
CGLS

Select x0 ∈ C
n

x = x0, r = b−Ax0

u = 0, ρ = 1

while ‖r‖2 > tol do

s = A∗r

ρ′ = ρ, ρ = s∗s, β = −ρ/ρ′

u← s− β u, c = Au

σ = c∗c, α = ρ/σ

r← r− α c

x← x+ αu

end while

Graig’s method

Select x0 ∈ C
n

x = x0, r = b−Ax0

u = 0, ρ = 1

while ‖r‖2 > tol do

ρ′ = ρ, ρ = r∗r, β = −ρ/ρ′

c = A∗r

u← c− β u, c = Au

σ = u∗u, α = ρ/σ

r← r− α c

x← x+ αu

end while

Algorithm 8.1. CGLS (left) and Graig’s method (right) for solving Ax = b for x with residual
accuracy tol for a general non-singular matrix A. Both methods apply CG to a ‘squared’ system: CG
applied to AA∗y = b leads to Graig’s method; CG applied to A∗Ax = A∗b leads to CGLS.

March 26, 2018

Lecture 8 – Fast Iterative Methods for linear systems of equations

Let A be a non-singular n× n matrix.
We are interested in methods for numerically solving

Ax = b.

b and x are n-vector. A and b are available. We have to solve for x.

A Variants of CG for non-Hermitian systems

In this lecture, we are interested in iterative methods that rely on short recurrence relations,
that is, methods that use a limited (fixed) number of AXPYs and DOTs to extend the Krylov
search subspace by one dimension (preferable, using one MV only).

The simplest method of this type is obtained by applying CG to the (normal) equations
A∗Ax = A∗b (CGLS, see Exercise 8.2) or to AA∗y = b & x = A∗y (Graig’s method, see
Exercise 8.1). These methods are not widely used for solving square systems Ax = b, since,
if for instance A is Hermitian, these methods only explore Krylov subspace generated by A2

(or, equivalently, residual polynomials of even degree). However, they are useful for non-square
systems, as we will learn in the next lecture.

For CG, we need an Hermitian system. The ‘normal equations’ are a simple way of forming
such a system from any general system. Bi-CG exploits yet another way. It extends to system
to a 2× 2 block system, see Exercise 8.3.

Property 8.1 Mathematical properties:

• Graig’s method: xk ∈ x0 +Kk(A
∗A,A∗r0) such that ‖x− xk‖2 minimal

• CGLS: xk ∈ x0 +Kk(A
∗A,A∗r0) such that ‖b−Axk‖2 minimal

• Bi-CG: xk ∈ x0 +Kk(A, r0) such that b−Axk ⊥ Kk(A
∗, r̃0)

Computational properties per step:

All methods require one MV by A and one by A∗ plus a few AXPYs and a few DOTs

1

Bi-CG

Select x0, r̃ ∈ C
n

x = x0, r = b−Ax0

u = 0, ρ = 1, ũ = 0,

while ‖r‖2 > tol do

ρ′ = ρ, ρ = r̃ ∗r, β = −ρ/ρ′

u← r− β u, ũ← r̃− β ũ

c = Au, c̃ = A∗ũ

σ = r̃ ∗c, α = ρ/σ

r← r− α c, r̃← r̃− α c̃

x← x+ αu

end while

Algorithm 8.2. Bi-CG for solving Ax = b for x with residual accuracy tol for a general non-singular
matrix A.

Exercise 8.1. Graig’s method. Graig’s method is obtained by applying CG to the
‘smallest norm solution’ equations

AA∗y = b & x = A∗y.

Note that the solution is the smallest norm solution in case A is a full (row) rank n× k matrix
with n < k.

(a) Since we are interested in xk ≡ A∗yk rather than in the iterates yk, we want to avoid the
computation of yk (and of the associated update vectors). Show that this leads to Alg. 8.1

(b) Describe the Krylov subspace that is searched for the approximate solution by Graig’s
method.

(c) Show that Graig’s method minimises the error in the 2-norm rather than the residual.1

Exercise 8.2. CGLS. CGLS is obtained by applying CG to the normal equations

A∗Ax = A∗b.

Note that these equations lead to the minimal residual solution (least square) in case A is a
full (column) rank matrix of size n× k with k < n.

The resulting algorithm is rearranged to make both the residual rk ≡ b −Axk from the
equation Ax = b available as well as the residual sk ≡ A∗b−A∗Axk = A∗rk from the normal
equation. As a result σ = u∗(A∗Au) is computed as σ = (Au)∗(Au). As a side effect, σ is
computed more accurate.

(a) Derive (from CG) the CGLS algorithm of Alg. 8.1. Note that the vector s can stored on
the same location as c.

(b) Describe the Krylov subspace that is searched for the approximate solution by CGLS.

(c) Show that CGLS minimises the residual b−Axk in the 2-norm.1

(d) The quantity σ can be computed as σ = (Au)∗(Au) but also as σ = u∗(A∗Au). Explain
why the first approach is more accurate. Discuss other advantages of the first approach.

1Recall that CG minimises residuals in the A−1-norm in case A is positive definite.

2

Exercise 8.3. Bi-CG as CG. Select an n-vector b̃.

(a) Consider the extended system

[
0 A

A∗ 0

][
x̃

x

]
=

[
b

b̃

]
.

Relate this system to the equation of interest Ax = b.

The system A∗x̃ = b̃ is called the shadow system or dual system. Note that the
matrix in the extended system is Hermitian. Therefore, CG can be applied. Split the resulting
recurrence relations into relations for the first (block) coordinate and the second (block). Give
the Krylov subspace that is searched for an approximate solution of x with the resulting method.

Consider the matrix J and the extended system

[
A 0

0 A∗

][
x

x̃

]
=

[
b

b̃

]
and J ≡

[
0 I

I 0

]

(b) Relate this system to the equation of interest Ax = b.

The matrix J is symmetric, but not definite. The assignment (x̂, ŷ) ŷ∗Jx̂ defines a “semi
inner-product” (i.e., an inner-product except for the positive condition ‘x̂∗Jx̂ ≥ 0 and x̂∗Jx̂ = 0
iff x̂ = 0’).

(c) Show that the matrix in the system is Hermitian with respect to this semi inner product.

(d) Apply CG to this system using the semi inner product instead of the standard inner product,
that is, replace r∗r by r̂∗Jr̂, etc.. Split the resulting recurrence relations into relations for the
first (block) coordinate and the second (block) to obtain Bi-CG as in Alg. 8.2. Note that the
lines that exclusively are for the computation of x̃ have been omitted.

(e) Prove that the residual rk as produced in the kth step of Bi-CG (that is, the residual of

the first block coordinate) is orthogonal to Kk(A
∗, r̃0). Here, r̃0 (= b̃ −A∗x̃0) is the so-called

initial shadow residual, that is, the initial residual of the shadow system. Note that the
initial guess x̃0 for the shadow system is irrelevant.

In CG (for Hermitian matrices), residuals are mutually orthogonal, while, here in Bi-CG (for
general matrices), residuals are orthogonal to a different set of residuals, the shadow residuals.
It is said that the residuals satisfy a bi-orthogonality relation, which is reflected in the naming
of the method.

Exercise 8.4. Bi-CG and the initial shadow residual.

(a) Show that Bi-CG is equivalent to CG in case A is Hermitian and r̃0 = r0.

(b) Show that Bi-CG minimises the 2-norm of the residual (rather than the A−1-norm) in case
A is Hermitian and r̃0 = A∗r0.

