
An introduction to Matlab in
Computational Science, 11 september 2017

1 Introduction

Matlab is a programming language (or, more accu-
rately, a scripting language, with core functions that
are pre-compiled) for the numerical solution of nu-
merical mathematical problems (problems that arise
in exact sciences and technical sciences). It relies
on very powerful, reliable, and robust standard com-
mands1 and powerful subroutines. Matlab is user
friendly and allows easy and quick programming with
transparant coding. Matlab is very suitable for
quickly testing ideas for new algorithms. Nevert-
heless, Matlab’s results are very reliable: its core
functions are based on subroutines (from LAPACK)
that have been written by leading computational sci-
entists and incorporate the ‘state of the art’ of Com-
putational Science. If improved algorithms become
available, you can be sure that they will be incor-
porated in the next version of Matlab. The same
can be said (be it in somewhat less degree) about the
subroutines (function subroutines) that are provided
with the Matlab package. Moreover, the core func-
tion have been optimised for the processor on which
Matlab is running.

User friendliness will be somewhat at the costs of
efficiency. An algorithm implemented in C++ or
FORTRAN will be faster than an implementation in
Matlab. Moreover, the factor by which Matlab is
slower depends on the type of command. Neverthe-
less, Matlab is very efficient, and a great number of
research institutes that have a lot of computational
work on huge data sets, use Matlab, even for their
routine computations.

In contrast to programming languages as C++ and
FORTRAN, there is no need in Matlab to specify
the type of quantities (booleans, integers, reals, com-
plex numbers) that you are using and, the sizes of
arrays need not to be assigned in advance: Matlab
will detect these things during computation. This is
one of the reasons why Matlab is so user friendly
and at the same time it also the reason why Matlab
is less efficient.

Matlab is based on manipulations with arrays of
numbers. An n × k matrix is a n by k array, an n-

1If, for instance, A is a numerical n × n matrix and b is a
numerical n-vector then the Matlab command x=A\b returns
the numerical solution of the matrix-vector equation Ax = b:
this simple looking command incorporates a complete, robust,
and reliable solution procedure.

vector is a n by 1 array. The product AB of an n×k
matrix A an a k×` matrix B is an n×` matrix and is
obtained in Matlab by running the command A∗B.2

A’ is the matrix A∗ ≡ AH ≡ Ā
T
, the k × n complex

conjugated transposed of A. If x = (x1, . . . , xn)T and
y = (y1, . . . , yn)T are column vectors of dimension n
and (x,y) ≡

∑n
j=1 xj ȳj is the (complex) inner pro-

duct of x and y, and x and y have been entered in
Matlab as x, and y respectively (as n by 1 arrays)
then the inner product can be computed in Matlab
by the command y’∗x. (Note that the inner product
can be obtained as the product of matrices. In par-
ticular, note that the sizes in the command y’∗x are
consistent with the rules of matrix multiplication.3

Note also that x’*y; may lead to another value in
case of complex entries.)

The assignments below are meant as an illustra-
tion of the above remarks and also serve as an easy
introduction to Matlab programming. They pro-
vide hints to speed up subroutines for problems from
Numerical Linear Algebra.

If this is your first introduction to Matlab, then,
please, read the tutorial first. Do not hesitate to
use Matlab’s help options to obtain information
on individual commands. The type option may be
helpful as well. For instance, running help lu ex-
plains how the L and U factors of a so-called LU-
decomposition of a matrix can be obtained using
Matlab. It also explains what an LU-decomposition
is. With type pcg, you not only learn what PCG is
and what is does, but is also displays the PCG code.
Test this: run the commands help lu, help pcg and
type pcg. What do you obtain if you run type lu?

Assignment 1.

Enter the matrix A =

 1 2 3

4 5 6

7 8 10

 and the vector

b =

 1

1

1

. Use Matlab to solve x from the equa-

tion Ax = b. Replace the (3, 3) coefficient of A by
9 and again solve x from Ax = b. Can you under-
stand Matlab’s result and message? Now, run the
command lu(A), as well as the first three commands
that are mentioned in “help lu”. Can you understand

2Here, A and B have been entered in Matlab as A and B

respectively.
3In a language as C++, 0 is the lowest array-index, in Mat-

lab that is 1. For instance, with the command x=0:0.1:1,
x turns into an 1 by 11 array with x(1)=0, x(2)=0.1,

x(3)=0.2, ..., that is, x(i)=(i-1)*0.1 for i=1,2,...,11.

1



the results? Now, replace A by a 3 × 2 matrix that
consists of the first and second column of the original
A. What do you expect from the command x=A\b?
Are the results in line with your expectation? What do
you expect from the command x=A∗b?

