Numerical Linear algebra Multigrid methods

Martin van Gijzen and Gerard Sleijpen

December 14, 2016

1

National Master Course

Delft University of Technology

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Here 'Solve' is some method that approximately solves the residual equation for \mathbf{u} with \mathbf{u}_k as approximate solution obtained by the method.

2

December 14, 2016

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Examples.

- Iterative refinement: with $\mathbf{A} = \mathbf{L}\mathbf{U} + \Delta$, $\mathbf{L}\mathbf{U}\mathbf{u}_k = \mathbf{r}_k$
- Gauss–Seidel: $(\mathbf{D}_A + \mathbf{L}_A)\mathbf{u}_k = \mathbf{r}_k$
- SSOR, ...

December 14, 2016

National Master Course

2

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Select \mathbf{x}_0 . Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ for $k = 0, 1, \dots, k_{max}$ do %% Outer loop stop if $\|\mathbf{r}_k\| \leq \text{tol}$ $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ %% Inner loop $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k$ $\mathbf{c}_k = \mathbf{A}\mathbf{u}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \mathbf{c}_k$

- Inner loop: use ℓ steps of, say Gauss–Seidel or GMRES, to "Solve" $Au = r_k$.
- Inner loop: use, say GMRES, to "Solve" $Au = r_k$ to some fixed relative accuracy, as $||\mathbf{r}_k - Au_k|| \le 0.1 ||\mathbf{r}_k||$.

December 14, 2016

TUDelft

2

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Select \mathbf{x}_0 . Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ for $k = 0, 1, \dots, k_{max}$ do %% Outer loop stop if $\|\mathbf{r}_k\| \leq \text{tol}$ $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ %% Inner loop $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k \alpha_k$ $\mathbf{c}_k = \mathbf{A}\mathbf{u}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \mathbf{c}_k \alpha_k$

Accelerations. Find 'relaxation' scalars α_k for better updates.

- Richardson: $\alpha_k = \alpha$
- Local minimal residuals: select α_k to minimise $\|\mathbf{r}_{k+1}\|_2$.

2

December 14, 2016

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Select \mathbf{x}_0 . Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ for $k = 0, 1, \dots, k_{max}$ do %% Outer loop stop if $||\mathbf{r}_k|| \le \text{tol}$ $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ %% Inner loop $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k \alpha_k$ $\mathbf{c}_k = \mathbf{A}\mathbf{u}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \mathbf{c}_k \alpha_k$

Subspace acceleration. Replace ' $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ ' by

$$\mathbf{t} = \mathsf{Solve}(\mathbf{A}, \mathbf{r}_k)$$
, $\mathbf{u}_k = \mathsf{Orth}(\mathbf{U}_{k-1}, \mathbf{t})$, $\mathbf{U}_k = [\mathbf{U}_{k-1}, \mathbf{u}_k]$

'Orth' orthogonalises (bi-orth., A^*A -orth. ...) t against U_{k-1} .

December 14, 2016

TUDelft

2

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Select \mathbf{x}_0 . Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ for $k = 0, 1, \dots, k_{max}$ do %% Outer loop stop if $\|\mathbf{r}_k\| \leq \text{tol}$ $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ %% Inner loop $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k \alpha_k$ $\mathbf{c}_k = \mathbf{A}\mathbf{u}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \mathbf{c}_k \alpha_k$

Combine approaches

• Nested GCR with preconditioner

December 14, 2016

2

The central idea in most iterative methods for solving Ax = b is error correction using the residual equation: $Au = r_k$, u is

the error in \mathbf{x}_k :

Select \mathbf{x}_0 . Compute $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ for $k = 0, 1, \dots, k_{max}$ do %% Outer loop stop if $||\mathbf{r}_k|| \le \text{tol}$ $\mathbf{u}_k = \text{Solve}(\mathbf{A}, \mathbf{r}_k)$ %% Inner loop $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k$ $\mathbf{c}_k = \mathbf{A}\mathbf{u}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \mathbf{c}_k$

Alternate between two different 'Solves' in consecutive steps.

- Bi-CGSTAB: step k/2 of Bi-CG, LMR
- \bullet Multigrid: 'smooth' (i.e., ℓ steps of a basic method as Gauss-
 - -Seidel), apply 'coarse grid correction'.