If A is close to Hermitian (that is, the anti-Hermitian part of A is relatively small, see
Exercise 0.26??), then one of the choices for r̃0 as indicated above works well. In general, for
general matrices, it appears that a random vector r̃0 gives the best convergence results.

Exercise 8.5. Here we compare, CGLS, Graig’s method and Bi-CG.

(a) Compare the computational costs per step.

(b) Compare the memory requirements.

(c) Suppose A is positive definite, with all eigenvalues in [λ−, λ+] ⊂ (0,∞). Use the result of
Exercise 5.17(f) to obtain convergence estimates.

In general optimal Krylov subspace methods (as GMRES and GCR) require the least num-
ber of iteration steps to find accurate approximate solutions. However, as we will learn in the

3

next exercise, this is not always the case. A method like Graig’s method (that finds an approx-
imate solutions in Krylov subspace generated by AA∗ rather than by A) can be dramatically
better.

Exercise 8.6. Graig’s method versus GCR.

(a) Consider the block diagonal matrix A with 2×2 diagonal blocks (n is even). The kth block
is given by

Dk ≡

[
1 k

0 1

]
.

Show that GCR needs two steps to compute the solution of the equation Ax = b. Discuss the
convergence of Graig’s method for this equation. Discuss the difference with the system with
matrix A = diag(1, 2, . . . , n).

(b) Consider the trivial equation Ix̃ = b̃. Form a new system Ax = b by bringing the first row
of the trivial system to the last row position. Show that, for some well selected b, CGR needs
n steps to find an accurate approximate solution. How many steps does Graig’s method need?

(c) Summarise your conclusions.

B Bi-CG, breakdowns and bi-Lanczos

Breakdowns. CG when applied to a Hermitian non-definite system can break down. For
the same reason, Bi-CG can break down: σk ≡ r̃∗kck can be zero; the breakdown of the
LU-decomposition. Note that ρk ≡ r̃∗krk can be zero as well. This is called the Lanczos
breakdown. The naming will be explained below. An exact breakdown (that is an exact zero
value for ρ or σ) does not often happen. If it does, a simple restart taking the approximate
solution at breakdown as initial guess for the restarted iteration, is an effective strategy. Un-
fortunately, near breakdowns, that is, relatively small values for ρ and σ, are not uncommon.
They lead to amplifications of rounding errors, resulting in

• a delayed convergence (sometimes failed convergence), and

• inaccurate approximations, that is, in a significant difference between the recursively up-
dated residual rk and the true residual b−Axk (in a difference that is much larger than
the required residual tolerance; see Lecture 8.E).

Rounding errors are amplified for two reasons:

• The scalars ρ and σ are results of inner products. If ρ or σ is relatively small, then an inner
product has been computed between two vectors that are nearly mutually orthogonal. This is
the situation where inner products are being relatively inaccurately computed (see (8.17))

• If ρ or σ is small, then β or α will be large. The vector update involving such a scalar is
one between two large vectors. Nevertheless, the resulting updated vector is usually of modest
size, which is precisely the situation where vector updates are inaccurate (see (8.18)).
If the norms of the residuals are plotted (in the convergence history), then this phenomenon
(assuming some large α) is visible as a peak in the plot.

Bi-Lanczos. CG and the Lanczos process are closely related: Lanczos quantities can be
recovered from quantities computed in the CG process, and, conversely, CG can be viewed as
an efficient implementation, where on top of the Lanczos process, the projected system has been
solved with an LU-decomposition (cf., Exercise 7.5). As Bi-CG is a variant of CG, bi-Lanczos
is a variant of Lanczos. It produces projections of general matrices A on Krylov subspace that
are tridiagonal (as Lanczos), rather than (full) Hessenberg (as Arnoldi). As Bi-CG, it relies on
bi-orthogonality. Bi-CG and bi-Lanczos are related as CG and Lanczos are.

Exercise 8.7. Bi-Lanczos. For some normalised v1 and w1, generate Vk ≡ [v1 . . . ,vk]

4

and Wk ≡ [w1, . . . ,wk] as follows





ṽk = Avk − αkvk −
∑

j<k

β
(j)
k vj ⊥Wk, vk+1 = ṽk/‖ṽk‖2

w̃k = A∗wk − α̃kwk −
∑

j<k

β̃
(j)
k wj ⊥ Vk, wk+1 = w̃k/‖w̃k‖2

(8.1)

where the orthogonality restrictions define the coefficients αj , β
(i)
j , α̃j and β̃

(i)
j .

Assume that Dk ≡W∗
k Vk is non-singular.

(a) Prove that AVk+1 = Vk Hk and A∗Wk+1 = Wk H̃k for some upper Hessenberg matrices

Hk and H̃k. Describe these Hessenberg matrices in terms of the αs and βs.

(b) Prove that Dk is diagonal with diagonal entries djj = δj ≡ w∗
jvj .

(c) Show that W∗
kAVk = DkHk = H̃∗

kDk.

(d) Conclude that Tk ≡ Hk is tri-diagonal,

α̃k = αk, βk+1 =
δk+1

δk

1

‖w̃k‖2
, β̃k+1 =

δ̄k+1

δ̄k

1

‖ṽk‖2
, (8.2)

where βk+1 = β
(k)
k+1, β̃k+1 = β̃

(k)
k+1 and the other βs are 0.

(e) Use the properties from (d) to derive an efficient variant of (8.1): bi-Lanczos.

Note that the matrix D−1
k W∗

k can be viewed as part of the inverse of Vn, where the columns
of Vn form a Krylov basis (generated by A) for the whole space C

n. Bi-Lanczos computes a
basis Vn for a convenient matrix representation Tn of A. This basis is not orthogonal (as in
Lanczos or Arnoldi), but, instead, a partial inverse is computed as well.

We assumed that Dk is non-singular. However, δk = w∗
kvk can be 0. Then the process

breaks down (cf., (8.2)): the Lanczos breakdown. To avoid breakdowns (δk = 0), or to
avoid near breakdowns (δk is relatively small), the bi-Lanczos process can be extended to allow
block diagonal matrices Dk. Strategies that determine the block size depend on how large
‘relatively small’ is. A process that exploits such a strategy, a look ahead strategy, is called
a look-ahead Lanczos process.

Look-ahead Lanczos processes are more stable than simple bi-Lanczos. But of course, they
are more costly. The costs per step are proportional to the block size. Unfortunately, it is not
uncommon, that blocks are constructed of very large size (virtually turning look-ahead Lanczos
into Arnoldi).

Exercise 8.8. Let Vk = [v1, . . . ,vk] and Wk = [w1, . . . ,wk]. Assume AVk+1 = Vk Hk and

A∗Wk+1 = Wk H̃k for some upper Hessenberg matrices Hk and H̃k (cf., Exercise 8.7). Assume
that Dk ≡ W∗

k Vk is a non-singular block-diagonal matrix. Note that we allow the diagonal
blocks to have different dimensions. Actually, the look-ahead strategy determines the dimension
dependent on the computed data.

(a) Prove that Tk ≡ Hk is block tridiagonal.

Put Πk ≡ I−VkD
−1
k W∗

k .

(b) Show that Πk is a (skew) projection, that projects onto W⊥
k , while Π∗

k projects onto V⊥
k .

(c) Show that vk+1 = ṽk/‖ṽk‖2 if ṽk ≡ ΠkAvk and wk+1 = w̃k/‖w̃k‖2 if w̃k ≡ Π∗
kA

∗wk.

