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Subspace methods

Iterate until sufficiently accurate:

e EXxpansion. Expand the search subspace V..

e EXxtraction. Extract an appropriate approximate
solution from the search subspace.

Example. Krylov subspace methods
as GMRES, CG, Arnoldi, Lanczos: expansion by t, = Av,

Goal.
Expansion. Z(X,Vi41) < Z(X, V)
Extraction. Find u= VW, y; s.t. Z(X,u) = Z(X,V4+1)



Subspace methods

Iterate until sufficiently accurate:
e EXxpansion. Expand the search subspace V..

e EXxtraction. Extract an appropriate approximate
solution (¥,u) from the search subspace.

This lecture, for AX = AX with A n x n, focusses on:
e EXpansion

Notation.
u is a approximation of x (in direction) with

¥ the approximate eigenvalue, |[|X|o = [|u]lo =1,
r= Au— Ju is the residual,



Program Lecture 13

e EXpansion

o Krylov subspace approach

Lanczos, Arnoldi, Shift and Invert Arnoldi
o Convergence

o Accelerated Rayleigh Quotient Iteration

Rational Krylov Sequence method

o Optimal expansion
Jacobi-Davidson
e Restart
LOCG, Implicitly Restarted Arnoldi Method

e Deflation



e EXpansion

o Krylov subspace approach

Lanczos, Arnoldi, Shift and Invert Arnoldi



Krylov subspace expansion

The columns of V, = [vq,...,Vi] form a (orthonormal)
Krylov basis: then t = Av, is an expansion vector.

Examples.

For AX = \X

e Arnoldi

Lanczos in case A is Hermitian.



Lanczos

A=A = AV, = Vi1 T;,

V., = [V1,...,V] orthonormal, T} is (k4 1) x k tridiagonal.

If only eigenvalues of A are to be computed (no eigenvec-
tors), then there is no need to store the *“old” vV;. Mo-
reover, eigenvalues of symmetric tridiagonal matrices as
T;. can fairly efficiently be computed (QR-alg., Sylvester’s
law, Sturm sequences, Divide and Conquer). This makes
LLanczos very suitable for searching very high dimensional
Krylov subspaces (low costs in flops and in storage) and
finding many eigenvalues.



Lanczos in floating point arithmetic

Sensitive to errors Lanczos is very unstable

The Lanczos vectors V; loose orthogonality upon conver-
gence:

Theorem. If sin Z(X,u;) is of order machine precision (mp),
then Z(vg,span(vy,...,Vi_1)) is of order mp.

Effect: This leads to ghost eigenvalues (eigenvalues of
T;. that result from floating point errors).



Lanczos in floating point arithmetic

Sensitive to errors Unstability is stable

The Lanczos vectors V; loose orthogonality upon conver-
gence:

Theorem. If sin Z(X,u;) is of order machine precision (mp),
then Z(vg,span(vy,...,Vi_1)) is of order mp.

Effect: This leads to ghost eigenvalues (eigenvalues of
T;. that result from floating point errors).

Surprise. Ghost eigenvalues converge to eigenvalues of A.
Due to rounding errors Lanczos produces clusters of ap-
proximate eigenvalues around true eigenvalues.



Lanczos in floating point arithmetic

Sensitive to errors Unstability is stable

The Lanczos vectors V; loose orthogonality upon conver-
gence:

Theorem. If sin Z(X,u;) is of order machine precision (mp),
then Z(vg,span(vy,...,Vi_1)) is of order mp.

Effect: This leads to ghost eigenvalues (eigenvalues of
T;. that result from floating point errors).

Surprise. Ghost eigenvalues converge to eigenvalues of A.
Due to rounding errors Lanczos produces clusters of ap-
proximate eigenvalues around true eigenvalues.

Detecting ghost eigenvalues. Let T/.,g be T from which
the first row and first column have been removed. If ¥ is an
eigenvalue of both 73 and TI’C, then ¢ is a ghost eigenvalue.



Lanczos in floating point arithmetic

Strategies to deal with the sensitivity to errors
1) Detect ghost eigenvalues.

For the other strategies the V; have to be stored.