December 14, 2016

TUDelft

2

Program Lecture 14

Multigrid

- Basic preconditioners
- Coarse grid correction
- What we didn't talk about

3

A

TUDelft

December 14, 2016

Introduction

Multigrid is a solution technique for linear systems from discretised elliptic equations.

Multigrid methods are quite powerful for classes of problems, in particular for Poisson problems the complexity is of optimal order n.

The theory on Multigrid methods is vast. Today we only give a short introduction and the main ideas.

4

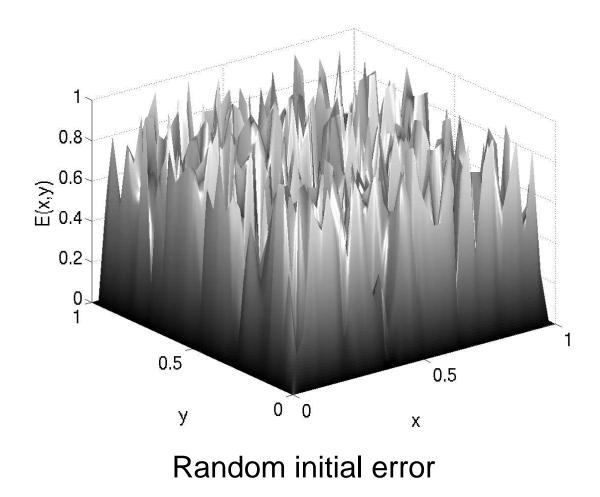
Basic preconditioners

In lecture 10 we discussed some basic preconditioners: Jacobi, Gauss-Seidel, SSOR, and ILU. Although the preconditioners discussed before can considerably reduce the number of iterations, they do normally not reduce the mesh-dependency of the number of iterations.

In the next slides we take a closer look at how basic iterative methods reduce the error. From the observations we make, we will develop the idea that is at the basis of one of the fastest techniques: Multigrid.