If δk+1 = w∗
k+1vk+1 is too small, then an orthonormal basis Ṽp ≡ [vk+1, . . . ,vk+p] of

Kp(ΠkA,vk+1), and an orthonormal basis W̃p ≡ [wk+1, . . . ,wk+p] of Kp(Π
∗
kA

∗,wk+1) can be
generated (with Arnoldi) with p the smallest integer such that the smallest singular value of

D̃ ≡ W̃
∗

p Ṽp is sufficiently large. Then, the p × p matrix D̃ is the next diagonal block of Dk.

Note that δk+1 is the smallest singular value of D̃ for p = 1.

(d) Let δ ∈ (0, 1), say δ = 10−4. Derive a look-ahead Lanczos algorithm that selects block sizes
such that the diagonal blocks have singular values at least δ.

5

As CG in relation to Lanczos, Bi-CG can be obtained as an efficient implementation, where
on top of bi-Lanczos, the LU-decomposition is used for solving the projected system Tky =
‖r0‖2e1. As in case of CG (for non-definite matrices A), a more stable process, is obtained by
solving the projected system with a QR-decomposition, thus avoiding near-breakdowns of the
LU-decomposition. For an Hermitian matrix A, this leads to MINRES. For a general matrix,
we obtain (simple) QMR (quasi minimal residuals). Bi-Lanczos can be stabilised with look
ahead strategies to avoid also near Lanczos breakdowns. These strategies can be incorporated
in QMR, leading to full QMR: QMR can be viewed as a stabilised version of Bi-CG. QMR
cures all near breakdowns in Bi-CG, but it still shares its other disadvantages: it needs two
MVs per step of which one is by A∗, the multiplication be A∗ does not extend the search
subspace x0+Kk(A, r0). It merely helps to detect an (hopefully) appropriate approximation in
this space. In a next section, Section D, we discuss approaches to get rid of these weak points.
But first, in the next section, we reformulate Bi-CG, to ease the subsequent discussion.

C Bi-CG and the shadow Krylov subspace

As we learnt in Exercise 8.3, Bi-CG can be obtained by applying CG to some ‘symmetrised’
system. As an alternative, we derive below Bi-CG as a method that computes residuals that
are orthogonal to a sequence of growing spaces. Eventually, the final space in this sequence
will be the whole space, which forces the final residual to be 0. In contrast to the Krylov
subspace approach that aims for residuals with minimal norm (as GCR and GMRES), this ‘bi-
orthogonality’ approach allows computational steps with short recurrence relations (i.e., with
a small fixed number of AXPYs and DOTs per step). Moreover, as we will see in Section D
it allows modifications to Bi-CG to get rid of some disadvantages attached to this method (as
MVs with A∗).

Exercise 8.9. Bi-CG. For square non-singular matrices A, the Bi-CG recurrence rela-
tions are determined by the coupled two-term recurrences

uk = rk − βk uk−1

rk+1 = rk − αk Auk

(8.3)

(with u−1 ≡ 0) and the orthogonality requirement

rk, Auk ⊥ r̃k−1. (8.4)

Here, r̃0, . . . , r̃k−1 form a Krylov basis for the shadow Krylov subspace Kk(A
∗, r̃0).

(a) Show that

span(u0, . . . ,uk−1) = Kk(A, r0) and span(r0, . . . , rk) = Kk+1(A, r0).

(b) Prove that
rk, Auk ⊥ Kk(A

∗, r̃0). (8.5)

Kk(A
∗, r̃0) is also called the dual Krylov subspace.

(c) Show that for some ϑk ∈ C we have that r̃k − ϑ̄k A
∗r̃k−1 ∈ Kk−1(A

∗, r̃0).

(d) Put
ρk ≡ r̃∗krk and σk ≡ r̃∗kAuk.

Show that
αk =

ρk
σk

and βk =
ρk

ϑk σk−1
.

Conclusion. It suffices to put rk and Auk orthogonal to only one vector (namely, r̃k−1) at

the cost of only two inner products (ρk and σk, ρk−1 is available from the previous step), to get

a residual rk that is orthogonal to a k-dimensional space Kk(A
∗, r̃0). This space is not equal

to Kk(A, r0). We, therefore, refer to the orthogonality relation as bi-orthogonality. We can

efficiently produce a sequence of residuals that are orthogonal to a sequence of ‘growing’ spaces.

6

Exercise 8.10. Bi-CG, the shadow space. Here, we use the notation and results from
Exercise 8.9.

As we have seen in Exercise 8.9, the Bi-CG process requires the construction of a Krylov
basis r̃0, r̃1, . . . , r̃k−1 of the shadow Krylov subspace Kk(A

∗, r̃0).
In this exercise, we discuss strategies for constructing a shadow Krylov basis. In practice,

only the strategy in (8.7) is used. However, the strategies in the parts of this exercise play a
crucial role in hybrid Bi-CG methods (see Exercise 8.11).

(a) Show that r̃k can be expressed as r̃k = q̄k(A
∗)r̃0, where qk is a polynomial of degree k

(if qk(ζ) = γ0 + γ1 ζ + . . .+ γk ζ
k (ζ ∈ C), then q̄(ζ) ≡ γ̄0 + γ̄1 ζ + . . .+ γ̄k ζ

k). Show that, for
a unique scalar ϑk, the polynomial qk(ζ)− ϑk ζ qk−1(ζ) is of degree k − 1.

(b) Show that a Krylov basis of r̃0, . . . , r̃k can be obtained with the update formulae

ũk = r̃k − β̄k ũk−1, c̃k = A∗ũk

r̃k+1 = r̃k − ᾱk c̃k.
(8.6)

How do you initialise this coupled two-term recurrence relation? Give an expression for ϑk.
Note that ũk is not needed in the update formulae for rk and ck. Show that for a suitable

c0 (which one?) (8.6) is equivalent to

c̃k = A∗r̃k − β̄k c̃k−1,

r̃k+1 = r̃k − ᾱk c̃k.
(8.7)

Show that (8.7) is equivalent to the three-term recurrence relation

r̃k+1 = (1− γ̄k)r̃k − ᾱkA
∗r̃k + γ̄kr̃k−1, where γk ≡

αk

αk−1
βk. (8.8)

How does the formula read for k = 0? Show that for this for this choice of r̃k we have that

qk+1(ζ) = (1− γk − αk ζ) qk(ζ) + γk qk−1(ζ) (ζ ∈ C). (8.9)

The classical Bi-CG algorithm [Fletcher 1976] incorporates the update formulae of (8.7).

(c) As a variant of (8.8), the scalars can be selected to minimise the norm of r̃k+1:

r̃k+1 = (1− ν̄k) r̃k − µ̄k A
∗r̃k + ν̄k r̃k−1, (8.10)

with
(µk, νk) ≡ argmin(µ,ν)‖(1− ν̄) r̃k − µ̄A∗r̃k + ν̄ r̃k−1‖2.

How do you compute (µk, νk)? (See also Exercise 5.20.) Give an expression for ϑk.

(d) Show that a Krylov basis of r̃0, . . . , r̃k can be obtained with the update formulae

r̃k+1 = r̃k − ω̄k A
∗r̃k, where ω̄k ≡ argminω‖r̃k − ω̄A∗r̃k‖2. (8.11)

Give an expression for ϑk and an update formula for the associated polynomials qk.
Check that (8.11) follows the LMR (local minimal residual) approach.

