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Ax = b Ax = λx

Subspace methods

Iterate until sufficiently accurate:

• Expansion. Expand the search subspace Vk.
Restart if dim(Vk) is too large.

• Extraction. Extract an appropriate approximate
solution (ϑ,u) from the search subspace.

Example. Krylov subspace methods

as GMRES, CG, Arnoldi, Lanczos: expansion by tk = Avk

Goal.

Expansion. ∠(x,Vk+1) ¿ ∠(x,Vk)

Extraction. Find u ∈ Vk s.t. ∠(x,u) ≈ ∠(x,Vk+1)



Krylov subspace methods

+ Polynomial approximation theory is applicable

+ Structure can be exploited (more efficient steps)

Sensitive to errors

Not flexible

Subspace methods

(Slightly) more costly per step

+ Less sensitive to errors

+ Flexible (allowing faster convergence)



Subspace methods

We have introduced (Krylov) subspace methods as a tech-

nique to accelerate convergence of simple iteration me-

thods (as power method).

However, the approach has additional advantages:

• It allows to (somewhat) steer convergence towards the

wanted eigenpair(s), if, for instance, restarts are required.

• If more than one eigenpair is required, then the subspace

upon convergence of the first eigenpair will contain good

approximation to the second eigenpair, etc..

• If an eigenvalue is not simple, an eigenspace has to be

computed rather than an eigenvector.



Subspace methods

Block methods also rely on subspaces, that is on matrices
Vk that span a search subspace. However, in contrast to
subspace methods, block methods keep the size of the
matrix Vk fixed in each step k to n× `. Block methods are
actually “simple methods” aiming for solving the “block”
eigenvalue problem

AX` = X` Λ`,

where X` is an n × ` matrix with eigenvectors as columns
and Λ` is an ` × ` diagonal matrix with eigenvalues on its
diagonal.

Nevertheless, block methods somewhat share the advan-
tages of subspace methods over “simple iteration”. Both
approaches can be combined.

The QR-algorithm can be viewed as a block method.



Ax = b Ax = λx

Subspace methods

Iterate until sufficiently accurate:

• Expansion. Expand the search subspace Vk.
Restart if dim(Vk) is too large.

• Extraction. Extract an appropriate approximate
solution (ϑ,u) from the search subspace.

This lecture, for Ax = λx with A n× n, focusses on
extraction
sufficiently accurate

(residuals, errors, perturbations, etc.)

Notation.
u is an approximation of x (in direction) with
ϑ the approximate eigenvalue,
r ≡ Au− ϑu is the residual,



Program Lecture 12

Extracting eigenpairs

• Extraction

• Ritz values and harmonic Ritz values

Perturbed eigenproblems

• Errors and perturbations

• Miscellenuous results

• Accuracy eigenvalues versus eigenvectors

• Perturbed eigenpairs

• Forward error and residual

• Pseudo spectra
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Extraction strategies

Let V ≡ span(V) be a search subspace.

Find u ≡ Vy ∈ V such that

• (Ritz–)Galerkin. Au− ϑu ⊥ V Ritz values

Orthogonal residuals Au− b ⊥ V for solving Ax = b

• Petrov–Galerkin. Au− ϑu ⊥ AV harmonic Ritz values.

Minimal residuals for solving Ax = b:

u = minargz‖Az− b‖2 ⇔ Au− b ⊥ AV

• Refined Ritz. For a given approximate eigenvalue ϑ,

u ≡ minargũ∈V‖Aũ− ϑũ‖2



Selection

Ritz–Galerkin and Petrov–Galerkin lead to

k Ritz pairs (ϑi,ui), Petrov pairs, respectively (i = 1, . . . , k).

Select the most ‘promising’ one as approximate eigenpair.

‘Most promising’:

1) Formulate a property that, among all eigenpairs,

characterizes the wanted eigenpair

Example. λ = max(Re(λj)), λ = min|λj|, λ = min|λj − τ |, . . . .

2) Select among all Ritz pairs the one with this property.

