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Lecture 9 – Least Square Problems

Consider the least square problem Ax = b ≡ (β1, . . . , βn)
T, where A is an n×m matrix.

The situation where b ∈ R(A) is of particular interest: often there is a vectors x = xideal

that forms b (via A), b = bideal ≡ Axideal. xideal is unknown while bideal is available (from, e.g.,
measurements). In practise, the ‘ideal’ bideal will be polluted by errors (from measurements,
computations, noise, etc.) and the measured b = bideal + δ may not be in R(A).
The system Ax = b is said to be compatible or consistent if b ∈ R(A).

Notation 9.1 If F is a real-valued function on C
m and V is a subset of Cm then

{F(x) x ∈ V} = min

means x = argmin{F(x̃) x̃ ∈ V}. If V = C
m, then we simply put F(x) = min.

Exercise 9.1. Prove the following equivalences.

(a) Minimal residual (least squares): ‖b−Ax‖2 = min ⇔

A∗Ax = A∗b ⇔
[

I A

A∗ 0

][
r

x

]
=

[
b

0

]
.

If m ≤ n, then the minimal residual solution is unique iff A has full rank.

(b) Minimal norm: {‖x‖2 Ax = b} = min ⇔

AA∗y = b & x = A∗y ⇔
[

0 A

A∗ −I

][
y

x

]
=

[
b

0

]
.

Note that the minimal norm solution exists iff b ∈ R(A).
If n ≤ m then the minimal norm solution exists for all b ∈ C

n iff A has full rank.

(c) Minimal norm minimal residual (or least square minimal norm [LSMN]):

x = argmin{‖x̃‖2 ‖Ax̃− b‖2 = min}

⇔ x = A†b ⇔ A∗Ax = A∗b & x = A∗y for some y.

Here, A† is the Moore–Penrose pseudo-inverse of A. In particular, the minimal norm minimal
residual solution exists.

(d) Damped least squares: ‖b−Ax‖22 + τ2‖x‖22 = min ⇔
∥∥∥∥∥

[
b

0

]
−
[

A

τ I

]
x

∥∥∥∥∥
2

= min ⇔
[

I A

A∗ −τ2 I

][
r

x

]
=

[
b

0

]
.

Exercise 9.2. Consider the damped least squares problem

[
A

τ I

]
x =

[
b

0

]
.

(a) How are the singular values of the damped matrix related to the ones of the original matrix?

(b) Explain why the damped least squares problem is less sensitive to noise.

(c) The error in x in the damped least square problem (with noise on b) has two components,
one from the noise on b and an approximation error from τ (that is, with exact b, the
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difference between two LSMN solutions, one with τ = 0 and the other with τ > 0).
Why two components? Analyse these two components.

Exercise 9.3. De la Garza’s method. Gauss–Seidel for the normal equations A∗Ax =
A∗b defines updates

xnew = xold + αej ,

where ej is the jth basis vector, α is selected to minimise the 2-norm of the residual rnew ≡
b−Axnew of xnew.

(a) Show that, with aj ≡ Aej , α is such that a∗jrnew = 0. Conclude that,

α =
µ

‖aj‖2
, where rold ≡ b−Axold and µ ≡

a∗jrold

‖aj‖2
.

(b) The residual can be updated as rnew = rold − αAej . Write down the algorithm that
arises by repeatedly cycling through all j (j = 1, . . . ,m). Note that, with an appropriate
implementation, the scalings by ‖aj‖22 have to be applied only once (by using the scalings as a
diagonal right-preconditioner of the system Ax = b. How?).

This approach is called De la Garza’s method. Gauss–Jacobi for the normal equations
leads to a technique called Simultaneous Iterative Reconstruction Technique (SIRT).

(c) Show that the computational costs per cycle are equal to the costs of an update of the form
x+A∗c plus an update of the form r−Au.