(e) Select an ℓ ∈ N. Show that a Krylov basis of {r̃j} can be obtained with the update formulae

r̃k+1 = A∗r̃k if k 6∈ {mℓ− 1 m ∈ N}

r̃mℓ = r̃mℓ−ℓ − (γ1r̃mℓ−ℓ+1 + . . .+ γℓ−1r̃mℓ−1 + γℓA
∗r̃mℓ−1),

(8.12)

where the (γj) = (γ
(m)
j) minimise the 2-norm of the new shadow residual r̃mℓ.

Give an expression for ϑk and update formulae for the associated polynomials qk.
Check that (8.12) follows an approach that (in exact arithmetic) is equivalent to GCR(ℓ), that
is, restarted GCR with restart length ℓ. Note that for ℓ = 1, this approach is the LMR approach.

(f) Discuss pros and cons (efficiency, use of memory, stability) of the above choices for the
shadow Krylov basis (some speculation is allowed).

7

D Bi-CG and hybrid Bi-CG methods

Except for the Bi-CG residuals and update vectors, which are denoted by rBiCG

k and uBiCG

k ,
respectively, we use the notation and results from Exercise 8.9 and Exercise 8.10. In addition,
we put Qk ≡ qk(A) and

rk ≡ Qkr
BiCG

k , uk ≡ Qku
BiCG

k−1 and r′k ≡ Qkr
BiCG

k+1 , u′
k ≡ Qku

BiCG

k .

The polynomials qk here will be residual polynomials, i.e., qk(0) = 1, of exact degree k. xk

and x′
k are the associated approximate solutions: rk = b−Axk, r

′
k = b−Ax′

k.
The residuals rk here have been expressed as qk(A)rBiCG

k , a product of the Bi-CG residual and
a residual polynomial qk in A.
Iterative methods that compute residuals of this type are called Hybrid Bi-CG methods or
Bi-CG type of product methods (or Lanczos type of product methods LTP). The
auxiliary polynomials qk are called stabilisation polynomials or acceleration polynomials.
The naming is clearly inspired by the effect that the polynomials qk are supposed (hoped) to
have.

Exercise 8.11. Hybrid Bi-CG.

(a) Show that

ρk = r̃∗0(qk(A)rBiCG

k) = r̃∗0rk and σk = r∗0(Aqk(A)uBiCG

k) = r̃∗0Au′
k.

(b) Show that

u′
k = rk − βk uk−1

r′k = rk − αk Au′
k

(8.13)

Give an update formula for the associated approximate solutions.

(c) Now, we take the strategy of (8.11) as inspiration and compute rk+1 and uk+1 as follows

ωk ≡ argminω‖r
′
k − ωAr′k‖2,

rk+1 = r′k − ωk Ar′k,

uk+1 = u′
k − ωk Au′

k.

(8.14)

Show that this corresponds to the choice qk+1(ζ) = (1− ωkζ)qk(ζ) for qk+1.
Give an update formula for the associated approximate solutions.

(d) Give an algorithm for solving Ax = b iteratively by combining (8.13) and (8.14). Give the
algorithm in a form that minimises memory use and computational costs.

This algorithm derived here is called Bi-CGSTAB (Bi-CG stabilised, see Alg. 8.3 at the
left). The Bi-CGSTAB residuals rk can be expressed as a product of the Bi-CG residual and a
residual polynomial qk (in A) that comes from a LMR strategy: Bi-CGSTAB = LMR × Bi-CG.

Exercise 8.12. Hybrid Bi-CG, 2. We continue Exercise 8.11.

(a) Use the strategy in (8.8) to deriveAlg. 8.3 at the right, an algorithm for the hybrid method
called CGS (Conjugate Gradients Squared): CGS = Bi-CG × Bi-CG.

(b) Use the strategy in (8.10) to derive an hybrid method, calledGPBi-CG (general product
Bi-CG): GPBi-CG = 1-GCR × Bi-CG, where 1-GCR is truncated GCR with truncation length
1 (cf., Lecture 5.G); for details, see Exercise 8.13.

(c) Use the strategy in (8.12) to derive Alg. 8.4, an algorithm for the hybrid method called
BiCGstab(ℓ) (Hint: first cycle ℓ times through the Bi-CG loop (8.13) to form AiQkr

BiCG

k+j

and AiQku
BiCG

k+j−1 (j = 1, . . . , ℓ, i ≤ j) and use a strategy as in Exercise 5.21): BiCGstab(ℓ) =
GCR(ℓ) × Bi-CG, where GCR(ℓ) is restarted GCR with restart length ℓ (cf., Lecture 5.G).

Exercise 8.13. Bi-CG and GPBiCG. We use the following convention. If x, y and r̃ are
n-vectors, then

z = x− αy ⊥ r̃

8

Bi-CGSTAB

Select x0, r̃ ∈ C
n

x = x0, r = b−Ax

u = 0, ω = σ = 1.

While ‖ r ‖ > tol do

σ ← −ωσ, ρ = r̃ ∗r, β = ρ/σ

u← r− β u, c = Au

σ = r̃ ∗c, α = ρ/σ

r← r− α c,

x← x+ αu

s = Ar, ω = s∗r/s∗s

u← u− ω c

x← x+ ω r

r← r− ω s

end while

CGS

Select x0, r̃ ∈ C
n

x = x0, r = b−Ax

u = w = 0, ρ = 1.

While ‖ r ‖ > tol do

σ = −ρ, ρ = r̃ ∗r, β = ρ/σ

w ← u− βw

v = r− β u

w ← v − βw, c = Aw

σ = r̃ ∗c, α = ρ/σ

u = v − α c

r← r− αA(v + u)

x← x+ α (v + u)

end while

Algorithm 8.3. Bi-CGSTAB [van der Vorst, ’92] (at the left) and Conjugate Gradients Squared
[Sonneveld, ’89] (at the right) for solving Ax = b for x with residual accuracy tol for a general non-singular
matrix A.

defines the scalar α and the n-vector z: α ∈ C is such that z ⊥ r̃.

(a) Show that α = (r̃ ∗x)/(r̃ ∗y).

(b) Show that the Bi-CG vectors are also defined by the coupled two-term recurrences

rBiCG

k+1 = rBiCG

k − αk c
BiCG

k ⊥ r̃k,

cBiCG

k+1 = ArBiCG

k+1 − βk+1 c
BiCG

k ⊥ r̃k,

xBiCG

k+1 = xBiCG

k + αk u
BiCG

k ,

uBiCG

k+1 = rBiCG

k+1 − βk+1 u
BiCG

k .

(8.15)

Again, r̃0, . . . , r̃k−1 form a Krylov basis for the shadow Krylov subspace Kk(A
∗, r̃0).

The first two relation determine the convergence of Bi-CG (they form the ‘engine’ of Bi-CG),
the third and fourth relation allow the approximate solution to be updated (xk ‘gets an almost
free ride’: there are no additional inner products involved, and no additional MVs, only two
extra vector updates).

(c) For a residual polynomial qk, i.e., qk(0) = 1, of exact degree k, we put Qk ≡ qk(A) and

rk ≡ Qkr
BiCG

k , r′k+1 ≡ Qkr
BiCG

k+1 , r′′k+1 ≡ Qk−1r
BiCG

k+1 ,

uk ≡ Qku
BiCG

k , u′
k+1 ≡ Qku

BiCG

k+1 , u′′
k+1 ≡ Qk−1u

BiCG

k+1 ,

ck ≡ AQku
BiCG

k , c′k+1 ≡ AQku
BiCG

k+1 , c′′k+1 ≡ AQk−1u
BiCG

k+1 .