The M-files Assignment2.m . . . Assignment4.m can
be used for the following three assignments.4

Assignment 2.

In contrast to programming languages as C++ and
FORTRAN, there is no need to assign memory loca-
tion in Matlab; Matlab even does not have an “of-
ficial” way for doing that. 5 In the M-files Assign-
ment2.m it can be observed that assigning memory can
lead to dramatic differences in computational time. For
instance, consecutively take the values 10̂4, 5*10̂4,
10̂6, and so on, for N. What is the effect of the com-
mand clear x in this file? Is there a difference bet-
ween y being a vector of integers, or a vector of real
number (multiply, for instance, y by π, y=y*pi;), or
of complex numbers (add the complex number i to y:
ii=sqrt(-1); y=y+ii;)?

Assignment 3.

Use Assignment3.m to check whether the claim that
Matlab is faster by performing vector operations as
x = y + z as vector operations, that is, as

x=y+z;

than by loping:
for j=1:n, x(j)=y(j)+z(j); end

Assignment 4.

An array of function-values can be computed in Mat-
lab in different ways. For instance, in order to plot the
graph of x  sin2(x) for x ∈ [0, 2π], you can proceed
as follows.

Compute an array
x=0:0.01:1; x=2*x*pi;

of x-values and compute the associated array f of sine2-
values by looping

for j=1:length(x)

y(j)=sin(x(j)); f(j)=y(j).*y(j);

end

Or, as an alternative, use array manipulations
y=sin(x); f=y.*y;

4You can run an M-files as Assignment2.m in Matlab by
entering the command Assignment2 (that is, without the ex-
tension .m).

5“Unofficially”, commands as x=zero(200,300); can be
used to assign an array, in this case an array of 200 by 300
zeros.

Finally, a function subroutine (that allows multiplication
of arrays) can be used.

For functions of two variables, say x and y, it often is
useful to generate a 2-dimensional array of x-values and
a 2-dimensional array of y-values (n × n arrays). For
this, the Matlab commands meshgrid and ndgrid

can be used.
• Investigate the efficiency of computing an array

of function values for a function of two variables (as
f(x, y) = sin(x) sin(2y) for (x, y) ∈ [0, π] × [0, π]) for
different ways of defining a function.
• Discuss the advantages and disadvantages of these

different ways.
• Why would it be useful to define a function as a

function subroutine (or as an so-called inline function,
or as a string) rather than “ad hoc” in the command
line in which you want to compute the function values?

In this course, we prefer to define functions (in par-
ticular, matrix-vector multiplications) as function sub-
routines (that take arrays as input variables).

Matrices can be viewed as two dimensional arrays
of numbers. There are commands in Matlab for
graphically displaying arrays of one, two or three
dimensions. Matlab assigns a color value to each
number (in the range of the array). The color va-
lue is determined not only by the number but also
by the maximum and minimum value of the array
of interest and the colormap that is be used. A di-
gital ‘black and white’ picture can be viewed as the
graphical representation of a 2-dimensional array: a
black and white picture consists of pixels with a cer-
tain intensities of gray. Intensities of gray in a black
and white picture correspond to (integer) numbers
between 0 (black) and 255 (white).6 In other words,
a digital black and white picture can be viewed as a
matrix (and vice-versa, possible with some scaling, a
real matrix can be viewed as a digital picture).

Assignment 5.

Note that, in Assignment5.m, a picture is being entered
and identified with a matrix.

An n × k matrix A can be transformed into an nk-
vector by lining up the columns of the matrix. There
are several ways to do this in Matlab. Investigate the
efficiency of these approaches.

Assignment 6.

The SVD (Singular Value Decomposition, svd in Mat-
lab) of an n× k matrix A consists of a unitary n× n

6or, depending on the convention that is being used, to real
numbers between 0 and 1.

2



matrix U (that is, UHU = In, where In is the n × n
identity matrix), a unitary k×k matrix V and an n×k
diagonal matrix Σ such that A = UΣVH. In addition,
the diagonal entries Σii of Σ are non-negative reals and
being ordered from large to small (Σii ≥ Σjj ≥ 0 for
all i < j ≤ min(n, k)).
• Enter a black and white picture as a matrix,
• determine its SVD,
• plot the diagonal of Σ (on log10-scale),
• for j = 1 : k, compute the matrix Aj that arises

by multiplying the matrices Uj , Σj and VH
j . Here, Uj

is the n× j matrix that consists of the first j columns
of U, Vj consists of the first j columns of V and Σj is
the left j × j upper block of Σ,
• for j = 1 : k, represent Aj as a picture.

3



Inhoudsopgave

1 Introduction 1


	1 Introduction