Example. ϑ = max(Re(ϑi)), ϑ = min|ϑi|, ϑ = min|ϑi − τ |, . . . .
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Warning. May lead to a ‘wrong’ selection:

there may be a more accurate Ritz pair than the selected

one
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Selection

Ritz–Galerkin and Petrov–Galerkin lead to

k Ritz pairs (ϑi,ui), Petrov pairs, respectively (i = 1, . . . , k).

Select the most ‘promising’ one as approximate eigenpair.

‘Most promising’:

1) Formulate a property that, among all eigenpairs,

characterizes the wanted eigenpair

Example. λ = max(Re(λj)), λ = min|λj|, λ = min|λj − τ |, . . . .

2) Select among all Ritz pairs the one with this property.

Example. ϑ = max(Re(ϑi)), ϑ = min|ϑi|, ϑ = min|ϑi − τ |, . . . .

Warning. May lead to a ‘wrong’ selection

One wrong selection = one ‘useless’ iteration step.

One wrong selection at restart may spoil convergence.
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Ritz values

Proposition. u = Vy. Ritz values are Rayleigh quotients:

Au− ϑu ⊥ V ⇒ ϑ = ρ(u) ≡ u∗Au
u∗u .

Proposition. For a given approximate eigenvector u,

the Rayleigh quotient is best approximate eigenvalue, i.e.,

gives the smallest residual:

‖Au− ϑu‖2 ≤ ‖Au− ϑ̃u‖2 (ϑ̃ ∈ C) ⇒ ϑ = ρ(u).

Proof.

Au− ϑu ⊥ V ⇒ Au− ϑu ⊥ Vy = u ⇔ ϑ = ρ(u).

‖Au− ϑu‖2 ≤ ‖Au− ϑ̃u‖2 (ϑ̃ ∈ C) ⇔ Au− ϑu ⊥ u.



Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I,

where X = [x1, . . . ,xn], Λ = diag(λ1, . . . , λn):

• Axi = λixi (i = 1, . . . , n),

• the eigenvectors xi form an orthonormal basis of Cn.

Terminology. A has an orthonormal basis X of eigenvectors.

Note. A is normal iff A∗A = AA∗.

Hermitian and unitary matrices are normal.

A is normal ⇔
A has an orthonormal basis of eigenvectors.



Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

u approximate eigenvector, ‖u‖2 = 1, ϑ = ρ(u).

u =
∑

βixi with
∑

i |βi|2 = 1,

because (xi) orthonormal, 1 = ‖u‖2 =
∑

i |βi|2
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Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

u approximate eigenvector, ‖u‖2 = 1, ϑ = ρ(u).

u =
∑

βixi with
∑

i |βi|2 = 1,

ϑ = ρ(u) =
∑

i |βi|2λi.

Proposition. If A is normal, then any Ritz value is

a convex mean (i.e., weighted averages) of eigenvalues.

Assume ϑ ≈ λ = λj0. Can we conclude that u ≈ x ≡ xj0?

• If λ extremal: ϑ ≈ λ ⇔ |βj0| ≈ 1 & |βi|2 ≈ 0 (i 6= j0)

λ is extremal if it is a vertex of the convex hull of the

spectrum of A.



Ritz values

For ease of discussion,
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Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

u approximate eigenvector, ‖u‖2 = 1, ϑ = ρ(u).

u =
∑

βixi with
∑

i |βi|2 = 1,

ϑ = ρ(u) =
∑

i |βi|2λi.

Proposition. If A is normal, then any Ritz value is

a convex mean (i.e., weighted averages) of eigenvalues.

Assume ϑ ≈ λ = λj0. Can we conclude that u ≈ x ≡ xj0?

• If λ extremal: ϑ ≈ λ ⇔ u ≈ sign(βj0)x

• If λ in the interior: ϑ ≈ λ ⇔ ??? (Ex.)



Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

u approximate eigenvector, ‖u‖2 = 1, ϑ = ρ(u).

u =
∑

βixi with
∑

i |βi|2 = 1,

ϑ = ρ(u) =
∑

i |βi|2λi.