2) Full reorthogonalisation.
(Like Arnoldi, but use T} for computing eigenvalues)

3) Selective reorthogonalisation:

Orthogonalise v, and vi4 1 against all vq,...,Vvi_1
iff the loss of orthogonality is of order /u
with U machine precision.

There are cheap recurrences to estimate
E.=1.— V,ij, i.e., the loss of ortogonality.



Krylov subspace expansion

The columns of V, = [vq,...,Vi] form a (orthonormal)
Krylov basis: then t = Av, is an expansion vector.

Examples.

For AX = \X

e Arnoldi

Lanczos in case A is Hermitian.



Krylov subspace expansion

The columns of V, = [vq,...,Vi] form a (orthonormal)
Krylov basis: then t = Av, is an expansion vector.

Examples.

For AX = A\X
e Arnoldi
Lanczos in case A is Hermitian.
e Shift and Invert Arnoldi
t=(A—-7I)"lv, to generate a basis
for the search subspace Kp((A —7I)~1 vq).

Shift and Invert Lanczos in case A is Hermitian.



Krylov subspace expansion

The columns of V, = [vq,...,Vi] form a (orthonormal)
Krylov basis: then t = Av, is an expansion vector.

Examples.

For AX = A\X
e Arnoldi
Lanczos in case A is Hermitian.
e Shift and Invert Arnoldi
t=(A—-7I)"1lv, to generate a basis

for the search subspace Kp((A —7I)~1 vq).

Recall that SI expansion amplifies components of
eigenvectors with eigenvalue close to the target r.



Program Lecture 13

e EXpansion

o Krylov subspace approach

Lanczos, Arnoldi, Shift and Invert Arnoldi
o Convergence

o Accelerated Rayleigh Quotient Iteration

Rational Krylov Sequence method

o Optimal expansion
Jacobi-Davidson
e Restart

LOCG, Implicitly Restarted Arnoldi Method

e Deflation



Convergence without subspace accelaration

Shift & Invert upr1 = (A —7I)"luy. (s&i)
A—T k

Then tan Z(x,u) ~ ( ) ,
Aj—T

where A = )\, X =X;,, and |\;, — 7| < [X\; — 7] all j # jo.



Convergence without subspace accelaration

Shift & Invert upr1 = (A —7I)"luy. (s&i)
A—T k

Then tan Z(x,u) ~ < ) ,
Aj—T

where A =\, , X = and |\, — 7| < |\ — 7] all j # jo.

Jo! JO’

Rayleigh Quotient Iteration

U1 = (A —p D)7 tug, where pp = p(uy).

A=A, ’}/Emiﬂ)\j#)\|)\—)\j|,

— A
ap = |pk | ; Ck = tan Z(Uk,X).

— |pg — Al

Then, (i1 <oaple  opr1 < (o )2
= asymptotic cubic convergence (as soon as ay, (i, < 1).



Convergence without subspace accelaration

Shift & Invert upr1 = (A —7I)"luy. (s&i)
k
A\ —
Then tan Z(x,u) ~ ( T) ,
Aj—T

where A =\, , X = and |\, — 7| < |\ — 7] all j # jo.

Jo! JO’

Rayleigh Quotient Iteration

U1 = (A —p D)7 tug, where pp = p(uy).

A" = A = asymptotic quadratic convergence.



Convergence without subspace accelaration

Shift & Invert upr1 = (A —7I)"luy. (s&i)
A—T k

Then tan Z(x,u) ~ < ) ,
Aj—T

where A =\, , X = and |\, — 7| < |\ — 7] all j # jo.

Jo! JO’

Rayleigh Quotient Iteration

U1 = (A —p D)7 tug, where pp = p(uy).
A* £ A
With upp1 = (A —p D7y, and wi ;= wi(A—p, D71,

where pp = = asymptotic cubic convergence.




o Accelerated Rayleigh Quotient Iteration

Rational Krylov Sequence method



Accelerated RQI.
Expand the search subspace V = span(V) with

t=(A—-pD1u, (rai)

where p = u*Au and u approximate eigenvector in V.



Accelerated RQI.
Expand the search subspace V = span(V) with

t=(A-pD)lu, (rai)
where p = u*Au and u approximate eigenvector in V.

+ Fast convergence (RQI)

— Search subspace is not a Krylov subspace.