Show that
r′k+1 = rk − αk ck ⊥ r̃0,

c′k+1 = Ar′k+1 − βk+1 ck ⊥ r̃0,

x′
k+1 = xk + αk uk,

u′
k+1 = r′k+1 − βk+1 uk.

(8.16)

(d) With qk and qk−1 a residual polynomials of exact degree k, k − 1, respectively, we update
the polynomials as

qk+1(ζ) = (1− νk − ωk ζ) qk(ζ) + νk qk−1(ζ),

9

BiCGStab(ℓ)

x = 0, r = [b]. Choose r̃.

u = [0], γℓ = σ = 1.

While ‖ r ‖ > tol do

σ ← −γℓ σ

For j = 1, . . . , ℓ do

ρ = r̃ ∗rj, β = ρ/σ

u← r− β u, u← [u,Auj]

σ = r̃ ∗uj+1, α = ρ/σ

r← r− αu2:j+1, r← [r,Arj]

x← x+ αu1

end for

M = r∗r

Solve M2:ℓ+1,2:ℓ+1~γ = M2:ℓ+1,1 for ~γ

u← u1 − u2:ℓ+1~γ

x← x+ r1:ℓ~γ

r← r1 − r2:ℓ+1~γ

end while

Algorithm 8.4. BiCGstab(ℓ) [Sleijpen–Fokkema, ’93] for solving Ax = b for x with residual accuracy
tol for a general non-singular matrix A.
Notation: u = [u1, . . . ,uj+1] and r = [r1, . . . , rj+1] are n × (j + 1) matrices at the end of step j in the
‘j-loop’, x and r̃ are n-vectors, u2:j+1 ≡ [u2, . . . ,uj+1], etc., γℓ is the last coordinate of the ℓ-vector ~γ:
~γ = (γ1, . . . , γℓ)

T. At the end and at the start of the ‘while-loop’, u = [u1] and r = [r1].

where νk, ωk 6= 0 are appropriate selected scalars (for a discussion, see below).
Show that qk+1 is a residual polynomial of exact degree k + 1.
Derive the following update formulae for the rk and ck.

From the previous loop: ρk, ck, rk, c
′
k, r

′
k,Ac′k,Ar′k

1 σk = r̃∗0ck, αk = ρk/σk

2 r′k+1 = rk − αk ck, compute Ar′k+1

2.1 r′′k+1 = r′k − αk c
′
k, Ar′′k+1 = Ar′k − αk Ac′k,

3 Select νk and ωk 6= 0

4 rk+1 = (1− νk) r
′
k+1 − ωk Ar′k+1 + νk r

′′
k+1

5 ρk+1 = r̃∗0rk+1, βk+1 = −ρk+1/(ωkσk)

6 c′k+1 = Ar′k+1 − βk+1 ck, compute Ac′k+1

6.1 c′′k+1 = Ar′′k+1 − βk+1 c
′
k

7 ck+1 = (1− νk) c
′
k+1 − ωk Ac′k+1 + νk c

′′
k+1

Note that the αk and βk are such that r′k+1 and c′k+1 are orthogonal to r̃0.

(e) Derive formulae to initialise the iteration (to compute r1, . . .).

(f) Complete the scheme with update formulae for xk and uk

(g) Select νk = 0 for all k and select ωk to minimise the 2-norm of the residual rk+1 in line 4
(from r′k+1 and r′′k+1. Check that the Lines 2.1 and 6.1 are superfluous. Derive a Bi-CGSTAB

10

algorithm based on the approach here (try to minimise memory requirements and computational
costs per step). Lists the costs per MV.

(h) Select νk and ωk to minimise the 2-norm of the residual rk+1 in Line 4. This leads to
(a variant of) GPBi-CG (general product Bi-CG): 1-GCR × Bi-CG (1-GCR is truncated
GCR with truncation length 1, cf., Lecture 5.G. Give formulae to compute νk and ωk (cf.,
Exercise 5.20). List the costs per MV of this scheme.

Exercise 8.14. We use the notation of the previous exercise. In the previous exercise, we up-
dated the Bi-CG part before updating the polynomial part: Qkr

BiCG

k Qkr
BiCG

k+1 Qk+1r
BiCG

k+1 .
The update order can be reversed: Qkr

BiCG

k Qk+1r
BiCG

k Qk+1r
BiCG

k+1 .

(a) Show that, with

r+k ≡ Qk+1r
BiCG

k , rk ≡ Qkr
BiCG

k , r−k ≡ Qk−1r
BiCG

k ,

c+k ≡ Qk+1c
BiCG

k , ck ≡ Qkc
BiCG

k , c−k ≡ Qk−1c
BiCG

k ,

this leads to the following update formulae for the residuals r and their update vectors c:

From the previous loop: rk,Ark, r
−
k , ck, c

−
k ,Ack

Select νk and ωk 6= 0

r+k = (1 − νk) rk − ωk Ark + νk r
−
k

c+k = (1 − νk) ck − ωk Ack + νk c
−
k

r−k+1 = rk − αk ck ⊥ r̃0, Ar−k+1 = Ark − αk Ack,

rk+1 = r+k − αk c
+
k , compute Ark+1

c−k+1 = Ar−k+1 − βk+1 ck ⊥ r̃0

ck+1 = Ark+1 − βk+1 c
+
k , compute Ack+1

(b) Derive formulae to initialise the iteration (to compute r1, . . .). Complete the scheme with
update formulae for αk, βk, xk and uk

Selecting νk and ωk to minimise the 2-norm of the residual r+k leads to a variant of GPBiCG,
called BiCGsafe.

E Effects of rounding errors

To avoid confusion with update vector u, we denote the relative machine precision in this section
by ξ̄ instead of u. Further, we use the conventions and notations of Section E in Lecture 1: if
α is the result of an algorithm, then α̂ or (α)̂ is the actual result as obtained by the computer
using the same algorithm. The ξ are such that |ξ| ≤ ξ̄, but ξ at different locations may have
different values. And we neglect O(ξ̄2)-terms.

DOTs, AXPYs and MVs are fundamental operations for Krylov subspace methods. The
following results follow from Exercise 1.20. They give error estimates for these operations.
DOT. For x,y ∈ C

n,

(y∗x)̂ = y∗x

(
1 + n ξ

‖x‖2 ‖y‖2
|y∗x|

)
= y∗x

(
1 +

n ξ

cos∠(x,y)

)
. (8.17)

AXPY. For r, c ∈ C
n, α ∈ C, with s ≡ r+ α c,

(r+ α c)̂ = r+α c+ δs with |δs| ≤ ξ̄ (|s|+ |α| |c|), ‖δs‖2 ≤ 3 ξ̄max(‖s‖2, ‖r‖2). (8.18)

MV. For an n× n matrix A with at most m non-zero entries in each row, and an n-vector u,

(Au)̂ = Au+ δc with |δc| ≤ m ξ̄ |A| |u|, ‖δc‖2 ≤ m ξ̄ ‖ |A| ‖2 ‖u‖2. (8.19)

We put
C ≡ m‖ |A| ‖2 ‖A

−1‖2. (8.20)

11

Exercise 8.15.

(a) Prove (8.17), (8.18), and (8.19). Discuss the sharpness of these results.

(b) Use Exercise 1.7 to relate C to the condition number of A.

(c) Assume the exact solution x is available of the equation Ax = b. To check whether x is
indeed the exact solution, we compute the residual b−Ax. Show that

(b−Ax)̂ = δ with ‖δ‖2 ≤ ξ̄ C‖b‖2. (8.21)

Discuss the sharpness of the result.