December 14, 2016

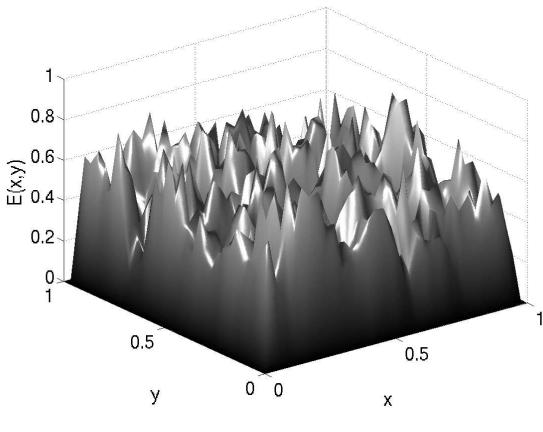
5



TUDelft

6

December 14, 2016

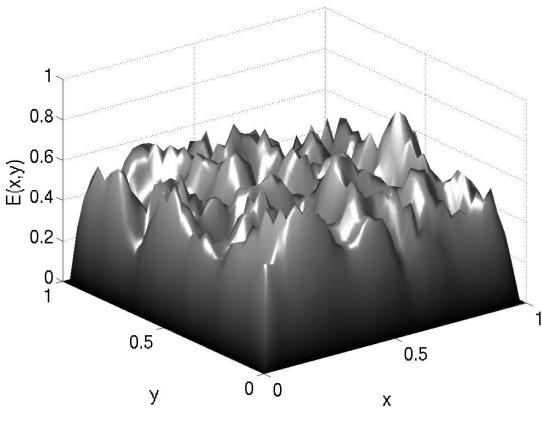


Error after 1 Jacobi iterations

fUDelft

6

December 14, 2016

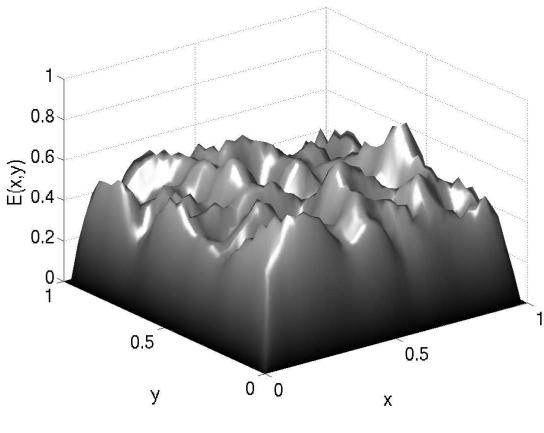


Error after 2 Jacobi iterations

TUDelft

6

December 14, 2016

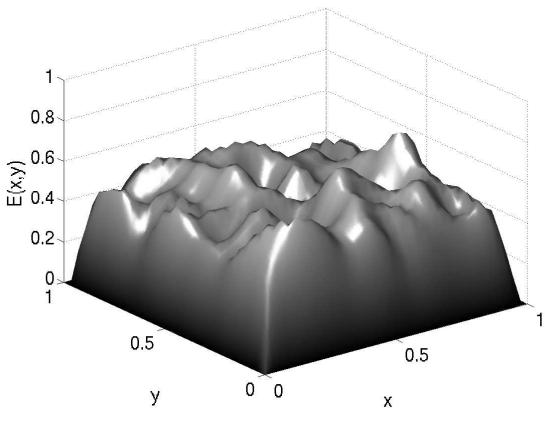


Error after 3 Jacobi iterations

TUDelft

6

December 14, 2016

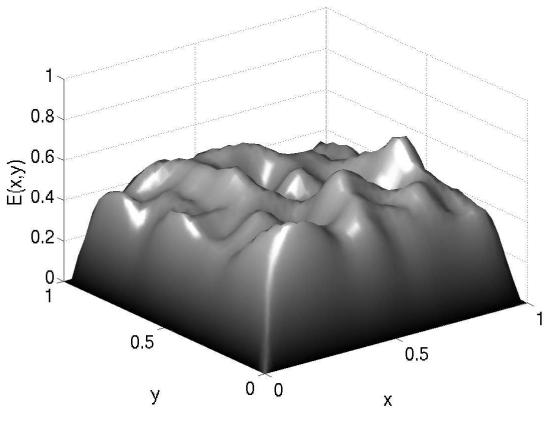


Error after 4 Jacobi iterations

fUDelft

6

December 14, 2016

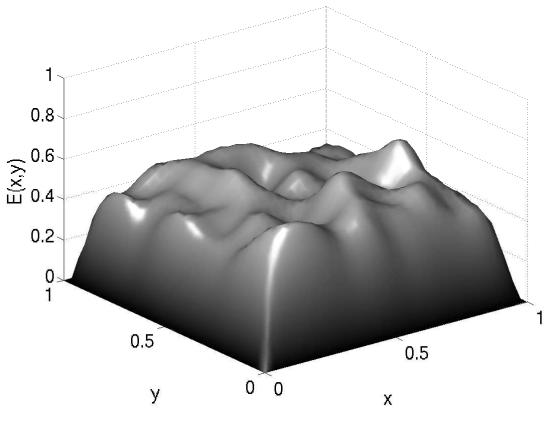


Error after 5 Jacobi iterations

fUDelft

6

December 14, 2016

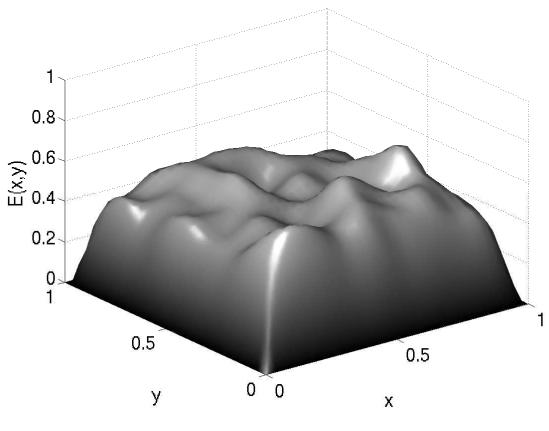


Error after 6 Jacobi iterations

fUDelft

6

December 14, 2016

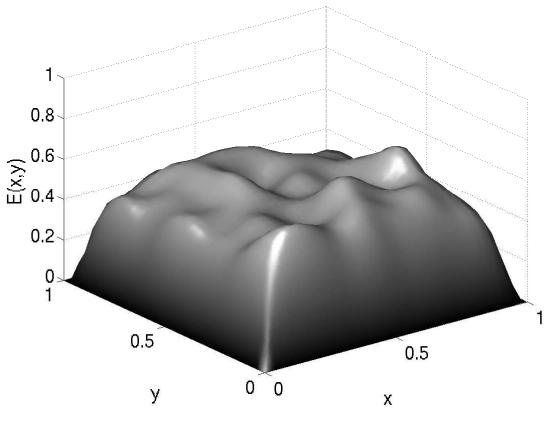


Error after 7 Jacobi iterations

fUDelft

6

December 14, 2016

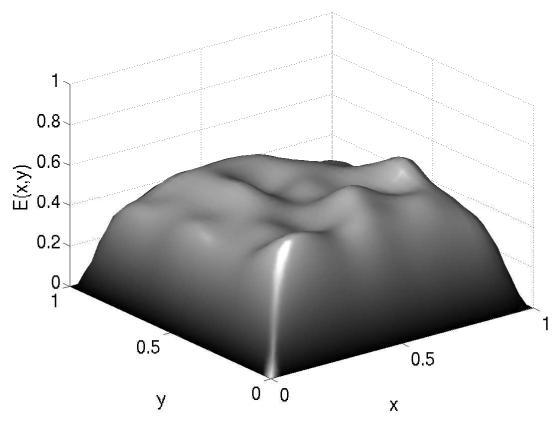


Error after 8 Jacobi iterations

TUDelft

6

December 14, 2016



Error after 10 Jacobi iterations

TUDelft

6

December 14, 2016

Suppose we apply demped Jacobi with a fixed demping parameter α (i.e., we apply Richardson iteration to the system $\mathbf{D}^{-1}\mathbf{A}\mathbf{x} = \mathbf{D}^{-1}\mathbf{b}$. Here $\mathbf{D} = \mathbf{D}_A$ is the diagonal of \mathbf{A}). If λ is an eigenvalue of the matrix $\mathbf{D}^{-1}\mathbf{A}$, then the component of the error in the direction of the eigenvector associated to λ is multiplied by $1 - \alpha \lambda$: the value of the parameter α determines what components will be demped.

In many applications (as discr. elliptic PDEs), eigenvalues λ close to 0 are associated with 'smooth' eigenvectors, while the eigenvectors with large eigenvalues are highly oscillating.

If the eigenvalues of the matrix $\mathbf{D}^{-1}\mathbf{A}$ are in $(0, \Gamma]$ and $\alpha = 1/\Gamma$, then all components will be demped, but the ones with eigenvalue close to Γ will be be demped most. If $\frac{1}{\alpha} < \frac{1}{2}\Gamma$, then components with eigenvalues close to Γ get amplified.

