
1

National Master Course
Delft University of Technology

Numerical Linear algebra
Multigrid methods

Martin van Gijzen and Gerard Sleijpen

December 14, 2016

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk

ck = Auk, rk+1 = rk − ck

Here ‘Solve’ is some method that approximately solves the

residual equation for u with uk as approximate solution obtained

by the method.

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk

ck = Auk, rk+1 = rk − ck

Examples.
• Iterative refinement: with A = LU + ∆, LUuk = rk

• Gauss–Seidel: (DA + LA)uk = rk

• SSOR, . . .

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk

ck = Auk, rk+1 = rk − ck

• Inner loop: use ℓ steps of, say Gauss–Seidel or GMRES,

to “Solve” Au = rk.

• Inner loop: use, say GMRES, to “Solve” Au = rk

to some fixed relative accuracy, as ‖rk − Auk‖ ≤ 0.1‖rk‖.

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk αk

ck = Auk, rk+1 = rk − ck αk

Accelerations. Find ‘relaxation’ scalars αk for better updates.

• Richardson: αk = α

• Local minimal residuals: select αk to minimise ‖rk+1‖2.

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk αk

ck = Auk, rk+1 = rk − ck αk

Subspace acceleration. Replace ‘uk = Solve(A, rk)’ by

t = Solve(A, rk), uk = Orth(Uk−1, t), Uk = [Uk−1,uk]

‘Orth’ orthogonalises (bi-orth., A
∗
A-orth. . . .) t against Uk−1.

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk αk

ck = Auk, rk+1 = rk − ck αk

Combine approaches
• Nested GCR with preconditioner
...

December 14, 2016 2

National Master Course

Iterative methods (review)
The central idea in most iterative methods for solving Ax = b is

error correction using the residual equation: Au = rk, u is

the error in xk:
Select x0. Compute r0 = b −Ax0

for k = 0, 1, . . . , kmax do %% Outer loop

stop if ‖rk‖ ≤ tol

uk = Solve(A, rk) %% Inner loop

xk+1 = xk + uk

ck = Auk, rk+1 = rk − ck

Alternate between two different ‘Solves’ in consecutive steps.

• Bi-CGSTAB: step k/2 of Bi-CG, LMR

• Multigrid: ‘smooth’ (i.e., ℓ steps of a basic method as Gauss-

-Seidel), apply ‘coarse grid correction’.

December 14, 2016 3

National Master Course

Program Lecture 14

Multigrid

• Basic preconditioners

• Coarse grid correction

• What we didn’t talk about

December 14, 2016 4

National Master Course

Introduction

Multigrid is a solution technique for linear systems from

discretised elliptic equations.

Multigrid methods are quite powerful for classes of problems, in

particular for Poisson problems the complexity is of optimal

order n.

The theory on Multigrid methods is vast. Today we only give a

short introduction and the main ideas.

December 14, 2016 5

National Master Course

Basic preconditioners

In lecture 10 we discussed some basic preconditioners: Jacobi,

Gauss-Seidel, SSOR, and ILU. Although the preconditioners

discussed before can considerably reduce the number of

iterations, they do normally not reduce the mesh-dependency of

the number of iterations.

In the next slides we take a closer look at how basic iterative

methods reduce the error. From the observations we make, we

will develop the idea that is at the basis of one of the fastest

techniques: Multigrid.

December 14, 2016 6

National Master Course

Smoothing Property

Random initial error

December 14, 2016 6

National Master Course

Smoothing Property

Error after 1 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 2 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 3 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 4 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 5 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 6 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 7 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 8 Jacobi iterations

December 14, 2016 6

National Master Course

Smoothing Property

Error after 10 Jacobi iterations

December 14, 2016 7

National Master Course

Smoothing Property
Suppose we apply demped Jacobi with a fixed demping

parameter α (i.e., we apply Richardson iteration to the system

D
−1

Ax = D
−1

b. Here D = DA is the diagonal of A).

If λ is an eigenvalue of the matrix D
−1

A, then the component of

the error in the direction of the eigenvector associated to λ is

multiplied by 1 − αλ: the value of the parameter α determines

what components will be demped.

In many applications (as discr. elliptic PDEs), eigenvalues λ

close to 0 are associated with ‘smooth’ eigenvectors, while the

eigenvectors with large eigenvalues are highly oscillating.

If the eigenvalues of the matrix D
−1

A are in (0, Γ] and α = 1/Γ, then all components
will be demped, but the ones with eigenvalue close to Γ will be be demped most.
If 1

α
< 1

2
Γ, then components with eigenvalues close to Γ get amplified.

December 14, 2016 8

National Master Course

Complementarity

• Error after a few Jacobi iterations has some structure. This

is also the case for the other basic iterative methods.

• Instead of discarding the method, look to complement of its

‘failings’.

How can we best correct errors

that are slowly reduced by basic iterative method?

December 14, 2016 8

National Master Course

Complementarity

• Error after a few Jacobi iterations has some structure. This

is also the case for the other basic iterative methods.

• Instead of discarding the method, look to complement of its

‘failings’.

How can we best correct errors

that are slowly reduced by basic iterative method?