Proposition. If A is normal, then any Ritz value is

a convex mean (i.e., weighted averages) of eigenvalues.

Proposition. Ritz values form

• a safe selection for finding extremal eigenvalues,

• an unsafe selection for interior eigenvalues.



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.
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Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Note that A−1x = 1
λ x and 1

λ extremal in { 1
λi
}

With respect to W, find x̃ ≡Wy st A−1x̃− µx̃ ⊥W:

largest µ forms a safe selection ( ⇒ λ ≈ 1
µ, x̃ ≈ x)



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Note that A−1x = 1
λ x and 1

λ extremal in { 1
λi
}

With respect to W, find x̃ ≡Wy st A−1x̃− µx̃ ⊥W:

largest µ forms a safe selection ( ⇒ λ ≈ 1
µ, x̃ ≈ x)

How to select W? How to avoid A−1?



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Note that A−1x = 1
λ x and 1

λ extremal in { 1
λi
}

With respect to W, find x̃ ≡Wy st A−1x̃− µx̃ ⊥W:

largest µ forms a safe selection ( ⇒ λ ≈ 1
µ, x̃ ≈ x)

Select W = AV. Then, with u ≡ Vy, we have x̃ = Au

A−1x̃− µx̃ ⊥W ⇔ 1
µu−Au ⊥ AV



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Note that A−1x = 1
λ x and 1

λ extremal in { 1
λi
}

With respect to W, find x̃ ≡Wy st A−1x̃− µx̃ ⊥W:

largest µ forms a safe selection ( ⇒ λ ≈ 1
µ, x̃ ≈ x)

Select W = AV. Then, with u ≡ Vy, we have x̃ = Au

A−1x̃− µx̃ ⊥W ⇔ 1
µu−Au ⊥ AV

Proposition. Harmonic Ritz values form a safe selection

for finding eigenvalues in the interior (close to 0).



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Strategy using harmonic Ritz values

1) Solve Au− ϑu ⊥ AV

2) Select ϑ closest to 0.



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Strategy using harmonic Ritz values

1) Solve Au− ϑu ⊥ AV

2) Select ϑ closest to 0.

[See Exercise 13.4]Naming. u =
∑

βixi, Au− ϑu ⊥ Au ⇒

ϑ =
(Au)∗(Au)

(Au)∗u
=

∑ |βi|2 |λi|2∑ |βi|2λ̄i
=

1
∑

αi
1
λi

,

where αi ≡ |βi|2 |λi|2/(
∑

i |βi|2 |λi|2),
∑

αi = 1, αi ≥ 0.



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Strategy using harmonic Ritz values

1) Solve Au− ϑu ⊥ AV

2) Select ϑ closest to 0.

Proposition. If A is normal, then harmonic Ritz values are

harmonic means of the eigenvalues.



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to τ ,
• τ is in the interior of the spectrum, • λ 6= τ .

Strategy using harmonic Ritz values

1) Solve Au− ϑu ⊥ (A−τ I)V

2) Select ϑ closest to τ .



Refined Ritz

For a given approximate eigenvalue ϑ,

the refined Ritz vector u is such that

u = argmin{‖Aũ− ϑũ‖2 | ũ ∈ V}

Refined Ritz is only useful if

ϑ is very close to the wanted eigenvalue.

A few extra digits of accuracy can be obtained

upon convergence.

Observation. If A∗ = A, then a refined Ritz vector is a

Ritz vector for (A − ϑ I)2. Note that squaring also turns

interior eigenvalues to the exterior.
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A given n× n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ− ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

The error can not be computed.

Alternative: compute the residual r ≡ Au− ϑu.

To ease notation, we scale u such that ‖u‖2 = 1.

We will learn that,

If the scaled residual norm ‖r‖2/‖u‖2 is small,
then (ϑ,u) can be viewed as an accurate eigenpair.
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A given n× n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ− ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

The error can not be computed.

Alternative: compute the residual r ≡ Au− ϑu.