(d) Show that, De la Garza’s method is residual-norm reducing (or, to be more precise, residual
norm non-increasing)

‖rnew‖22 = ‖rold‖22 − ‖aj‖22 |α|2 = ‖rold‖22 − |µ|2.

Does this last estimate implies convergence?

(e) Prove that De La Garza’s method converges to the minimal residual solution (if this solution
exists and is unique. Hint: Theorem 4.4).

Exercise 9.4. Kaczmarz’ method. We denote the ith row of A by a∗i ≡ e∗iA. Consider
the hyperplane

Li ≡ {y ∈ C
n a∗i y = βi} = yi + {z a∗i z = 0},

where yi is such that a∗i yi = βi.

(a) Show that the exact solution (if it exists) is in all hyperplanes: x ∈ Li all i.
(b) Prove that ai is orthogonal to the ith hyperplane Li.

To update an approximate solution xold such that the updated approximation xnew satisfies
the ith equation a∗ix = βi, updating in the direction ai seems to be the best. Why? This
suggests the following update procedure xnew = xold + α ai.

(c) For given xold, give an expression for the α such that xnew is in the ith hyperplane.

(d) Write down the algorithm that arises by repeatedly cycling through all rows (i = 1, . . . , n).
This approach is called Kaczmarz’ method or Algebraic Reconstruction Technique

(ART). Note that, a simultaneous updating of the residual is relatively expensive. As in De la
Garza’s method, the scalings that are required (by ‖e∗iA‖22) have to be applied only once (by
using the scalings as a diagonal left-preconditioner).

(e) Show that, when omitting the update of r, the computational costs per cycle are equal to
the costs of an update of the form x +A∗c plus an update of the form r−Au, as with De la
Garza’s method.

Suppose b ∈ R(A). Let x be the minimal norm solution.

(f) Prove that Kaczmarz’ method is error-norm reducing (non-increasing):

‖x− xnew‖2 = ‖x− xold‖2 − |βi−a
∗

i
xold|

2

‖ai‖2

2

. (9.1)
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Can convergence be concluded from this estimate (9.1)?

(g) Give a geometric proof of convergence in case m = n = 2 (cf., Exercise 4.5(c)).

(h) Prove that the algorithm is Gauss–Seidel for AA∗y = b & x = A∗y.

(i) Prove that the algorithm, with initial approximate solution x0 = 0, converges to the minimal
norm solution. (Hint: Note that AA∗ maps R(A) to R(A) (Why?). Restricted to this space,
AA∗ is positive definite (why?). Now use, Theorem 4.4. Why is it convenient to have a trivial
initial approximate solution?)

Gauss–Seidel has been modified to SOR. A similar modification (i.e., a relaxation param-
eter) can be included in De La Garza’s method and ART. Acceleration techniques for Gauss–
Seidel, as Chebyshev iteration and Krylov subspace acceleration, can also be included, which
reduces the number of iteration steps. Nevertheless, the simpler iteration methods as ART (and
SIRT) have advantages in some application. Though the convergence is slower, less storage is
required. For instance, in ART, there is even no need to store the matrix: whenever a ‘row’
a∗ix = βi becomes available, it can be used to update the approximate solution x. Then, it can
be discarded (assuming new rows will become available), while Krylov methods need the same
matrix in every step.

Exercise 9.5. CGLS and Graig’s method. In Exercise 8.1 and Exercise 8.2, we derived
a CG variant for the (minimal norm) equations AA∗y = b & x = A∗y (Graig’s method) and
one for the (minimal residual) normal equations A∗Ax = A∗b (CGLS), assumingA was square
(non-singular). See also Alg. 8.1. Now, consider the general case where A is not (necessarily)
square.

(a) Show that these variants can also be applied in this general case (if b ∈ R(A) for Graig’s
method).

(b) Show that the minimisation statements in Property 8.1 also hold in this general situation
(minimal errors with Graig’s method and minimal residual with CGLS).