Accelerated RQI.
Expand the search subspace V = span(V) with

t=(A-pD)lu, (rai)
where p = u*Au and u approximate eigenvector in V.
+ Fast convergence (RQI)

— Search subspace is not a Krylov subspace.

Rational Krylov Sequence method allows
efficient computations.



Accelerated RQI.
Expand the search subspace V = span(V) with

t=(A-pD)lu, (rai)
where p = u*Au and U approximate eigenvector in V.

+ Fast convergence (RQI)

— Search subspace is not a Krylov subspace.

Rational Krylov Sequence method allows
efficient computations.

—  Computational costs

S& I. Solving (A — 7I)ugy = Uiy 1 at one LU-dec. in total.

RQI: Solving (A — ppI)ugy = ui4 1 at one LU-dec. each step.

May not be feasible if n large.



o Optimal expansion

Jacobi-Davidson



Optimal expansion

AX = b.

If X, = WM,y is an approximate solution, then the
solution t of At =r;, =b — AX; is the correction of X;.

Expansion: solve (approximately) At=r; for t

~ flexible version of GCR



Optimal expansion

AX = b.

If X, = WM,y is an approximate solution, then the
solution t of At =r;, =b — AX; is the correction of X;.

Expansion: solve (approximately) At=r; for t

~ flexible version of GCR

AX = A\X.

If (9 =p(u),u) is an approximate eigenpair, r = Au — Ju,
then the solution t L u of

I—uu™)(A-I9DA—-uu™)t = —r
is the (first order wrt ||r||2) correction of u.

~ Jacobi-Davidson



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

The Jacobi-Davidson correction equation (jd) can be
viewed as a Newton correction equation for the non-linear
problem

F(\,x)=(1- ||X||%,AX — Xx) = (0,0) :
(jd) can be related to the Jacobian of F': cntl _, ont+l,



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Note. If ¥ = X,
then the system (A — 9I)t = u is ill conditioned.

Whereas, if \ is simple and (¥,u) = (A, X), then the system
(jd) as a system in the space u-t is well-conditioned.

Krylov subspace solvers with initial guess Xg = 0 are suit-
able for solving in ut.

Better conditioning ~~

e faster convergence of the linear solver
(deflation of small eigenvalue),

e more stability.



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Note. If ¥ = X,
then the system (A — 9I)t = u is ill conditioned.

Whereas, if \ is simple and (¥,u) = (A, X), then the system
(jd) as a system in the space u-t is well-conditioned.

There are block-versions to deal with the non-simple eigen-
value case (but the simple eigenvalue version often works
well also in the non-simple case).

Block versions require to know the multiplicity in advance.

Block versions are attractive for computational reasons
(exploit parallelism).



(Approximately) solving for t L u
(I—uu*)(A -9 —-uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Solve approximately with preconditioned iterative linear sol-
ver as GMRES (or MINRES of A* = A).

Often a fixed modest number of steps already lead to fast
convergence.

Issue. How many steps are optimal?
Many steps in the inner loop (to solve (jd)) ~
high quality search subspace of low dimension.

Optimal strategy is available in case A = A*.

Effective strategy (optimal?) is available for the general
case.



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91
t Lu suchthat I—uu*" )M —-uu*)t = —r

<& MEt=-r+4+p5u with gst t Lu
u*M~1r
uM~tu

& t=-— (I — ‘L"l’*—‘\f\j) M~1lr, where w=M"1u.

s t=-MIr+sMlulu = 8=



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91

t L usuch that —uu* )M - uu*)t = —r

& t=-— (I — YJV*—W) M~1r, where w=M"1u.



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91

t L usuch that —uu* )M - uu*)t = —r

& t=-— (I — YJV*—W) M~1r, where w=M"1u.
Expansion by t=-M"1r (d) Davidson '75

Expansion by t = — (I — ‘G’*—L\;) M—1r (o) Olsen '93



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91
t L usuch that —uu* )M - uu*)t = —r

& t=-— (I — YJV*—W) M~1r, where w=M"1u.

Interpretation. If M = A — 91, then u = M~ 1r. Hence,

effective expansion with w = M—1u: RQI expansion.



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91
t L usuch that —uu* )M - uu*)t = —r

& t=-— (I — YJV*—W) M~1r, where w=M"1u.