December 14, 2016

7

Complementarity

- Error after a few Jacobi iterations has some structure. This is also the case for the other basic iterative methods.
- Instead of discarding the method, look to complement of its 'failings'.

How can we best correct errors that are slowly reduced by basic iterative method?

December 14, 2016

8

Complementarity

- Error after a few Jacobi iterations has some structure. This is also the case for the other basic iterative methods.
- Instead of discarding the method, look to complement of its 'failings'.

How can we best correct errors that are slowly reduced by basic iterative method?

- Slow-to-converge errors are smooth
- Smooth vectors can be accurately represented using fewer degrees of freedom

8

December 14, 2016

Coarse-Grid Correction

- Smooth vectors can be accurately represented using fewer degrees of freedom
- Idea: transfer job of resolving smooth components to a coarser grid version of the problem
- Need:
 - Complementary process for resolving smooth components of the error on the coarse grid
 - Way to combine the results of the two processes

9

December 14, 2016

Multigrid

- Relaxation is the name for applying one or a few basic iteration steps.
- Idea is to correct the approximation after relaxation, $\mathbf{x}^{(1)}$, from a coarse-grid version of the problem.
- Need interpolation or prolongation map, P, from coarse grid to fine grid.
- Corrected approximation will be $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \mathbf{P}\mathbf{u}_c$,
- where \mathbf{u}_c is the solution of the coarse-grid residual problem and satisfies

$$(\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P})\mathbf{u}_{c} = \mathbf{P}^{\mathsf{T}}\mathbf{A}(\mathbf{x} - \mathbf{x}^{(1)}) = \mathbf{P}^{\mathsf{T}}\mathbf{r}^{(1)}.$$

December 14, 2016

TUDelft

10

December 14, 2016

National Master Course

11

Multigrid Components

Relaxation

Relax: $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \mathbf{M} \setminus \mathbf{r}^{(0)}$