Golub-Kahan bi-diagonalisation. Let A be an n× n matrix. Let b be an n-vector.
Arnoldi’s decomposition AVk = Vk+1Hk can be viewed as an iterative process to compute
the Hessenberg decomposition AV = HV with V unitary and H Hessenberg. The existence
of this decomposition has been proved and discussed in Exercise 3.19. In Exercise 3.20, the
decomposition AU = VB has been proved, with V and U unitary and B upper bi-diagonal.
The iterative process to compute this decomposition for the (n + 1) × n matrix [b,A] is the
Golub-Kahan bi-diagonalisation. This procedure forms the basis of the LSQR method.

Exercise 9.6. The Golub–Kahan bi-diagonalisation. Let A be an n× (m− 1) matrix.

(a) Show that the strategy in Exercise 3.19 applied to the n×m matrix [b,A] leads to an n×n
unitary matrix V, an m×m unitary matrix U, and a lower bi-diagonal n×m matrix B such
that,

ρv1 ≡ ρVe1 = b, AU = VB,

for some ρ ∈ R, |ρ| = ‖b‖2. Note that A∗V = UB∗ and that B∗ is upper bi-diagonal.
Conclude that u1 is a scalar multiple of A∗v1.

Consider the following iterative process

β1 ≡ ‖b‖2, v1 ≡ b/β1, ũ1 = A∗v1, α1 ≡ ‖ũ1‖2, u1 = ũ1/α1

ṽk = Auk−1 − vk−1αk−1, βk ≡ ‖ṽk‖2, vk = ṽk/βk (k = 2, 3, . . .)

ũk = A∗vk − uk−1βk, αk ≡ ‖ũk‖2, uk = ũk/αk (k = 2, 3, . . .)

(b) Show that this process leads to a decomposition as in (a):
the matrices [v1, . . . ,vk] and [u1, . . . ,uk] are orthonormal,

AUk−1 = Vk Bk−1
, A∗Vk = Uk B

∗
k
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with the α1, α2, . . . on the diagonal of Bk and β2, β3, . . . on the lower co-diagonal.

(c) Relate the Lanczos process for AA∗ and for A∗A to this bi-diagonalisation process.

Exercise 9.7. Krylov type of methods for structured problems. For an n×k matrix
A and scalars σ, µ ∈ C, consider the problem (cf., Exercise 9.1)

[
µI A

A∗ σI

] [
r

x

]
=

[
b

0

]

Consider the Golub–Kahan bi-diagonalisation in Exercise 9.6(b).

(a) Show that

[
µI A

A∗ σI

][
Vk 0

0 Uk−1

]
=

[
Vk 0

0 Uk

][
µIk Bk−1

B∗
k σIk−1

]
,

[
µI A

A∗ σI

][
Vk 0

0 Uk

]
=

[
Vk+1 0

0 Uk

][
µIk Bk

B∗
k σIk

]

(b) With

b̃ ≡
[

b

0

]
, A ≡

[
µI A

A∗ σI

]
, U2k−1 ≡

[
Vk 0

0 Uk−1

]
, and U2k ≡

[
Vk 0

0 Uk

]
,

the matrices Uj are orthonormal. Moreover, span(Uj) = Kj(A, b̃).

(c) Since A is Hermitian, the Lanczos process, started with b̃ can also be applied. Relate the
resulting Lanczos vectors and tri-diagonal matrix to the quantities in part (b).

(d) Prove that

[
V∗
k 0

0 U∗
k

][
µI A∗

A σI

][
Vk 0

0 Uk

]
=

[
µIk Bk

B∗
k σIk

]
,

[
V∗
k+1

0

0 U∗
k

][
µI A

A∗ σI

][
Vk+1 0

0 Uk

]
=

[
µIk+1 Bk

(Bk)
∗ σIk

]

Note that the initial vector b̃ = (bT,0T)T of the Krylov subspace generated by this struc-
tured block matrix A has only one non-zero block block. Here, we learnt that this fact leads to
significant advantageous, when forming the Arnoldi (or Lanczos) decomposition: it allows

• to reduce the number of AXPYs and DOTs by a factor two (the zero blocks in the basis
vectors do not have to be computed),

• to reduce the storage requirements by a factor two (the zero blocks in the basis vectors
need not to be stored),

• to represent the projected matrices with the same structure as the original matrix A.
These type of advantageous can also be exploited for some other problems with structured

matrices (companion type of problems involving one matrix A, Hamiltonian systems, etc.).