Interpretation. If M = A — 91, then u = M~ 1r. Hence,

effective expansion with w = M—1u: RQI expansion.

+ expansion equation (jd) better conditioned then (rqi).



norm of JD residual
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5 steps GMRES

10 - Jacobi—Davidson

—. Gen. Davidson

... Inexact Shift & Invert |

10_10 | | | | | | |
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number of outer iterations

A is SHERMANA4 finding the eigenvalue closests to - = 0.5

(which is the fifth smallest eigenvalue),
M is ILU(2) of A — 71
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norm of JD residual

25 steps GMRES |

— Jacobi—-Davidson

—. Gen. Davidson ]

... Inexact Shift & Invert 1

| | |
0 5 10 15 20 25 30 35 40
number of outer iterations

A is SHERMANA4 finding the eigenvalue closests to - = 0.5

(which is the fifth smallest eigenvalue),
M is ILU(2) of A — 71



(Approximately) solving for t L u
(I—uu®)(A -9 —uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91
t L usuch that —uu* )M - uu*)t = —r

& t=-— (I — YJV*—W) M~1r, where w=M"1u.

Precondition (jd) by <I — ‘l’J"*—W) M~—1 where w=M"1u
Preconditioned Krylov requires mult. by

(1 - W“*) M~1(A — 9I)

u*w

with righthand side vector (I— {{&;) M~1r.



(Approximately) solving for t L u
(I—uu®)(A -9 —-uu*)t = —r (jd)

If solved exactly = asymptotic quadratic convergence

Approximate solves. M~ A — 91

Preconditioned Krylov requires mult. by
W u* —1
(I - u*w) M-1(A — 9I)

with righthand side vector (I— Y{{&;) M~1r.

Additional costs for solving (jd).

Per step mult. by I — ‘l’J"*W 1 AXPY, 1 DOT per step.

Per Krylov run for solving (jd): 1 solve of Mw = u.



Jacobi—Davidson

e Subspace method

-+ Accelerated convergence

-+ Steering possibilities

-+ variety of selection methods
— More costly steps

e EXxpansion vectors from JD equation
+ Locally optimal expansion (with exact solves)

+ Asymptotic quadratic convergence possible
(with exact solves)

+ Well-conditioned (when X\ is simple)

+ Fast convergence with moderate accurate solves
+ Preconditioners can be exploited

— Additional costs per step



e Restart

LOCG, Implicitly Restarted Arnoldi Method



FFor ease of discussion ...

Recall that harmonic Ritz vectors are better suited for se-
lecting approximate eigenpairs than Ritz vectors. In our
discussion below, we refer to Ritz pairs, but the discussion
can be extended to harmonic Ritz pairs.

For stability we need a well-conditioned bases of the search
subspace. To ease discussion, we assume the basisvq, ...,V
to be orthonormal and the expansion vector t is to be or-
thonormalised against vi,...,v, to obtain the next basis
vector vy, 1. However, it may be more efficient to have
orthonormality with respect to other non-standard inner
product (as the A-, or M-inner product, ...) or to have
bi-orthogonality.



T he most promising Ritz vectors

If V, =[vq1,...,Vi] spans the search subspace V,
then we can compute k Ritz pairs (¢¥1,U1),..., (%, Uz),
i.e., u; €V, and 9; € C such that

AUj—”L?jUjJ_Vk (j:].,...,k)
or, equivalently, with H; = V,jAVk,

UJ:ka] such that Hkyk:ﬁjyk (j:].,...,k).

The £ most promising Ritz vectors uq,...,u, are the ones
with Ritz value that ‘best’ have the property that we want
our wanted eigenvalue of A to have.

Examples. e Re(¥;) > Re(¥;41) (G =1,...,k—1)
if the eigenvalue of A with largest real part is wanted.
if the eigenvalue of A closest to some target 7 € C is wanted.



T he most promising Ritz vectors

If V, =[vq1,...,Vi] spans the search subspace V,
then we can compute k Ritz pairs (¥1,U1),..., (9, Uz).

For stability, we rather compute the Schur decomposition

of H; rather than the eigenvector decomposition:
here U is k x kK unitary and S is k X k upper triangular.

The Ritz values are the diagonal entries of S: ¢, = 5.