Estimates will be given for |λ− ϑ|, sin∠(x,u), tan∠(x,u)



A given n× n matrix, Ax = λx

In practice: A will be perturbed:

(A−∆)u = ϑu,

where the perturbation ∆ is n× n and (hopefully) small.

Perturbations come from

1) rounding errors
2) approximation errors
3) analysis technique

Note. ([A + ∆]−∆)x = λx:

results for x and u are interchangeable.



A given n× n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ− ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

with residual r ≡ Au− ϑu.

A perturbation ∆ of A such that

(A−∆)u = ϑu

is called a backward error of the appr. eigenpair.



A given n× n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ− ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

with residual r ≡ Au− ϑu.

A perturbation ∆ of A such that

(A−∆)u = ϑu

is called a backward error of the appr. eigenpair.

in this context the ‘error’ is called the ‘forward error’.



A given n× n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ− ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

with residual r ≡ Au− ϑu.

A perturbation ∆ of A such that

(A−∆)u = ϑu

is called a backward error of the appr. eigenpair.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

Note. • ru∗ is of rank 1.



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

For a given approximate eigenvector u,

we have the smallest residual

ϑ = argminµ‖Au− µu‖2 ⇔ Au− ϑu ⊥ u ⇔ ϑ =
u∗Au

u∗u
ρ(u) ≡ u∗Au

u∗u is the Rayleigh quotient (of u wrt A).

Note. If ϑ is the Rayleigh quotient, then r ⊥ u.



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

y 6= 0 is a left eigenvector if y∗A = λy∗.

x with Ax = λx is a right eigenvector.



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

w approximate left eigenvector, ‖w‖2 = 1, s∗ ≡ w∗A−ϑw∗
and ϑ the associated two-sided Rayleigh quotient:

ϑ ≡ w∗Au

w∗u
.

Proposition. With ∆ ≡ ru∗ + ws∗, we have that

(A−∆)u = ϑu & w∗(A−∆) = ϑw∗



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

w approximate left eigenvector, ‖w‖2 = 1, s∗ ≡ w∗A−ϑw∗
and ϑ the associated two-sided Rayleigh quotient:

ϑ ≡ w∗Au

w∗u
.

Proposition. With ∆ ≡ ru∗ + ws∗, we have that

(A−∆)u = ϑu & w∗(A−∆) = ϑw∗

Note. If A∗ = A and w = u ,

then ∆ = ru∗ + ws∗ = ru∗ + ur∗ is Hermitian.



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

If ‖r‖2 is small, then the question whether (ϑ,u) is an

accurate approximate eigenpair depends on how sensitive

eigenpairs of A are to perturbations.



Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

• How do eigenpairs respond to perturbations?

• How to find (approximate) eigenpairs

(with small residuals).

Note. ∆ may be structured.

Here, we will pay special attention only to ∆ = ru∗,
i.e., structure from backward error.
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The fact that normal matrices have an orthonormal basis
of eigenvectors makes the perturbation theory for these
matrices much easier with stronger results (and different
proofs) than for general matrices.

The results for Hermitian matrices A are particularly nice,
also due to the fact that the eigenvalues for these matrices
have a natural ordering:

λ1 ≤ λ2 ≤ . . . ≤ λn,

where λj = λj(A) are the eigenvalues of A counted accor-
ding to multiplicity.

These properties are reflected in, for instance, the Courant–
Fischer theorem on the next transparency.

We will give results for general matrices, as well as the
corresponding results for normal or Hermitian matrices.



Useful results, A∗ = A

Theorem [Courant–Fischer] If λ1 ≤ . . . ≤ λn, then

λi = min
W

max
w

ρ(w) (i = 1, . . . , n),

where the maximum is taken over all non-zero w ∈ W
and the minimum over all i-dimensional subspaces W.

This theorem generalises the fact that ρ(u) is a convex

mean of all λi and therefore,

λ1 = min
u

ρ(u)

(u = x1, leads to the equality).



Useful results, A∗ = A

Theorem [Courant–Fischer] If λ1 ≤ . . . ≤ λn, then

λi = min
W

max
w

ρ(w) (i = 1, . . . , n),

where the maximum is taken over all non-zero w ∈ W
and the minimum over all i-dimensional subspaces W.