Exercise 9.8. LSQR. Least square QR (LSQR) exploits the first relation in Exer-
cise 9.7(a).
Following the FOM approach, let y ∈ C

k and s ∈ C
k+1 be such that

[
Ik+1 Bk

(Bk)
∗ 0

][
s

y

]
= ‖b‖2

[
e1

0

]

(a) Prove that y is the least square solution of the system Bky = ‖b‖2 e1 with residual s.

(b) Let xk ≡ Uky. Show that the residual rk ≡ b −Axk equals rk = Vk+1s and ‖A∗rk‖2 =
|hk+1,k+1sk+1|, where hij is the (i, j)-entry of Bk+1 and sk+1 = e∗k+1

s: the size of the residual
A∗rk of the normal equations is available in low dimensional space.

(c) Note that xk is of the form A∗yk for some n-vector yk. Prove that (xk) converges to the
minimal norm minimal residual solution if (‖A∗rk‖2) converges to 0.
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(d) Show that the QR-decomposition Bk = Q
k
Rk can be computed with Givens rotations and

that Rk is upper triangular, bi-diagonal. This QR decomposition is used in LSQR to solve the
least square system Bky = ‖b‖2 e1 (which explains the naming of the method): y = R−1

k zk
with zk ≡ (Q∗

k
(‖b‖2 e1)). As in MINRES, xk is computed in LSQR as xk = (UkR

−1

k )zk, rather

than xk = Uk(R
−1

k zk).

(e) Show that Wk ≡ UkR
−1

k can be updated with a two term (vector) recurrence relation and
zk by a two term (scalar) recurrence relation. Derive the LSQR algorithm.

(f) Discuss the consequences of the FOM approach for the second relation in Exercise 9.7(a).

Multishift methods. Regularisation leads to problems of the form

(A∗A+ τ2I)xτ = A∗b, (9.2)

where τ is a regularisation parameter: the solution xτ of (9.2) solves

‖b−Axτ‖22 + τ2‖xτ‖22 = min .

To find an appropriate regularisation parameter, it is convenient to have solutions xτ for a
range of values for τ . Often an appropriate τ is selected upon inspection of the so-called L-

curve, that is the curve {(‖b −Axτ‖2, ‖xτ‖2) τ ∈ [0,∞)}. So-called multishift methods

are variants of standard methods that are efficient in finding xτ for several τ , once a solution
has been computed for one τ , typically for τ = 0. Note that A∗A is positive definite. Hence,
for the problems that we discuss in this lecture, multishift methods for Hermitian matrices are
the most interesting ones. For simplicity and to illustrate the main idea, we consider GMRES
first.

Exercise 9.9. Multishift GMRES. Let A be an n × n matrix. Let b be an n-vector.
Here, we discuss methods for solving

(A+ σI)xσ = b (9.3)

for xσ for several choices for σ ∈ C.

(a) Prove that Kk(A,b) = Kk(A+ σI,b) for all k ∈ N and all σ ∈ C.

The fact that Krylov subspace are invariant under shifts of the matrix, forms the basis for
multishift methods. The idea is the construct the Krylov subspace for one σ, say σ = 0, and
to use it for all shifted problems.

SupposeAVk = Vk+1Hk is a Arnoldi decomposition with v0 = b/‖b‖2: Vk = [v0, . . . ,vk−1].

(b) Prove that (A+ σI)Vk = Vk+1(Hk + σIk), where Ik is the (k + 1)× k identity.