If SZ] = 19] Zj then Y; = UZJ

Theorem. The first £ columns of U form an orthonormal
basis of the space spanned by the eigenvectors yq,...,yy Of
H,; with eigenvalues the top ¢ diagonal entries S11,..., Sy
of S.



T he most promising Ritz vectors

If V, =[vq1,...,Vi] spans the search subspace V,
then we can compute k Ritz pairs (¥1,U1),..., (9, Uz).

For stability, we rather compute the Schur decomposition

of H; rather than the eigenvector decomposition:
here U is k x kK unitary and S is k X k upper triangular.

A Schur decomposition can be re-ordered (using unitary
transforms, Givens rotations) such that the most promising
Ritz values are the top diagonal entries of ‘new’ S-:

Theorem. There is a Schur decomposition of H; such
that the diagonal elements of S appear in prescribed order.

Assumption. uq,...,Uy, are the most promising Ritz vec-
tors and span(ui,...,uy) =span(M, U(:,1:4)).



Restart

dim(V) =k is too high, k = kmax = restart to limit
e high memory demands (to store V41 = [V1,...,VE, Vit1]),

e high computational costs (to orthonormalise t against V).

Simple restart. Take V = span(uy), i.e., Vi = [uq].
Thick resart. Take ¥V = span(uq,...,up) with £ = kmin,
e, Vy=WU(:,1:0).

Why thick restart? i.e., why ¢ = kmnin > 17
e to (partially) maintain super linear convergence

e tO maintain a space that provids a good initial guess when
the search to a next eigenpair is started.

Explanation. The second Ritz pair is likely to converge to the second
eigenpair (recall the convergence proof of the power method). The
main component of the error in Uu; is probably in the direction of up,
etc.



Restart

dim(V) =k is too high, k = kmax = restart to limit
e high memory demands (to store V41 = [V1,...,VE, Vit1]),

e high computational costs (to orthonormalise t against V).

Simple restart. Take V = span(uy), i.e., Vi = [uq].
Thick resart. Take ¥V = span(uq,...,up) with £ = kmin,
e, Vy=WU(:,1:0).

Example. For the case where A* = A.

Locally Optimal CG takes kmnmax = 3 and kqwin = 2 and
restarts with the two dimensional space spanned by the
best Ritz vector and the best Ritz vector from the prece-
ding step.

LOCG expands with a Davidson step, solve t from Mt =r.



Restarting Arnoldi

Arnoldi’'s method requires a start with an Arnoldi relation.
If, with n = hk—l—l,kv
AV, = V11 Hy, =V, H, + Vg4 1er,
then, with U =U(:,1:£), S=S(1:4,1:£), and ¢* = e}U,
AVk [7 = Vk: ﬁg —|— 77Vk_|_1q*. (*)

The f-vector g will not be a multiple of e, and (%) is not
an Arnoldi relation (no Hessenberg matrix).



Restarting Arnoldi

Arnoldi’'s method requires a start with an Arnoldi relation.
If, with n = hk—l—l,kv
AV, = V11 Hy, =V, H, + Vg4 1er,
then, with U=U(:,1:¢), S =5(1:4,1:¢), and ¢* = €}U,
AVk [7 = Vk: ﬁg —|— 77Vk_|_1q*. (*)

The f-vector g will not be a multiple of e, and (%) is not
an Arnoldi relation (no Hessenberg matrix).

Th. [Arnoldi—Schur restart]. There is a unitary matrix
@ (product of Householder reflections) such that

. 0
Eﬁz[c?* 1

w0 o~
[ 5 ] Q@ is(+1)x £ upper Hessenberg.

ng*

Note. Except for vector updates for Vi1 = [V,(UQ),Vi11],
this allows a restart at the cost of only low dim. operations.



Implicitly Restarted Arnoldi Method

More elegant and more efficient and stable implementation
to compute U(:,1:£)Q by Sorenson is based on idea QQR-
algorithm for eigenvalue computation of dense systems.



Implicitly Restarted Arnoldi Method

Select ppyq,...,05—1,1 in C. Let p be the polynomial

p(Q) =(C— ) - (C— ppt1) (¢ € C).

Let vy =p(A)vy. Consider the Arnoldi relation

AV@ = v€+1 E@ with Vg el — \Nll.