(d) Suppose at step k, the residual rk−1 is updates as rk = rk−1 − αk−1Auk−1. Assume rk−1,
αk−1, and uk−1 are as obtained by the computer (for ease of notation, we drop the ·̂ here).
Show that (rk)̂ = rk + δk with ‖δk‖2 ≤ ξ̄ (C + 2)max(‖rk‖2 + ‖rk−1‖2), whence

rk = rk−1 − αk−1Auk−1 ⇒
‖(rk)̂− rk‖2
‖rk‖2

. ξ̄ C

(
1 +
‖rk−1‖2
‖rk‖2

)
. (8.22)

Convergence and smooth convergence. The perturbation of the kth residual from com-
putations in the kth step is relatively large if the convergence history exhibits a large peak at
step k − 1, i.e., ‖rk−2‖2 ≪ ‖rk−1‖2 and ‖rk‖2 ≪ ‖rk−1‖2. Large relative errors may affect the
speed of convergence. For this reason it is wise to use methods that tend to avoid large peaks.
Words as “stabilising” have been used in the naming of (variants of) methods to indicate that
the (variant of the) method avoids peaks. However, not all intermediate results will be plotted.
Therefore, a smooth convergence history does not necessarily imply that large relative errors
did not effect the convergence.

Accuracy and the residual gap. Iterative methods compute at step k a scalar ρk that, in
exact arithmetic, is equal to the residual norm ‖b − Axk‖2. In GMRES, ρk is computed as

ρk = min{‖ρ0 e1 − Hky‖2 y ∈ C
k}, in methods as CG, Bi-CGSTAB, etc., ρk = ‖rk‖2, where

the residual rk is obtained by recursive updating. In rounded arithmetic, the norm of the true
residual b−Ax̂k need not be equal to the computed quantity ρ̂k. It is important to control,
or to be able to estimate, the residual gap γk

γk ≡ | ρ̂k − ‖b−Ax̂k‖2 |. (8.23)

If the residual gap is small (much smaller than the required residual accuracy tol), then the
computed quantity ρ̂k can safely be used in a stopping criterion that checks the residual size:
if ρ̂k ≤ tol, then ‖b−Axk‖2 ≤ γk + ρ̂k . tol.

Note that in the expression for the true residual in (8.23), we consider x̂k as computed by
the computer according to the algorithm, but we assumed the true residual to be the exact
residual for the computed solution, i.e., the multiplication by A and the subtraction from b
is assumed to be exact. Of course, this is in practice is not possible either, cf., (8.21). In
particular, it does not make sense to have a tolerance tol that is less than ξ̄ C ‖b‖2. Therefore,
we consider a method to be accurate (for a problem Ax = b) if its residual gaps γk are less
than (a modest multiple of) ξ̄ C‖b‖2.

In practice it turns out that (γk) is an increasing sequence, while for many methods ρ̂k → 0
for k →∞: the quantity ρ̂k decreases far below the value ξ̄ C ‖b‖2.

Note that, except for a factor ξ̄ C ‖b‖2, the true residual norm ‖b−Ax̂k‖2 could be computed
from the computed approximate solution x̂k. However, computing the true residual in order to
use it in a stopping criterion, has two disadvantages

• it increases (doubles?) the number of MVs dramatically,

• the iteration may fail to stop: if the optimal accuracy (mink ‖b −Ax̂k‖2) is larger than
the required tolerance (or, equivalently, γk > tol), then testing ‖b−Ax̂k‖2 < tol will never be
successful.

Since the sequence (ρ̂k) (usually) decreases towards 0, ρ̂k < tol will occur. Whether this
guarantees sufficient accuracy, i.e., ‖b − Ax̂‖2 ≤ tol, depends on the size of the residual gap
γk. Upon termination the size of the true residual can be computed (requiring only one extra

12

MV). If it turns out that ‖b−Ax̂k‖2 6≤ tol, then the method could be restarted for the residual
shifted problem Ay = b−Ax̂k.

Although the method stops if ρ̂k is used in a stopping criterion, many MVs can be ‘wasted’
if tol≪ γk. As stated before, it is important to be able to control the residual gap.

Recursively updated residual methods. Methods as Richardson, CG, Bi-CGSTAB, etc.,
use update formulae for computing approximate solutions and residuals:

{
xk = xk−1 + αk−1uk−1, ck−1 = Auk−1,

rk = rk−1 − αk−1ck−1, ρk ≡ ‖rk‖2
(8.24)

Inexact MVs. Often the rounding errors in the MV dominate the rounding errors from the
other arithmetic operations (as AXPYs and DOTs). Therefore, to simplify the analysis, we
now assume that except for the MV the arithmetic operations are exact.

In Exercise 8.16, we will see that, under this assumption, the residual gap in these re-
cursively updated residual methods (RURal methods) is determined by the largest
intermediate residual:

γk . ξ̄ 2k Cmax
j≤k
‖rj‖2, (8.25)

with C as in (8.20). The update vector uk−1 and the scalar αk−1 are determined in the algo-
rithms in lines preceding (8.24). Actually, the way the update vector is computed defines the
method. Here, we assume that ck−1 is computed by explicit matrix-vector multiplication from
uk−1 (which is the case in CG, Bi-CGSTAB, etc.). In some methods (as GCR), ck−1 is in exact
arithmetic equal to Auk−1, but the vectors have been obtained by some recursive update steps
after the MV. Below, we use that ‖(ck−1)̂ − ck−1‖2 ≤ ξ̄ C‖ck−1‖2 (for given uk−1). This is
estimate is not correct if vectors have been adapted by recursive steps after the MV.

Exercise 8.16. Recursively updated residuals. Consider the update formulae (8.24)
with x0 = 0.

(a) Prove that, in exact arithmetic, rk = b−Axk, ρk = ‖b−Axk‖2 if r0 = b−Ax0.

(b) Assume that the αk−1 and uk−1 are as obtained by the computer (that is, for ease of nota-
tion, we dropped the ·̂ in the notation of the αjs and uj). Prove that, in rounded arithmetic,
the residual gap γk can be bounded by

γk ≤ ‖r̂k − (b−Ax̂k)‖2 ≤ ξ̄ (2C + 4)

k∑

j=0

‖rj‖2 . ξ̄ 2k Cmax
j≤k
‖rj‖2. (8.26)

Here, you may assume that MVs only are inexact. Discuss the sharpness of these estimates.

(c) Prove (8.25) for RURal methods with x0 = 0. Conclude that
such a method is accurate ⇔ max ‖rj‖2 is less than some modest multiple of ‖b‖2.

If maxj ‖rj‖2 ≫ ‖b‖2, then, as we learn from (8.25), the result using (8.24) is not accurate.
As an alternative for (8.24), consider

{
xk = xk−1 + αk−1uk−1,

rk = b−Axk, ρk ≡ ‖rk‖2.
(8.27)

Then, clearly, the ρ̂k is equal to the norm of the true residual (except for some terms of order ξ̄).
However, this approach may pose two problems.

• In many methods, the computation of αk−1 involves Auk−1. In such a case, (8.27) requires
additional MVs.