(c) Use the fact that the vector ~γk with first coordinate 1 and such that ~γ∗
kHk = ~0∗ determines

the norm of the GMRES residual (see Exercise 6.1) to design a multishift GMRES algorithm
for solving (9.3) for several σ.

From Exercise 9.9, we know it is easy to design a multishift variant of GMRES. For short
recurrence methods, it is bit more complicated, since for these methods, we are not willing to
to store a (large) set of basis vectors for the Krylov subspace. Nevertheless, the idea that we
exploited for GMRES also extends to many short recurrence methods as CG (multishift CG),
Bi-CGSTAB, etc.. As an example, we consider multishift Lanczos (cf., Exercise 7.6).

Exercise 9.10. Multishift Lanczos method. Consider problem (9.3) but now with A

Hermitian.
With v−1 ≡ 0 and v0 ≡ b/‖b‖2, consider the Lanczos relation

Avk = βk+1vk+1 + αkvk + βkvk−1 (vk+1 ⊥ vk,vk−1) (k = 0, 1, 2, . . .)

with scalars βk, βk+1 and αk such that the orthogonality restrictions as indicated above hold.
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xτ = 0, r = b

u = 0, ρ = 1,

uτ = 0, tτ = 0, µτ = 1, γτ = 1

while ‖r‖2 > tol do

s = A∗r

ρ′ = ρ, ρ = s∗s, β = −ρ/ρ′
u← s− β u, c = Au

σ = c∗c, α = ρ/σ

r← r− α c

tτ ← τ2 − (β/µτ )tτ, uτ ← s− (β/µτ )uτ

µτ = 1 + α tτ, γτ ← γτµτ

xτ ← xτ + (α/γτ )uτ

end while

Algorithm 9.1. Multishift CGLS for solving (A∗

A + τ
2
I)xτ = A

∗

b for xτ with residual accuracy

tol. A is an n×m matrix, b is an n-vector, τ is a regularisation parameter. For each additional parameter

τ , the solution xτ can be obtained essentially at the additional costs of one vector update per step.

Compute scalars ρk such that ρ−1 = 0, ρ0 = ‖b‖2 and

βk+1

ρk+1

+
αk

ρk
+

βk

ρk−1

= 0 (k = 0, 1, 2, . . .).

In Exercise 7.6, we learnt that rk ≡ ρkvk are residuals for problem (9.3) with σ = 0 and we
also learnt that, with x−1 = x0 = 0,

βk+1

ρk+1

xk+1 = −vk −
αk

ρk
xk −

βk

ρk−1

xk−1 (k = 0, 1, 2, . . .)

generates the associated approximate solution xk.

(a) Show that, replacing αk by αk + σ leads to approximate solutions for the shifted problem.

(b) Design an efficient multishift Lanczos method.

As we saw in Exercise 7.5, CG can be viewed as a Lanczos variant that relies on an LU-
decomposition of the Lanczos tri-diagonal matrix Tk. Clearly, this insight can be used to
form multishift CG. The two coupled two term recurrence relations that define CG are more
stable than the three term recurrence relation that defines Lanczos. However, to maintain this
stability advantage in a multishift variant, care is needed in the update of the LU-decomposition
of Tk + σIk

Exercise 9.11. Multishift CGLS. Consider the diagonal matrix D = diag(d0, . . . , dk)
and lower bi-diagonal matrix L with all ones on the diagonal and ℓ0, . . . , ℓk−1 on the lower
diagonal.

(a) Show that the product matrix T ≡ LDL∗ has d0, d0ℓ
2
0 + d1, . . . , dk−1ℓ

2
k−1

+ dk on the
diagonal and d0ℓ0, d1ℓ1, . . . , dk−1ℓk−1 on the co-diagonals:

Tjj = dj−1 ℓ
2
j−1 + dj , Tj+1,j = dj−1ℓj−1 (j = 1, 2, . . . , k).