• Slow-to-converge errors are smooth

• Smooth vectors can be accurately represented using fewer

degrees of freedom

December 14, 2016 9

National Master Course

Coarse-Grid Correction

• Smooth vectors can be accurately represented using fewer

degrees of freedom

• Idea: transfer job of resolving smooth components to a

coarser grid version of the problem

• Need:

• Complementary process for resolving smooth

components of the error on the coarse grid

• Way to combine the results of the two processes

December 14, 2016 10

National Master Course

Multigrid

• Relaxation is the name for applying one or a few basic

iteration steps.

• Idea is to correct the approximation after relaxation, x
(1),

from a coarse-grid version of the problem.

• Need interpolation or prolongation map, P, from coarse

grid to fine grid.

• Corrected approximation will be x
(2) = x

(1) + Puc,

• where uc is the solution of the coarse-grid residual problem

and satisfies

(PT
AP)uc = P

T
A(x − x

(1)) = P
T
r
(1).

December 14, 2016 11

National Master Course

Two-grid cycle

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation Relax: x(1)= x(0)+M\ (0)r

• Use a smoothing process (such as Jacobi or

Gauss-Seidel) to eliminate oscillatory errors

• Remaining error satisfies Ae
(1) = r

(1) = b− Ax
(1)

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

Relax: x(1)= x(0)+M\ (0)r

Restriction

• Transfer residual to coarse grid

• Compute P
T
r
(1)

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

Relax: x(1)= x(0)+M\ (0)r

Restriction

Solve: PTAPuc= PTr(1)

• Use coarse-grid correction to eliminate smooth errors

• Best correction uc satisfies
P

T
APuc = P

T
r
(1)

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

• Interpolation

Relax: x(1)= x(0)+M\ (0)r

Restriction Interpolation

Solve: PTAPuc= PTr(1)

• Transfer correction to fine grid

• Compute x
(2) = x

(1) + Puc

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M\ (0)r

Restriction Interpolation

Solve: PTAPuc= PTr(1)

Relax

• Relax once again to remove oscillatory error introduced

in coarse-grid correction

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M\ (0)r

Restriction Interpolation

Solve: PTAPuc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M\ (0)r

Restriction Interpolation

Solve: PTAPuc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

Use an iterative method!

December 14, 2016 11

National Master Course

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid
Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M\ (0)r

Restriction Interpolation

Solve: PTAPuc= PTr(1)

Relax

Recursion!

Apply same methodology to solve coarse-grid problem

December 14, 2016 12

National Master Course

The Multigrid V-cycle

Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax

December 14, 2016 13

National Master Course

Properties of Effective Cycles
• Fast convergence

• Effective reduction of all error components

• On each level, coarse-grid correction must effectively

reduce exactly those errors that are slow to be reduced

by relaxation alone

• Hierarchy of coarse-grid operators resolves relevant

physics at each scale

• Low iteration cost

• Simple relaxation scheme (cheap computations)

• Sparse coarse-grid operators

• Sparse interpolation/restriction operations

December 14, 2016 13

National Master Course

Properties of Effective Cycles
With n the dimension of Ax = b on the finest grid:

• Fast convergence
If x− xk is the error after k multigrid cycles then, typically,

for some ρ ∈ [0, 1), we have

‖x − xk+1‖2 ≤ ρ‖x − xk‖2 for all k

with ρ independent of n, i.e., of the level of the grid.

Recall that ρ for methods as Gauss-Jacobi is of the form

1 − 2
C(A)

and C(A) ∼ n: level dependent, ρ ↑ 1 for n → ∞.

• Low iteration cost

December 14, 2016 13

National Master Course

Properties of Effective Cycles
With n the dimension of Ax = b on the finest grid:

• Fast convergence

‖x − xk+1‖2 ≤ ρ‖x − xk‖2 for all k

• Low iteration cost
The costs per cycle are κn where the value of κ depends on

the relaxation scheme (as, e.g., the number of relaxation

steps) but not on n (the selected number of relaxation steps

is independent of the grid level!)

Total costs to have an error ≤ ǫ are κn | log ǫ|/| log ρ| = O(n).

Typically, ρ ↓ if κ ↑. Challenge: find the optimal balance.

December 14, 2016 14

National Master Course

Choosing Coarse Grids
• No best strategy to choose coarse grids

• Operator dependent, but also machine dependent

• For structured meshes, often use uniform de-refinement

approach

• For unstructured meshes, various weighted independent set

algorithms are often used.

December 14, 2016 15

National Master Course

What didn’t we talk about?

• How do we choose P?

• Number of columns

• Sparsity structure

• Non-zero values

• Choices depend closely on the properties of the relaxation

method

December 14, 2016 16

National Master Course

Concluding remarks about Multigrid

Multigrid works well if the problem

- is grid-based. However, matrix-based Multigrid methods

(Algebraic Multigrid) do exist and are often successful;

- has a smooth solution. An underlying assumption is that the

error can be represented on a coarser grid. Multigrid works

particularly well for Poisson-type problems. For these

problems the number of operations is O(n).

Multigrid can be used as a separate solver, but is often used as

a preconditioner for a Krylov-type method, or for example as

building block in a saddle-point preconditioner.

	Iterative methods (review)
	Program Lecture 14
	Introduction
	Basic preconditioners
	Smoothing Property
	Smoothing Property
	Complementarity
	Coarse-Grid Correction
	Multigrid
	Two-grid cycle
	The Multigrid V-cycle
	Properties of Effective Cycles
	Choosing Coarse Grids
	What didn't we talk about?
	Concluding remarks about Multigrid