Theorem. This Arnoldi relation can be obtained by ap-
plying k — £ steps of the shifted QR-algorithm to H; with
shifts p; finding H,U = U H;, and then use the first ¢
columns of U to form V, =V, U(:,1:4).

IRAM selects u; = ¥, (the less ‘best’ Ritz values). This
gives the desired Arnoldi relation: the columns of V, form
an orthonormal basis of the space spanned by uq,...,uy.
The eigenvalues of H, are precisely d1,...,7,.



Implicitly Restarted Arnoldi Method

eigs.m in Matlab is IRAM (with deflation)

eigs.m is based on ARPACK, a collection of FORTRAN
routines that implements IRAM
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Jacobi-Davidson
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Towards the next eigenpair

Suppose an eigenpair (A, X) has been detected in search
subspace V, i.e., X €V up to the required accuracy.

How to continue the search for the next eigenpair?



Towards the next eigenpair

Suppose an eigenpair (A, X) has been detected in search
subspace V, i.e., X €V up to the required accuracy.

How to continue the search for the next eigenpair?

1) Deflate the search subspace:
— Deflate x form the search subspace V,
that is, remove X-components from V:
normalize x, V = (I — xx*)V.
— Continue the search, with initial search subspace V.
— Select Ritz pairs for the next eigenpair.



Towards the next eigenpair

Suppose an eigenpair (A, X) has been detected in search
subspace V, i.e., X €V up to the required accuracy.

How to continue the search for the next eigenpair?

1) Deflate the search subspace:
— Deflate x form the search subspace V,
that is, remove X-components from V:
normalize x, V = (I — xx*)V.
— Continue the search, with initial search subspace V.
— Select Ritz pairs for the next eigenpair.

Very unstable: (\,x) might/will be recomputed in V;,

where 170 = VY. (It may even prevent the process from
finding a next eigenpair.)



Towards the next eigenpair

Suppose an eigenpair (A, X) has been detected in search
subspace V, i.e., X €V up to the required accuracy.

How to continue the search for the next eigenpair?

1) Deflate the search subspace:

— Deflate x form the search subspace V,
that is, remove X-components from V:
normalize x, V = (I — xx*)V.
— Continue the search, with initial search subspace V.
— Select Ritz pairs for the next eigenpair.

2) Deflate the matrix as well: As 1), but
continue the search with the deflated matrix:

(I — xx*)A(I — xx*)
rather than with A.



Eigenvectors or Schur vectors

Assume the wanted Aq,..., Ay, Ap41,... are simple.
Eigenvectors. Let (), X;,y;) be an eigen triple:

Ax; = \;x; and Yy;A=N\y"
Scale such that ||x;|l2 =1, y;x; = 1. Note y7x; =0 (i # j):

AXg = Xg/\g, YZ(A = /\KY27 and YZX@ = Ig.

Use I X,Y; for deflation.

Note that (Ap41,Xp4+1,Y¢+1) iS an eigen triple of the de-
flated matrix

(I—- X YA - X,Y7)



Eigenvectors or Schur vectors

Assume the wanted Aq,...,Ap, Ayyq,... are simple.
Eigenvectors. Let (), X;,¥;) be an eigen triple:

Ax; = \;x; and Yy ;A =N\y"
Scale such that ||x;|l2 =1, y;x; = 1. Note yix; =0 (i # j):

AXg = Xg/\g, YzA = /\gYE, and YZXg = Ig.

Disadvantage.

— Xy, Yy may be ill-conditioned

— each step requires two search subspaces:
e ) for forming X;
e VV for forming y;.

Stopping criterion checks for convergence of both X; and y;.

Advantage.
— Information on the conditioning of the eigenvalues is

available.



Eigenvectors or Schur vectors

AQy= Q5

Is a partial Schur decomposition if Q is nx¢ orthonormal
and Sy is £ x £ upper triangular. Assume diag(Sy) = Ay.

Theorem. If SEXE = Xg/\g then Xg = Qng.

Use I-Q,Q; for deflation.

Note that 1 is an eigenvector of A with eigenvalue A\q,
and qyy43 is an eigenvector with eigenvalue A,y of the
deflated matrix

I-QQ)A(I-Q/Qp).