We want to compute the diagonal Dτ and lower diagonal Lτ factors of the shifted version
of LDL∗ from the entries of D and L:

LDL∗ + τ2I = LτDτL
∗
τ .
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(b) Prove that the dτj (diagonal of Dτ ) and ℓτj (lower diagonals of Lτ ) can be obtained by the
following recursion

tτ0 = τ2, dτj = tτj + dj , ℓτj = ℓj
dj
dτj

, tτj+1 = τ2 + ℓτj ℓjt
τ
j (j = 0, 1, . . .) (9.4)

It can be proved that this recursion is stable, in contrast to the more obvious approach,
where first T is explicitly formed, shifted by τ2 I and the standard LU-decomposition (or
Cholesky) approach is followed to compute the Lτ and Dτ factors. If we apply CG, then, we
actually compute the factors of the Lanczos matrix, that is, we have the D and L factors rather
than T .
To be more precise, use Exercise 7.5, where it is shown that

Tk = (Dρ JkD
−1
ρ )D−1

α (D−1
ρ J∗

kDρ) (9.5)

with Dα ≡ diag(α0, α1, . . .) the diagonal matrix of αj coefficients of the CG process, Dρ ≡
diag(

√
ρ0,
√
ρ1, . . .) the diagonal matrix of norms

√
ρj ≡ ‖rCG

j ‖2 of the CG-residuals. In the
present application,

√
ρj is the norm of the CGLS residual sj of the normal equation,

√
ρj ≡

‖sj‖2, αj (and βj below) of CG is precisely the αj (and βj) coefficient of the CGLS algorithm.
The dimension of the diagonal matricesDα andDρ should be clear from the context. From (9.5),
and the definition of βj+1, we see that

dj =
1

αj

, ℓj =

√
ρj+1√
ρj

and − ℓ2j = βj+1.

(c) To show that this leads to the multishift version in Alg. 9.1 of CGLS, prove that

µτ
j ≡

ℓj
ℓ τj

=
dτj
dj

= 1 + αjt
τ
j and tτj+1 = τ2 − βj+1

µτ
j

tτj .

How does this rewriting of (9.4) affects the stability? Moreover, with ρτj , α
τ
j and βτ

j the CG
coefficients ρj , αj and βj , respectively, for CG aplied to the shifted normal equations (‘shifted
CGLS’), we have that

γτ
j+1 ≡

√
ρj+1√
ρτj+1

= µτ
j γ

τ
j , ατ

j =
αj

µτ
j

and βτ
j =

βj

(µτ
j )

2
.

(d) Prove that sτj ≡ A∗(b−Axτ
j )− τ2xτ

j and sj are co-linear, i.e., sτj is a scalar multiple of sj .
To be more precise

sj = γτ
j s

τ
j .

(e) Derive Alg. 9.1, where the uτ
j has been scaled such that sj can be used to update uτ

j rather
than sτj .

Exercise 9.12. Multishift LSQR. Combine Exercise 9.1(d), Exercise 9.6, Exercise 9.7, to
adapt the arguments in Exercise 9.8 for a derivation of a multishift variant of LSQR.

A Perturbed Least Square problems

We discuss the forward stability of the least square problem and the minimal norm problem.

Minimal residual (least square)

Let A be an n × k matrix with k ≤ n and singlar values σ1 ≥ . . . ≥ σk > 0: A has full
column rank. Let x be the MR (minimal residual) solution with residual r of the MR problem:

‖b−Ax‖2 = min and r ≡ b−Ax. (9.6)
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Then A∗r = 0, x = A†b, with A† ≡ (A∗A)−1A∗ the Moore–Penrose pseudo inverse of A, and

C2(A) ≡ ‖A‖2 ‖A†‖2 =
σ1

σk

.

The matrix A is ill-conditioned of σk is relatively close to 0. In such a case regularisation as
discussed in the beginning of this lecture is required. However, as we will learn below, least
square problems for non-square matrices can be ill-conditioned even if σk is not extremely small.