Proof. If W is i-dimensional, then a dimension argument reveals that

W ∩ span({xi,xi+1, . . . ,xn}) 6= {0}
If w is a non-zero vector in this intersection, then ρ(w) is a convex
mean of λi, . . . , λn, whence, greater than or equal to λi.

With W = span(x1, . . . ,xi) and w = xi we have the equality.

See also Exercise 12.2.



Useful results, A∗ = A

Theorem [Courant–Fischer] If λ1 ≤ . . . ≤ λn, then

λi = min
W

max
w

ρ(w) (i = 1, . . . , n),

where the maximum is taken over all non-zero w ∈ W
and the minimum over all i-dimensional subspaces W.

Theorem [Cauchy interlace] The eigenvalues of A,

if A =

[
H b
b∗ α

]
, and H interlace:

λ1(A) ≤ λ1(H) ≤ λ2(A) ≤ λ2(H) ≤ . . . ≤ λn−1(H) ≤ λn(A)

Useful result for Hermitian problems using subspace methods, where,
per step, the projected matrix is extended with one row and one co-
lumn.



Useful results, A∗ = A

Theorem [Courant–Fischer] If λ1 ≤ . . . ≤ λn, then

λi = min
W

max
w

ρ(w) (i = 1, . . . , n),

where the maximum is taken over all non-zero w ∈ W
and the minimum over all i-dimensional subspaces W.

Theorem [Cauchy interlace] The eigenvalues of A,

if A =

[
H b
b∗ α

]
, and H interlace:

λ1(A) ≤ λ1(H) ≤ λ2(A) ≤ λ2(H) ≤ . . . ≤ λn−1(H) ≤ λn(A)

[Exercise 12.4]Proof. Apply CF with W ⊂ span(e1, . . . ,en−1).
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Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate

then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of

order square of the error of the eigenvector.



Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate

then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of

order square of the error of the eigenvector.

Let A be Hermitian: A∗ = A.

Theorem. |ρ(u)− λ| ≤ sin2 ∠(x,u) ·maxi |λi − λ|.



Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate

then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of

order square of the error of the eigenvector.

Let A be Hermitian: A∗ = A.

Theorem. |ρ(u)− λ| ≤ sin2 ∠(x,u) ·maxi |λi − λ|.
Theorem. If λ = λ1 < λi all i > 1, then

sin2 ∠(x1,u) ≤ ρ(u)− λ1

λ2 − λ1
.



Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate

then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of

order square of the error of the eigenvector.

Let A be Hermitian: A∗ = A.

Theorem. |ρ(u)− λ| ≤ sin2 ∠(x,u) ·maxi |λi − λ|.
Theorem. If λ = λ1 < λi all i > 1, then

sin2 ∠(x1,u) ≤ ρ(u)− λ1

λ2 − λ1
.

Proofs. Write u = cx + sz, where z ⊥ x and ‖z‖2 = 1.

ρ(u)− λ = u∗(A− λI)u = s2z∗(A− λ)z

and ρ(z) = z∗Az is in the convex hull of {λj | j 6= j0}.
In case x = x1 we have that ρ(z) ≥ λ2 (Courant–Fischer).
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Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A−∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

• How do eigenpairs respond to perturbations?

• How to find (approximate) eigenpairs

(with small residuals).

Note. ∆ may be structured.

Here, we will pay special attention only to ∆ = ru∗,
i.e., structure from backward error.



Smooth perturbations

For τ ∈ C, consider A(τ) ≡ A− τE.

Then A(0) = A and τ Ã A(τ) is smooth.

We put the “smallness” of the perturbation in τ :

if A−∆ is the perturbed matrix with ‖∆‖2 ¿ ‖A‖2,
then we put

ε ≡ ‖∆‖2, E ≡ ∆

‖∆‖2
.

Hence, A(ε) = A− εE = A−∆,

‖E‖2 = 1, and

ε ¿ ‖A‖2.