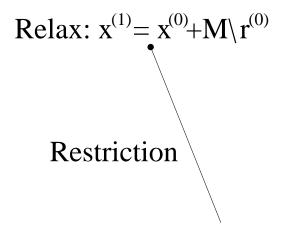
- Use a **smoothing process** (such as Jacobi or Gauss-Seidel) to eliminate oscillatory errors
- Remaining error satisfies $Ae^{(1)} = r^{(1)} = b Ax^{(1)}$

December 14, 2016

11

Multigrid Components

- Relaxation
- Restriction



- Transfer residual to coarse grid
- Compute $\mathbf{P}^{T}\mathbf{r}^{(1)}$

11

National Master Course

December 14, 2016

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction

Relax:
$$x^{(1)} = x^{(0)} + M \setminus r^{(0)}$$

Restriction
Solve: $P^{T}APu_{c} = P^{T}r^{(1)}$

- Use coarse-grid correction to eliminate smooth errors
- Best correction \mathbf{u}_c satisfies

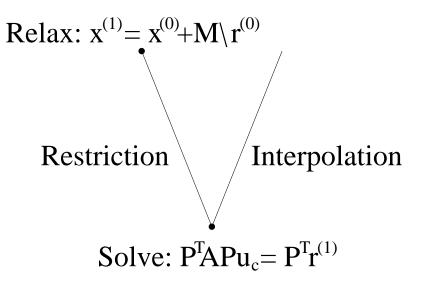
$$\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}\mathbf{u}_{c}=\mathbf{P}^{\mathsf{T}}\mathbf{r}^{(1)}$$

December 14, 2016

11

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid
 Correction
- Interpolation



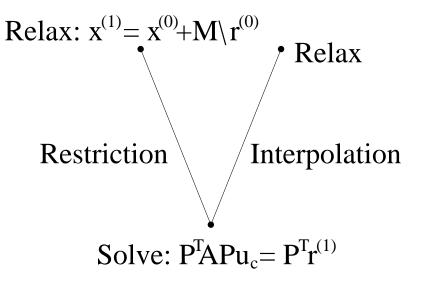
- Transfer correction to fine grid
- Compute $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \mathbf{P}\mathbf{u}_c$

11

December 14, 2016

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation
- Relax once again to remove oscillatory error introduced in coarse-grid correction

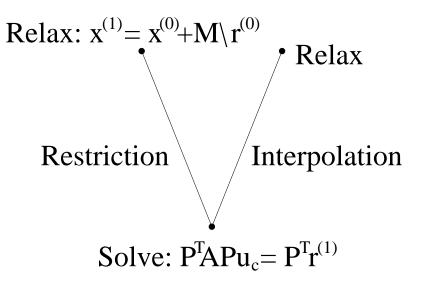


December 14, 2016

11

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation

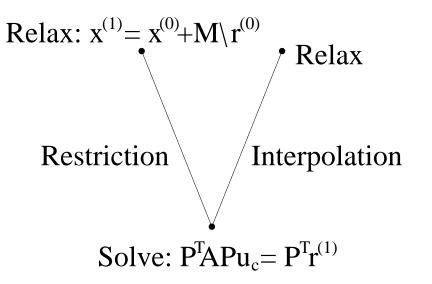


Direct solution of coarse-grid problem isn't practical

11

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation



Direct solution of coarse-grid problem isn't practical Use an iterative method!

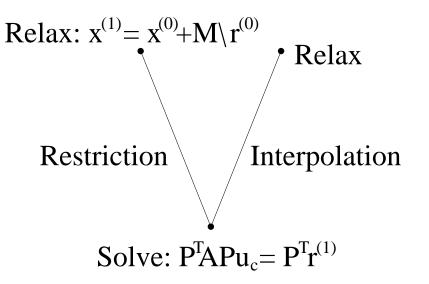
December 14, 2016

fUDelft

11

Multigrid Components

- Relaxation
- Restriction
- Coarse-Grid Correction
- Interpolation
- Relaxation



Recursion!