Eigenvectors or Schur vectors

AQy= Q5

Is a partial Schur decomposition if Qy is nx¢ orthonormal
and Sy is £ x £ upper triangular. Assume diag(Sy) = Ay.

Theorem. If Sng = Xg/\g then Xg = Qng.

Advantage.

— Q) is well-conditioned.
— per step only one search subspace V is needed.

Disadvantage. Generally span(Qy) # span(Yy).

— Only “weak’” information on the left eigenvector available
(i.p. "weak” information on conditioning eigenvalues):
X, may be in V (sufficiently accurate), while y; is not in V.



Deflation with Schur vectors

De approach based on Schur vectors (for deflation and
computing Schur vectors) is the most popular one.

In JD, this leads to the following JD correction equation:

(I - [Qg, ul[Qy, ul*) (A — 9D (I — [Qq, ul[Qp, u] )t = —r
for determing the expansion for the search space for searching
for q€_|_1: u= q€_|_1.

Recall that enhancing the conditioning is one of the benifits
of including a projection in the ‘Shift and Invert’ equation.
Including Qy in the projections amplifies this effect. Note
that the solution t is orthogonal to Q, and the search
subspace gets automatically expanded with vectors L Q.



Deflation with Schur vectors

De approach based on Schur vectors (for deflation and
computing Schur vectors) is the most popular one.

IRA uses the deflated matrix
I-QQ)A(I-Q/Q7)

in an implicit way:

It keeps the columns of Qy in the search subspace (V is not
deflated), putting these columns as first vectors in the or-
thonormal matrix for the search subspace: V4 ; = [Qy, V].
Since Vi1 ; L Qg and Avg ; is orthogonalized also against
Q to obtain viy 41, the same vector v; ;11 would have
been obtained by expansion using the deflated matrix.
For extraction. IRA uses H =V AV. This interaction ma-
trix equals the interaction matrix for the deflated matrix.



Deflating Arnoldi’s relation

We want to retain an Arnoldi relation at deflation.

Theorem. If AV, = V1 H, then the following properties
are equivalent

e One of the Ritz vectors u; is an eigenvector.

e A subdiagonal element, say hyyqp, Of Hy is O.

e span(V,) is A-invariant (whence, spanned by eigenvectors).

Idea 1. Replace small subdiagonal elements of H;, say
lhe41.0l <€ by O.

Idea 2. Keep V, in the Arnoldi basis for orthogonalisation,
use V(:,[£+ 1 : k]) for selection (restart).



Deflating Arnoldi’s relation

We want to retain an Arnoldi relation at deflation.

Theorem. If AV, = V1 H, then the following properties

are equivalent
e One of the Ritz vectors u; is an eigenvector.
e A subdiagonal element, say hyyqp, Of Hy is O.

e span(V,) is A-invariant (whence, spanned by eigenvectors).

Idea 1. Replace small subdiagonal elements of H;, say
lhe41.0l <€ by O.

Idea 2. Keep V, in the Arnoldi basis for orthogonalisation,
use V(:,[£+ 1 : k]) for selection (restart).

Note. Idea 1 is unstable and needs stabilisation.



The next transparancies illustrate Jacobi-Davidson with
thick restart and deflation



1. Start: Choose an initial z.
e Set A =[], U=][], V=]].

a.

b.

C.

. Repeat:

V «— ModGS([V]|z]), W «— AV

Compute H — VV*W.

Compute H = QRQ*
with QRQ =1, R upper A,
|R11—’7“ S ‘R22—7'| S

.9 — Ri11, y < Qe1, U «— Vy,

r — ModGSy(Au—Ju).

CIF ||| < tol
o N\ — [A]|Y], U~ [U|u].
o J:[€2| |€d|m(v)],

V—V(QJ), Q«— I, R— J*RJ.
e Goto 2.d.

. Solve (app.) zLU=[U|u]

I-UU)A-9D)(I-UU)z=—r.
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max(dim(span(V))) = 15, after restart dim(V) = 10



Spectrum MHD test problem
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Entire spectrum MHD test problem (n = 416).
Correct eigenvalues () are shown.



Alfvén spectrum
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MHD test problem (n = 416).

Correct eigenvalues (o), target (x).