• If ‖rk‖2 ≪ ‖b‖2, then the perturbation of rk by rounding errors when rk is computed
as in (8.27) and (even if) xk is exact, may be much larger than when computed by (8.24)
(cf., (8.22)):

rk = b−Axk ⇒ ‖(rk)̂− rk‖2 . ξ̄ C(‖b‖2 + ‖rk‖2). (8.28)

13

CGS [Neumaier]

Select x0, r̃ ∈ C
n

x = x0, r = b−Ax

u = w = 0, ρ = 1

x′ = 0, b′ = r

While ‖ r ‖ > tol do

σ = −ρ, ρ = r̃ ∗r, β = ρ/σ

w← u− βw

v← r− β u

w← v − βw, c = Aw

σ = r̃ ∗c, α = ρ/σ

u = v − α c

x′ ← x′ + α (v + u)

r← b′ −Ax′

if ‖r‖2 ≤ ‖b
′‖2 then

x← x+ x′, x′ = 0, b′ = r

end while

Algorithm 8.5. The Neumaier version of Conjugate Gradients Squared [Neumaier, ’94] for solving
Ax = b for x with residual accuracy tol for a general non-singular matrix A.

In CGS the computation of the αk−1 does not rely on ck−1 ≡ Auk−1. Hence, in CGS,
we only have to address the second issue. To avoid relatively large perturbations in case
‖rk‖2 ≪ ‖b‖2 when using true residuals, we can apply a residual shift to the system of
equations: from step k on, solve Ax′ = b′ ≡ b−Axk. Then x = xk + x′.

Exercise 8.17. Reliable updated residuals in CGS.

(a) Prove (8.28).

(b) Prove that in exact arithmetic, the versions Alg. 8.5 and Alg. 8.3 of CGS are equivalent.

(c) Prove that the relative perturbation The relative perturbation of rk by rounding errors in
both versions of CGS are comparable.

(d) Argue that version Alg. 8.5 is accurate.

In methods as Bi-CGSTAB, ck−1 is needed in the computation of αk−1. Therefore, unlike
CGS, the computation of a true residual in Bi-CGSTAB costs an additional MV. To avoid
many additional MVs, we could perform (8.24) only at a few selected steps, say at the steps
k0 = 0, k1, k2, Then, at step k = ki, xk is not exact, and we have to combine the result
in (8.28) with the one in (8.26):

rk = b−Ax̂k ⇒ ‖(rk)̂− rk‖2 . ξ̄ C(‖b‖2 + 2kmax ‖rj‖2). (8.29)

Here, k = ki+1 and we take the maximum over all j = ki + 1, ki + 1, . . . , ki+1.
To avoid hampering convergence by large perturbations if the recursively updated residual

is replaced by a true residual, we have to avoid large intermediate residuals in between the
computation of true residual. The problem of relative large perturbations on the residuals when
working with true residuals in case ‖r‖2 ≪ ‖b‖2 can simply be avoided by not working with
true residuals in these cases or by ‘decreasing ‖b‖2’ with a residual shift of the linear equation.

14

Reliable updating residuals

x′ ← x′ + αk−1uk−1, ck−1 = Auk−1

rk = rk−1 − αk−1ck−1

if ‘compute true residual’ or ‘residual shift’

rk = b′ −Ax′

if ‘residual shift’

xk = xk + x′, x′ = 0, b′ = rk

Algorithm 8.6. Reliable updated residuals in RURal methods.
The method is assumed to be initiated with x′ = 0, b′ = b−Ax0.

Alg. 8.6 gives the modification to the update formulae (8.24) that allow the computation of
true residuals at selected steps and that allow residual shifts.

Exercise 8.18. Reliable updated residuals in RURal methods.

(a) Prove that in exact arithmetic, Alg. 8.6 is equivalent to the update formulae (8.24).

(b) Analyse the additional costs that are involved with the modifications of Alg. 8.6.

(c) Prove there is no need to compute a true residual if all ‖rj‖2 are less than ‖b‖2 since the
previous computation of the true residual.

We suggest to perform a residual shift only if ‖rk‖2 decreased significantly below ‖b‖2 and
there were large residuals before; ‘residual shift’ is ‘true’ iff

‖rk‖ ≤ 10−2‖b‖2 & ‖b‖2 ≤ max ‖rj‖2.

Here, we take the maximum over all residual norms since the previous residual shift. We
compute true residuals if a preceding residual was large and larger than ‖b‖2:
‘compute true residual’ is ‘true’ iff

‖rk‖2 ≤ 10−2max ‖rj‖2 & ‖b‖2 ≤ max ‖rj‖2.

Here, we take the maximum over all residual norms since the previous computation of the true
residual.

We obtain accurate approximate solutions at the costs of only a few extra MVs without
hampering the convergence.

Inexact DOTs. In the following exercise, we address the problem of inaccurate inner products
in the computation of the update scalars due to near orthogonality. To simplify the discussion,
you may assume that the MVs and AXPYs are exact and only DOT products are polluted by
rounding errors.

Exercise 8.19. Maintaining convergence. In exact arithmetic we know that

ρk = r̃∗kr
BiCG

k = r̃∗0rk, where Qk ≡ qk(A) and r̃k ≡ Q̄kr̃0, rk ≡ Qkr
BiCG

k

However, in rounded arithmetic, the scalars r̃∗kr
BiCG

k and r̃∗0rk may be different.

(a) Prove that

(r̃∗0rk)̂ = r̃∗0rk

(
1 + nξ

|r̃0|
∗|rk|

|r̃∗0rk|

)
= r̃∗0rk

(
1 +

nξ

cos∠(r̃0rk

)
.

(b) Note that ρk does not change by replacing qk by qk + pk−1 with pk−1 any polynomial of
degree < k. Suppose qk(ζ) = Ωkζ

k+lower degree terms. We consider strategies of selecting the

15

polynomial qk such that 1
|Ωk|
‖rk‖2 as small as possible (without affecting speed of convergence

and efficiency too much). Why do we focus on the size of 1
|Ωk|
‖rk‖2?

(c) Suppose we update our polynomials qk by degree one factors: qk+1(ζ) = (1 − ωkζ)qk(ζ).
Then, rk+1 = r′k − ωkAr′k. Show that the choice of ωk such that r′k − ωkAr′k ⊥ r′k leads to the
smallest 1

|Ωk+1|
‖rk+1‖2 if we can only vary ωk.

(d) Given r′k, the choice for ωk such that

• r′k − ωkAr′k ⊥ Ar′k leads to smallest residuals norms ‖rk+1‖2, (as in Bi-CGSTAB) while

• r′k − ωkAr′k ⊥ r′k leads to smallest 1
|Ωk+1|

‖rk+1‖2, i.e., highest accuracy of ρk.

For ease of discussion, put s ≡ r′k/‖r
′
k‖2, t ≡ Ar′k/‖Ar′k‖2. Let µ be such that s − µt ⊥ t.

Show that s− 1
µ̄
t ⊥ s. Express the optimal ω’s in terms of µ, ‖r′k‖2 and ‖Ar′k‖2.

Note that small µ implies a large reduction of the residual norm (small ‖rk+1‖2 as compared
to ‖r′k‖2). Unfortunately, this is precisely the case where the loss of accuracy is expected to be
large as well (Why?). The two requirements, ‘good reduction of the residual norm’,‘maintain
good accuracy’, seem to be conflicting.

We do not need to have ρk in high accuracy. It turns out that as long as ρk has three or
more significant digits (i.e., the relative error is less than 10−3), then the convergence is not
hampered. However, in some cases, the ρk of Bi-CGSTAB has less than one digit of accuracy.
Then, the process will stagnate from k on. To maintain convergence, ρk has to be computed in
higher accuracy. The following strategy seems to be effective

r′k − ωkAr′k, with ωk = sign(µ)max(0.7, |µ|)
‖r′k‖2
‖Ar′k‖2

. (8.30)

Check that this leads to the smallest residual norm if |µ| > 0.7. It avoids significant loss of
accuracy in case |µ| is small.