Smooth perturbations

For τ ∈ C, consider A(τ) ≡ A− τE.

Then A(0) = A and τ Ã A(τ) is smooth.

We put the “smallness” of the perturbation in τ :

if A−∆ is the perturbed matrix with ‖∆‖2 ¿ ‖A‖2,
then we put

ε ≡ ‖∆‖2, E ≡ ∆

‖∆‖2
.

For a backward error as ru∗:

εE = ∆ = ru∗, ε = ‖r‖2, A− ‖r‖2E.



Smooth perturbations

For τ ∈ C, consider A(τ) ≡ A− τE.

Then A(0) = A and τ Ã A(τ) is smooth.

Theorem.

• There are continuous functions τ Ã λj(τ) such that

λ1(τ), . . . , λn(τ) are the eigenvalues of A(τ)

counted according to multiplicity (τ ∈ C).

Proof. Apply complex function theory to asses multiplicity.



Examples

[
0 τ
τ 0

]
,

[
0 1
τ 0

]
,

[
1 τ
τ −1

]
,

[
0 τ
0 0

]
,

[
τ 1
0 0

]
,



0 1 0
0 0 τ
τ 0 0






Examples

[
0 τ
τ 0

]
,

[
0 1
τ 0

]
,

[
1 τ
τ −1

]
,

[
0 τ
0 0

]
,

[
τ 1
0 0

]
,



0 1 0
0 0 τ
τ 0 0




If λ = λi(0) is a simple eigenvalue of A(τ) at τ = 0,

then λi(τ) can be expressed as a power series

λi(τ) = λ +
∞∑

j=1

αj τ j (τ ≈ 0).



Examples

[
0 τ
τ 0

]
,

[
0 1
τ 0

]
,

[
1 τ
τ −1

]
,

[
0 τ
0 0

]
,

[
τ 1
0 0

]
,



0 1 0
0 0 τ
τ 0 0




If λ = λi(0) is a non-simple eigenvalue of A(τ) at τ = 0,

then λi(τ) can be expressed as a Puiseux series

λi+m(τ) = λ +
∞∑

j=1

αj ωm ηj, (m = 0,1, . . . , p− 1, τ ≈ 0),

where η ≡ r1/p eiφ/p if τ = r eiφ, and ω ≡ e2πi/p, p ≤ mult(λ).



Smooth perturbations

For τ ∈ C, consider A(τ) ≡ A− τE.

Then A(0) = A and τ Ã A(τ) is smooth.

Theorem.

• There are continuous functions τ Ã λj(τ) such that

λ1(τ), . . . , λn(τ) are the eigenvalues of A(τ)

counted according to multiplicity (τ ∈ C).

• If λj(0) is a simple eigenvalue of A(0), then

τ Ã λj(τ) is analytic for τ ≈ 0.

If, for some vector w, the associated eigenvector xj(τ) is

scaled st w∗xj(τ) = 1, then τ Ã xj(τ) is also analytic.

• If A(τ) is Hermitian (τ ∈ R), then there are eigenvalues

λj(τ) and eigenvectors xj(τ) that depend analytically on τ

(j = 1, . . . , n), τ ≈ 0.



Analysis strategy

To avoid technical details, we focuss on simple eigenvalues:
λ = λ(0) is an eigenvalue of A = A(0) of multiplicity 1.
x = x(0) is the associated normalised eigenvector.

We will identify convenient non-singular matrices V
(i.e., basis transforms) such that

V−1AV =

[
λ a∗
0 A1

]
and V−1EV =

[
ν f∗
r̃ E1

]

Special cases: • εE = ∆ and ε ¿ 1
• εE = ru∗ (rank 1)
• A normal (V∗V = I)
• A and E Hermitian

(V = X and V−1AV diagonal)
• Combinations



The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) = ‖(Ã− λI)−1 ∆x‖2 +O(‖∆‖22)
. ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2



The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) . ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2