Note that ΠA ≡ A(A∗A)−1A∗ = AA† projects orthogonal ontoR(A), while I−ΠA projects
onto R(A)⊥. Put

ν ≡ ‖I−ΠA‖2.
Then ν = 1 if k < n and ν = 0 if k = n, since ΠA = I.

Consider the pertubed matrix A+∆ and the perturbed input vector b+ δb. Put

εA ≡
‖∆‖2
‖A‖2

and εb ≡
‖δb‖2
‖b‖2

.

Theorem 9.2 Assume C2(A)εA <
√
2− 1. Then A+∆ has full column rank.

Let x̃ and r̃ be the MR solution and residual, respectively, of the perturbed problem. Then

x̃− x = A†(δb −∆x̃) + (A∗A)−1∆r̃,
‖x̃− x‖2
‖x‖2

. C2(A)

(
εb + εA +

(εb + C2(A)εA)‖r‖2
‖A‖2‖x‖2

)
,

r̃− r = (I−ΠA)(δb −∆x̃) + ΠAr̃,
‖r̃− r‖2
‖b‖2

. ν(εb + εAC2(A)) + 2εAC2(A)
‖r‖2
‖b‖2

.

If n = k then r = r̃ = 0, ν = 0 and the bounds in the theorem coincide with the one in
Theorem 1.9. If k < n, then it appears that the sensitivity of the MR problem is determined
by the condition number C2(A) of the matrix A if the residual is zero (or small), i.e. b

is (almost) in the range of A, while the sensitivity depends on the square of this condition
number if r is significant: ‖r‖2/‖b‖2 is the sine of the angle between b and the range of A,
while ‖r‖2/(‖A‖2 ‖x‖2) is bounded by ‖r‖2/‖Ax‖2, the tangent of this angle. The estimates
are sharp (in order of magnitude); see Exercise 9.13. The quantity

CLS(A,b) = C2(A)

(
1 + C2(A)

‖r‖2
‖A‖2 ‖x‖2

)
(9.7)

appears to characterize the conditioning of the least square problem (with respect to
perturbations on A).

Note that, unlike for a linear system with a square non-singular matrix, for an MR problem
the conditioning C2(A) of the matrix is not the same as the conditioning CLS(A,b) of the
problem. The solution of an MR problem can also be obtained as the solution of a non-singular
square system, actually of two different non-singular square systems (see Exercise 9.1(a)). But,
the conditioning of these matrices are also both very different from CLS(A,b). This may
seem a bit strange, but apparently the fact that the perturbation is structured plays a role in
the conditioning: for instance, A∗A is perturbed as A∗A + ∆2 with a structured ∆2, ∆2 =
∆∗A+A∗∆+∆∗∆, rather than an arbitrary ∆2. Note that the righthand side vector (A∗b) is
structured as well.

We cannot expect to be able to compute the exact solution, but we may hope to be able
to obtain a solution with an error of the size as indicated in the theorem (with the ε’s modest
multiples of the machine precision u). We call a numerical method backward stable if, in
rounded arithmetic, it computes a solution x̃ that is the exact solution of a perturbed problem
with perturbations ∆ and δb of order machine precision. Methods that compute A∗A and A∗b

first and then solve x from the normal equation cannot be backward stable with respect to the
MR problem. Rounding errors will at least introduce errors of the size

‖x̃− x‖2
‖x‖2

≤ nu C22(A).
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The same holds for general methods solving the ‘companion form’ representation of the MR-
problem (cf., the last formulation of the MR problem in Exercise 9.1(a)). Note that these
observation do not apply to CGLS and LSQR. They both exploit the specific structure of the
problem in each step: CGLS exploits the fact that A∗A is available in factorized form, while
LSQR computes a projected system with the same structure as the original one.

For systems of moderate dimension, the QR-decomposition, A = QR, using Householder
reflections can be used: x = R−1(Q∗b). This method is backward stable. Note that Q∗b

can be computed without storing Q: a Householder reflection can be applied to ‘b’ as soon as
it is formed in a steps of the QR-decomposition.

