi
relation AVk = Vk+1Hk, in which case Tk ≡ Hk is tridiagonal. The following exercise shows
that for some type of normal matrices the Arnoldi relation can also be determined with short
recurrence relations.

First we observe that, for s ∈ N, the Arnoldi relation can be determined with (s+ 2)-term
recurrences if and only if the Hessenberg matrix Hk = (hij) is s-banded, that is hij = 0 is
|i− j| > s. Therefore, in the next exercise, it suffices to show that Hk is s-banded.

Exercise 7.12. Let A be a real n× n matrix (not necessarily Hermitian). Suppose there is
a polynomial P of degree s such that A∗ = P (A) (see Th. 0.16 and subsequent exercise).

(a) Prove that A is normal (i.e., AA∗ = A∗A).

(b) Determine an appropriate polynomial in case A is Hermitian, and also one in case A =
αI+ βM for some α, β ∈ C and an Hermitian matrix M.

(c) Show that the assumption is correct if A is normal and all eigenvalues are real except for
at most s complex ones.

(d) Let AV = VH be the ‘maximal’ Arnoldi relation (i.e., V = Vm spans an m-dimensional
subspace that is invariant under multiplication by A and m is as small as possible with give first

11

column v1. Note that m = n gives an A-invariant subspace). Show that H is (s + 1)-banded.
Conclude that Hk is (s+ 1)-banded for all k ≤ m.

Faber and Manteuffel proved in a SINUM 1984 paper that the H of the maximal Arnoldi
relation is (s + 1)-banded if and only if there is a polynomial P of degree at most s such
that A∗ = P (A). The practical consequence of this result is that we only can work with
short recurrences to form the Arnoldi relation for matrices of the form A = αI + βH with H
Hermitian: the more general permissible matrices are hard to identify in practise. Note that
all eigenvalues for such a shifted and scaled Hermitian matrix are on one straight line in the
complex plain; they are collinear.

One can consider to generalise the idea of an Arnoldi relation to

AVkRk = Vk+1Hk, (7.18)

where Rk is an k × k non-singular upper triangular matrix that, like Hk, is extended by one
row and one column if k is increases by 1. As before, the matrices Vk are orthonormal.

Exercise 7.13. Consider (7.18).

(a) Show that the columns of Vk form an orthonormal Krylov basis generated by A and v1.

(b) Derive a GMRES type approach to solve Ax = b based on the generalised Arnoldi relation
(assuming we know the relation exists and we know how to extend the relation for each k).

If both Rk and Hk are s-banded then the generalised Arnoldi recursion can be generated
by short recurrences (involving not only some ‘previous’ vj to compute vk+1 but also Avj),
and efficiently leads to an orthonormal Krylov basis.

The next exercise shows that, in case A = Q is unitary, we can easily form a generalised
Arnoldi relation with both Rk and Hk bi-diagonal.

Exercise 7.14. Let Q be n× n unitary.

(a) Suppose v1, . . . ,vk is a sequence of orthonormal vectors. We define vk+1 by the following
relation. Show there are scalars γk, αk, and βk such that

βkvk+1 = Qvk − γkQvk−1 − αkvk ⊥ vk,vk−1, and ‖vk+1‖2 = 1. (7.19)

We assume that v2, . . . ,vk have been constructed with a formula as (7.19),
span(Vk) = Kk(Q,v1) (induction), and that span(Vj) is not Q-invariant for any j ≤ k.

(b) Show that the non-Q-invariance implies that

Q∗vj ∈ span(v1, . . . ,vk−2,Q
∗vk−1) for all j = 1, 2, . . . , k − 1.

(c) Prove that vk − γkvk−1 ⊥ Q∗vj for all j = 1, 2, . . . , k − 1.

(d) Conclude that βk 6= 0, v1,v2, . . . ,vk+1 is an orthonormal basis of Kk+1(Q,v1), and

QVk(Ik + Γk) = Vk+1Bk

with Γk the k × k matrix with all entries equal to 0, except for the entries γ2, . . . , γk on the
first upper co-diagonal, and Bk the bi-diagonal matrix with α1, . . . , αk on the main diagonal
and β1, . . . , βk and the first lower co-diagonal.