(e) With R ≡ [r′k,Ar′k], let M ≡ R∗R. Show that ωk can be computed from only the matrix
coefficients of the 2× 2 matrix M .

Inexact AXPYs. Some short recurrence methods, as MINRES and QMR, rely on three-term
vector-recursions, while in others, as CG and SYMMLQ, two-term vector-recurrences play a
central role. The three-term vector-recurrence methods tend to be less accurate, that is, they
lead to a larger residual gap (typically of order ξC22(A)), whereas two-term vector-recurrences
tend to offer full accuracy. Below, we try to give some insight in this situation. We now are
interested in the effects of errors in the AXPYs. To simplify analysis, we, therefore, assume
that only AXPYs are polluted by rounding errors: the MVs and DOTs are exact.

If W is the matrix with columns from the vector-recursions, then, as we will see in Exer-

cise 8.20, a back-ward error in Ŵ, the computed W, can be described typically by perturbation
terms as (cf., (8.32) and (8.34))

∆1 or ∆2R such that |∆1| ≤ κ1 ξ̄ |W| |R| and |∆2| ≤ κ2 ξ̄ |W|.

Here, κ1 and κ2 are modest constants and R is the matrix that describes the recursion (see
Exercise 8.20 for details). Note that, except for the modest factor κ1/κ2, estimating ‖∆1‖2 and
‖∆2R‖2 lead to the same (sharp) upper bound (why?). Nevertheless, there is a huge difference
between these terms. The perturbation term ∆2R is structured and may lead to cancellation

of errors in, e.g., the computed solution of the linear system: for instance, if x = WR−1z then,
in contrast to ‖∆2RR−1z‖2, a bound on ‖∆1R

−1z‖2 will contain a factor as C2(R) (why?).

Exercise 8.20. Consider a three-term vector-recurrence

wk = (vk − (βkwk−1 + γkwk−2))/αk (k = 1, 2, . . .), (8.31)

where (vk) is a given sequence of n-vectors, (αk), (βk) and (γk) are given sequences of scalars,
γ0 ≡ 0 and, with w−1 ≡ w0 ≡ 0, the n vectors wk are to be computed.

16

Put Wk ≡ [w1, . . . ,wk], Vk ≡ [v1, . . . ,vk], and let Rk = (Rij) be the k × k upper tri-
diagonal triangular matrix with entries Rjj = αj , Rj−1 j = βj and Rj−2 j = γj .

(a) Show that, Wk solves
WkRk = Vk.

(b) If n = 1, i.e., we are considering a three-term scalar-recurrence relation, then (why?)

αk(1 + 2ξ)ŵk = vk − βk(1 + 2ξ)ŵk−1 − γk(1 + 2ξ)ŵk−2 (k = 1, 2, . . .).

Hence, in this case, for some k × k matrix ∆k we have that (why?)

Ŵk(Rk +∆k) = Vk with ∆k such that |∆k| ≤ 2ξ̄|Rk|. (8.32)

(c) If n > 1, then the above result can be applied row-wise (why?). However, this does not
lead to (8.32). Why not? However, for some n× k matrix ∆k, we do have that (why?)

ŴkRk +∆k = Vk with ∆k such that |∆k| ≤ 2ξ̄|Wk| |Rk|. (8.33)

(d) Discuss the sharpness of (8.32) and (8.33) and the consequences for the forward error, i.e.,

‖Ŵk −Wk‖2.

Now, assume that γk = 0 for all k, that is, the three-term recurrences collapse to two-
term recurrences. For n × n diagonal matrices δk, to be specified below, let w′

k be such that
ŵk = (I+ δk)w

′
k.

(e) Show that the δk can be selected such that

W′
kRk = Vk +∆

(1)
k with ∆

(1)
k such that |∆

(1)
k | ≤ 3k ξ̄ |Vk|

and |δk| ≤ 3k ξ̄ I, whence

ŴkRk = Vk +∆
(1)
k +∆

(2)
k Rk with ∆

(2)
k such that |∆

(2)
k | ≤ 3kξ̄ |Wk|. (8.34)

With ∆k ≡ ∆
(1)
k + ∆

(2)
k Rk, we clearly have that |∆k| ≤ 6kξ̄ |Wk| |Rk|, which is a mod-

est factor 3k larger than the estimate in (8.33). However, in applications (see, for instance,
Exercise 8.21), one is interested in estimates for

‖∆kR
−1
k z‖2

‖Vk‖2

rather than for ‖∆k‖2. Show that,

‖∆kR
−1
k z‖2

‖Vk‖2
≤ 6k ξ̄ C2(Rk)

2 ‖z‖2
‖Rk‖2

and
‖∆kR

−1
k z‖2

‖Vk‖2
≤ 6k2 ξ̄ C2(Rk)

‖z‖2
‖Rk‖2

for ∆k of (8.33) and ∆k of (e), respectively. Typically C2(Rk) ≈ C2(A) for large k and for
ill-conditioned matrices A is the second estimate is more favourable than the first one.

MINRES in following exercise forms an example to which the situation of Exercise 8.20
applies.

Exercise 8.21. MINRES. Assume that A is Hermitian. Consider the Lanczos relation
AVk = Vk+1 Tk, i.e., Vk is orthonormal and Tk is tri-diagonal.

(a) Let Tk = Q
k
Rk be the QR-decomposition of the tri-diagonal matrix Tk. If xk = Vk yk is

the MINRES approximate solution (with x0 = 0), then, with zk ≡ Q
k

∗ ~β, and Wk ≡ VkR
−1
k ,

we have that xk = Wk zk. The vector zk can be obtained by a repeated application of Givens
rotations: the coordinates of zk can be computed by two-term scalar-recurrences, whereas the
computation of Wk relies on a three-term vector-recursion.

17

Assume Ŵk is computed from WkRk = Vk. Let x̂k ≡ Ŵk zk and let r̂k be the true residual
(for x̂k). We assume update errors in the computation of Wk as analysed in Exercise 8.20, and
we assume the other operations to be exact. The perturbation matrix ∆k is as in (8.33).

(b) Show that x̂k − xk = ∆kR
−1
k zk = ∆k yk and rk − r̂k = A∆kR

−1
k zk = A∆k yk.

(c) This leads to the following bound on the residual gap

γk ≤ ‖r̂k − rk‖2 ≤ 2ξ̄ ‖|A| |VkR
−1
k | |Rk| |R

−1
k zk|‖2

(d) Prove that, for k = n, we have that C2(Rk) = C2(A).

(e) Show that the residual gap in MINRES is bounded by

γk = ‖r̂k − rk‖2 ≤ 2k ξ̄ ‖A‖2 C2(A) ‖x‖2 ≤ 2k ξ̄ C2(A)2 ‖b‖2.

(f) If rk converges towards 0, then for large k, we have that

‖x̂k − x‖2
‖x‖2

≤ 2k ξ̄ C2(A) and
‖r̂k‖2
‖b‖2

≤ 2k ξ̄ C2(A)2 :

The error is more favourable than may be anticipated from the true residual.

Note that SYMMLQ exploits a three-term scalar-recurrence and a two-term vector-recurrence,
whereas in MINRES the three-term recurrence is on vectors while the two-term recurrence is
on scalars. This explains why SYMMLQ is more accurate for ill-conditioned systems.

Note that QMR is the MINRES variant for non-symmetric systems. In particular, QMR
also exploits three-term vector-recurrences.

18