For high dimensional problems iterative methods as CGLS and LSQR can be effective.
If, for these iterative methods, at termination ‖rk − r‖2 is a modest multiple of u‖A‖2 ‖x‖2,
then we have an approximate solution with an error that corresponds to the forward error in a
solution computed by a backward stable method.

Exercise 9.13. Discuss the sharpness of the estimates in Theorem 9.2. Hint. Consider

A+∆ =




σ1 0

0 σ2

0 ε


 b = b+ δb =




1

0

1


 .

Exercise 9.14. Proof of Theorem 9.2.

(a) Show that A+∆ has full rank if 2µ+ µ2 ≤ 1 for µ ≡ εACs(A).

(b) Show that [
I A

A∗ 0

]−1

=

[
I−ΠA (A†)∗

A† −(A∗A)−1

]

(c) Observe that [
I A

A∗ 0

][
r̃− r

x̃− x

]
=

[
δb −∆x̃

−∆∗r̃

]

Show that ∆∗r̃ = −A∗r̃ and prove the expresssions for x̃−x and r̃− r as given in the theorem.

(d) Prove that ‖ΠA(I−Π
Ã
)‖2 = ‖A(A∗A)−1(A∗ − Ã

∗
)(I−Π

Ã
)‖2 ≤ C2(A)εA.

(e) Prove the estimates of the theorem.

Minimal norm

Let A be an k × n with k ≤ n and singlar values σ1 ≥ . . . ≥ σk > 0: A has full row rank.
Let x be the MN (minimal norm) solution of the MN problem:

{‖x‖2 Ax = b} = min . (9.8)

We put y ≡ (AA∗)−1b. Then x = A∗y = A†b, where now the Moore–Penrose pseudo inverse
of A equals A† ≡ A∗(AA∗)−1. Note that y = (A†)∗x. As before,

C2(A) ≡ ‖A‖2 ‖A†‖2 =
σ1

σk

.

Note that Π ≡ A∗(AA∗)−1A = A†A projects orthogonal onto R(A∗), while I−Π projects onto
N (A) = R(A∗)⊥. With ν ≡ ‖I−Π‖2, ν = 1 if k < n and ν = 0 if k = n.

Consider the pertubed matrix A+∆ and the perturbed input vector b+ δb. Put

εA ≡
‖∆‖2
‖A‖2

and εb ≡
‖δb‖2
‖b‖2

.
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Theorem 9.3 Assume C2(A)εA <
√
2− 1. Then A+∆ has full row rank.

Let x̃ be the MN solution of the perturbed problem. Then

x̃− x = A†(δb −∆x̃) + (I−Π)∆ỹ,
‖x̃− x‖2
‖x‖2

. C2(A) (εb + (1 + ν)εA) .

If n = k, then A† = A−1 and Π = I and the formulas coincide with the ones in Theorem 1.9.
The new term (I− Π)∆ỹ that appears if k < n does not affect the conditioning:

‖(I−Π)∆ỹ‖2 ≤ ν ‖∆‖2
‖x̃‖2
σk(Ã)

. ν C2(A) εA ‖x‖2.

The conditioning of the MN problem equals twice (actually 1 + ν times) the conditioning
of the matrix A. This seems a bit surprising, since the condition number of the matrices in
Exercise 9.1(b) in both formulations are proportional to C22(A). However, ỹ−y = (A∗A)−1(δb−
∆x̃) − (A†)∗∆ỹ: the ill-conditioning is reflected in y (in the first term). The large error from
1/σ2

k is partially annihilated in x by the multiplication of y by A∗. x ‘benifits’ from the fact
that the error on y is structured. We benifit from the fact that y is only a intermediate quatity.

Exercise 9.15. Proof of Theorem 9.3. Use Exercise 9.1(b) and adapt the arguments in
Exercise 9.13 to prove the theorem.
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