(e) Give an efficient algorithm to compute this generalised Arnoldi relation (how many multi-
plications by Q are required per step?).

(f) Let A = σ I+µQ for some scalars σ, µ ∈ C. We are interested in a short recurrence method
for solving Ax = b for x. We assume that µ = 1. Why is this not a restriction? Show that

AV(Ik + Γk) = Vk+1 (µBk + σ Ik + σ Γk).

12

Derive a (MINRES type of) algorithm for such an iterative method such that the kth residual
equals the kth GMRES residual (assuming x0 = 0 for both the new algorithm and for GMRES).

Barth and Manteuffel discussed the question (in a SIMAX 2000 paper) for what type of
matrices there is a generalised Arnoldi relation with s-banded matrices Rk and Hk. The central
property of a matrix A in their discussion is A∗Q(A) = P (A) for some polynomials P and
Q that are relative prime. According to Cayley–Hamilton’s theorem, A−1 can be represented
as a polynomial in A. Therefore, if A∗ can be expressed as a rational function in A, then it
can be expressed as a polynomial in A. However, using a rational function P/Q rather than
a polynomial may allow to use polynomials of low degree.2 For instance, A∗A = I if A is
unitary, whence Q(λ) = λ and P (λ) = 1, while A∗ = P (A) may require a polynomial P if
degree n − 2 (Sej ≡ ej−1 for j = 2, . . . , n and Se1 ≡ en: Sn−1 = I and Sn−2 = S∗). The
property A∗Q(A) = P (A) allows to extend the result in (d) of Exercise 7.12.

For practical purposes, the only matrices for which a generalised Arnoldi relation can be
formed using short recurrences are the shifted and scaled unitary matrices. Note that all
eigenvalues of such a matrix are on one circle in the complex plane; they are colcyclic.

The inspiration to generalise the Arnoldi relation in order to find a larger class of matrices
that allow short recurrences for computing an orthonormal Krylov basis comes from a 1982
paper by Gragg. Gragg derived the Isometric Arnoldi Process (IAP), an implementation of a
coupled two term recurrence relation to compute the Arnoldi basis (orthonormal Krylov basis)
in case the matrix A is unitary. His derivation is based on an analysis of the Hessenberg matrix
H of the standard Arnoldi process using the fact that H is unitary as well. The IAP relates to
the three term recurrence in (7.19) as CG relates to Lanczos. A shifted version of IAP combined
with a MINRES type of approach led (Jagels and Reichel, 1994) to the Shifted Unitary Minimal
Residual (SUMR) algorithm for solving Ax = b with A shifted and scaled unitary. SUMR is
equivalent to the algorithm indicated in Exercise 7.14(f).

In the above discussion, we assumed the standard inner product, (x,y) = y∗x. However,
the discussion can easily be extended to any other inner product. For instance, if M is n × n
positive definite, then

(x,y)M ≡ y∗Mx (x,y ∈ C
n)

also defines an inner product, the M -inner product. With respect to the M -inner product,
the adjoint A∗ of a matrix A is such that (Ax,y)M = (x,A∗y)M (x,y ∈ C

n), whence A∗ =
M−1AHM, whereAH is the transpose complex conjugate of the matrixA (the adjoint ofA with
respect to the standard inner product). Then the central properties in the discussion on the
computation of M -orthonormal Krylov basis with short recurrences will be ‘self-adjointness’,
A = A∗, ‘normality’, AA∗ = A∗A and ‘unitarity’, A∗A = I. Orthogonality as in (7.19) will
be orthogonality with respect to the M -inner product. For computational efficiency, it will be
convenient to store not only v1, . . . ,vk but also Mv1, . . . ,Mvk (that is, per step only the last
few vectors of these sequences).

2That rational functions can be identified with polynomials in our discussion here comes from the
fact that, the value of these functions is of importance only on the spectrum of A, which contains only
finitely many complex numbers.

13