Interpretation. x1, . . . ,xn orthonormal (i.e., A normal) ⇒

‖(Ã− λI)−1‖2 = max

{
1

|λj − λ| | λj 6= λ

}
=

1

γ

γ ≡ minλj 6=λ |λj − λ| is the spectral gap for λ.
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The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) . ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2

∆ = ru∗.Corollary.

tan∠(x,u) ≤ ‖(Ã− λI)−1‖2 ‖r‖2 +O(‖r‖22)



The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) . ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2

∆ = ru∗.Theorem. If A is normal, then

sin∠(x,u) ≤ ‖r‖2
γ cos∠(x,u)

.
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The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

Theorem [Weyl] If A = A∗ and ∆ = ∆∗, then

|λi(A + ∆)− λi(A)| ≤ ‖∆‖2.

(y∗x = 1, O(τ2)-term is 0.) In this case, we even have

λ1(∆) ≤ λi(A + ∆)− λi(A) ≤ λn(∆)

Proof. Apply Courant–Fischer.
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The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

∆ = ru∗.Corollary. For a λ ∈ Λ(A), we have that

|ϑ− λ| ≤ ‖r‖2
y∗x

+O(‖r‖22).

Note that here ϑ is not required to be ρ(u),
whence y∗∆x = u∗ru∗u need not be 0.



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

∆ = ru∗.Theorem [Bauer-Fike]. If A is normal, then

|ϑ− λ| ≤ ‖r‖2 for some λ ∈ Λ(A).



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

∆ = ru∗.Theorem [Bauer-Fike]. If A is normal, then

|ϑ− λ| ≤ ‖r‖2 for some λ ∈ Λ(A).

∆ = ru∗.Theorem. If A is normal and ϑ = ρ(u), then

‖r‖2 ≤ 1
2 γ ⇒ |ρ(u)− λ| ≤ ‖r‖22

γ − ‖r‖
(with γ the spectral gap for λ; y∗∆x = u∗ru∗u = 0).



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

∆ = ru∗.Theorem [Bauer-Fike]. For general square A

|ϑ− λ| ≤ CE ‖r‖2 for some λ ∈ Λ(A),

assuming there is a basis X of eigenvectors of A and

CE ≡ ‖X‖2 ‖X−1‖2
is the conditioning of this basis.



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

Theorem [Henrici]. Let A = QSQ∗ be the Schur de-

composition of A: Q unitary and S = D + S′ where D is

diagonal and S′ is strictly upper triangular. Then

|ϑ− λ| ≤ max(ε, ε
1
p) for some λ ∈ Λ(A)

where ε ≡ ‖r‖2
∑p−1

k=0 ‖S′‖k2 and p such that (S′)p = 0.

‖S′‖2 is A’s departure of normality.
The departure of normality relates to ‖A∗A−AA∗‖2.



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

In this new basis setting,

x(0) = x =

[
1
0

]
, x(τ) =

[
1
zτ

]
= (1,zT

τ )T.



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

Note. ‖zτ‖2 is the tangent of the angle between the ei-

genvector (1,0T)T and the perturbed eigenvector (1,zT
τ )T.



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

Note. ‖zτ‖2 is the tangent of the angle between the ei-

genvector (1,0T)T and the perturbed eigenvector (1,zT
τ )T.





λ− τν + a∗zτ − τf∗zτ = λ(τ)

(A1 − τE1 − λ(τ)I)zτ = τ r̃



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

Note. ‖zτ‖2 is the tangent of the angle between the ei-

genvector (1,0T)T and the perturbed eigenvector (1,zT
τ )T.





λ− τν + a∗zτ − τf∗zτ = λ(τ)

(A1 − τE1 − λ(τ)I)zτ = τ r̃

Hence, for τ → 0,



zτ = τ (A1 − λI)−1r̃ +O(τ2)

λ− λ(τ) = τ [ν − a∗(A1 − λI)−1r̃] +O(τ2)

Proof. Express λτ and zτ as a series in powers of τ , plug

in and equate τ j-terms for subsequent j = 0,1,2, . . ..