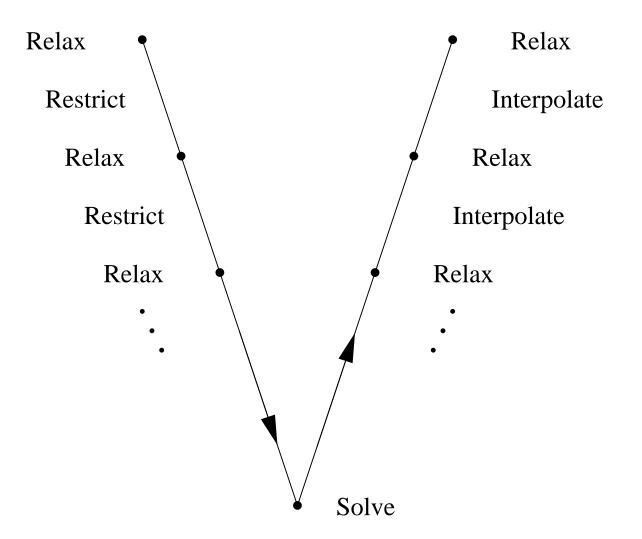
Apply same methodology to solve coarse-grid problem

December 14, 2016

National Master Course

11

The Multigrid V-cycle



December 14, 2016

12

Properties of Effective Cycles

• Fast convergence

- Effective reduction of all error components
- On each level, coarse-grid correction must effectively reduce exactly those errors that are slow to be reduced by relaxation alone
- Hierarchy of coarse-grid operators resolves relevant physics at each scale
- Low iteration cost
 - Simple relaxation scheme (cheap computations)
 - Sparse coarse-grid operators
 - Sparse interpolation/restriction operations

December 14, 2016

13

Properties of Effective Cycles

With *n* the dimension of Ax = b on the finest grid:

• Fast convergence

If $\mathbf{x} - \mathbf{x}_k$ is the error after k multigrid cycles then, typically, for some $\rho \in [0, 1)$, we have

$$\|\mathbf{x} - \mathbf{x}_{k+1}\|_2 \le \rho \|\mathbf{x} - \mathbf{x}_k\|_2$$
 for all k

with ρ independent of n, i.e., of the level of the grid.

Recall that ρ for methods as Gauss-Jacobi is of the form $1 - \frac{2}{C(\mathbf{A})}$ and $C(\mathbf{A}) \sim n$: level dependent, $\rho \uparrow 1$ for $n \to \infty$.

• Low iteration cost

13

December 14, 2016

Properties of Effective Cycles

With *n* the dimension of Ax = b on the finest grid:

• Fast convergence

$$\|\mathbf{x} - \mathbf{x}_{k+1}\|_2 \le \rho \|\mathbf{x} - \mathbf{x}_k\|_2$$
 for all k

Low iteration cost

The costs per cycle are κn where the value of κ depends on the relaxation scheme (as, e.g., the number of relaxation steps) but not on n (the selected number of relaxation steps is independent of the grid level!)

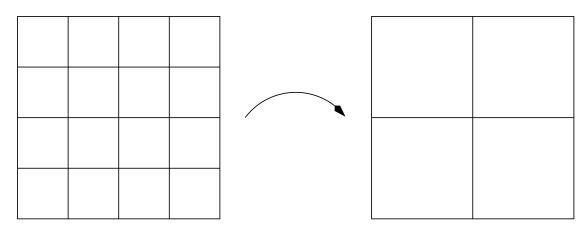
Total costs to have an error $\leq \epsilon$ are $\kappa n |\log \epsilon| / |\log \rho| = \mathcal{O}(n)$. Typically, $\rho \downarrow$ if $\kappa \uparrow$. Challenge: find the optimal balance.

December 14, 2016

13

Choosing Coarse Grids

- No *best* strategy to choose coarse grids
- Operator dependent, but also machine dependent
- For structured meshes, often use uniform de-refinement approach



• For unstructured meshes, various weighted independent set algorithms are often used.

December 14, 2016

14

What didn't we talk about?

- How do we choose P?
 - Number of columns
 - Sparsity structure
 - Non-zero values
- Choices depend closely on the properties of the relaxation method

Concluding remarks about Multigrid

Multigrid works well if the problem

- is grid-based. However, matrix-based Multigrid methods (Algebraic Multigrid) do exist and are often successful;
- has a smooth solution. An underlying assumption is that the error can be represented on a coarser grid. Multigrid works particularly well for Poisson-type problems. For these problems the number of operations is O(n).

Multigrid can be used as a separate solver, but is often used as a preconditioner for a Krylov-type method, or for example as building block in a saddle-point preconditioner.

16

December 14, 2016