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

Note. ‖zτ‖2 is the tangent of the angle between the ei-

genvector (1,0T)T and the perturbed eigenvector (1,zT
τ )T.





λ− τν + a∗zτ − τf∗zτ = λ(τ)

(A1 − τE1 − λ(τ)I)zτ = τ r̃

Hence, for τ → 0,



zτ = τ (A1 − λI)−1r̃ +O(τ2)

λ− λ(τ) = τ [ν − a∗(A1 − λI)−1r̃] +O(τ2)

If a = 0, then
λ− λ(τ) = τν + τ2f∗(A1 − λI)−1r̃ +O(τ3)



Quantifying perturbations

([
λ a∗
0 A1

]
− τ

[
ν f∗
r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

In our application, τ = ε, εE = ∆, and we can take

• V = X, the basis of eigenvectors Ã Bauer–Fike,

• V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis x⊥.

• V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis y⊥.

Here y is the normalised left eigenvector for λ.

Estimates based on the asymptotic expression from the

preceding transparencies have to be multiplied by C2(V).



The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) . ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2

Proof. V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis x⊥.

Then, AVe1 = Ax = λx = λVe1. Hence, e∗1(V
−1AV)e1 = λ.

Apply (∗) to V−1AV, to see that

tan∠(x,x(A− τE)) = ‖(A1 − λI)−1(τ r̃)‖2 +O(τ2).

Use, ‖r̃‖2 ≤ ‖V−1EV‖2 = ‖E‖2. A1 is the matrix of Ã wrt v2, . . . ,vn.



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ− λ| = |y∗∆x|
|y∗x| +O(‖∆‖22) . ‖∆‖2

|y∗x|

Condλ(A) ≡ 1

cos∠(x,y)

Proof. V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis y⊥.

AVe1 = Ax = λx = λVe1 implies that V−1AVe1 = λe1.

Since e∗1 = 1
y∗xy

∗V, we have e∗1V
−1 = 1

y∗xy
∗.

Therefore, e∗1V
−1AV = 1

y∗xy
∗AV = λ

y∗xy
∗V = λe∗1.

Now, apply (∗) to V−1AV, to see that

|λ(A− τE)− λ(A)| = |λ(τ)− λ| = |τν|+O(τ2).

The results follows from ν = e∗1(V
−1τEV)e1 =

1

y∗x
y∗(τE)x.
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Perturbed eigenvalues and pseudo-spectra

C2(X) is an bound for the conditioning of the eigenvalues.

However, • it assumes a basis of eigenvectors,
• it does not discriminate between well
conditioned and ill conditioned eigenvalues,
• it usually is not feasible to compute C2(X).

The condition number 1/ cos∠(y,x) of a simple eigenvalue
depends on the angle between its left and right eigenvector.
This number can be (accurately) computed for one or for
a few eigenvalues.
However, in general it is not feasible to compute these
numbers for all eigenvalues (for non-normal A).
Moreover, for n large, the collection of all these numbers is
too large to provide global information on the sensitivity of
all eigenvalues to perturbations.

The pseudo-spectrum offers a graphical way to access
the sensitivity of eigenvalues to perturbations. It gives
information on individual eigenvalues, regardless multiplicity.
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Λε(A) ≡
⋃
{Λ(A + ∆) | ‖∆‖2 ≤ ε}

Proposition. ϑ ∈ Λε(A) ⇔ smallest singular value A− ϑI ≤ ε

⇔ ‖(A− ϑI)−1‖−1
2 ≤ ε.

Observations.

• If λ ∈ Λ(A) and |λ− ϑ| ≤ ε, then ϑ ∈ Λε(A).

• Often the pseudo-spectrum is much bigger than
the union of discs with radius ε around eigenvalues.

•Often the value of ε does not seem to play a significant role

(reason: ε
1
32 ≈ 1 for any ε ∈ [10−8,10+8]).

• In floating point arithmetic c ≡ Au is exactly
c = (A + ∆)u for some small perturbation ∆.

• If r = Au− ϑu ⇒ ϑ ∈ Λε(A) for ε ≥ ‖r‖2.


