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Computational Science

• Design and analysis of numerical methods that are

robust, accurate, efficient and versatile

• Focus on a large class of problems (as linear equations,
least square problems, eigenvalue problems, . . . )
• Focus on one (class of) numerical method(s)

Scientific Computing

• Design and analysis of numerical methods that are

accurate and efficient

• specifically for one family of practical problems only
(as Navier Stokes, electronics, . . . )
• Combines several methods, methods that are most suitable
for specific subproblems. Find optimal parameters.
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Computational Science

• Design and analysis of numerical methods that are

robust, accurate, efficient and versatile

• Focus on a large class of problems (as linear equations,
least square problems, eigenvalue problems, . . . )
• Focus on one (class of) numerical method(s)

Scientific Computing

• Design and analysis of numerical methods that are

accurate and efficient

• specifically for one family of practical problems only
(as Navier Stokes, electronics, . . . )
• Combines several methods, methods that are most suitable
for specific subproblems. Find optimal parameters.

As we will learn today, problems from SC may lead to

interesting new classes of problems in CS.



Program

• Multigrid (PDEs)

• Compressed Sensing (MRI)

• Model order reduction (Electronics)

• Relax to the max (QCD)
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Sparse reconstruction

With A an n× n matrix and b an n-vector: Ax? = b.

Suppose for J ⊂ {1,2, . . . , n} only b(J ) is available.

Can we solve (∗) A(J , :)x = b(J ) to obtain x??

Here we use Matlab notation.



Sparse reconstruction

With A an n× n matrix and b an n-vector: Ax? = b.

Suppose for J ⊂ {1,2, . . . , n} only b(J ) is available.

Can we solve (∗) A(J , :)x = b(J ) to obtain x??

Generally, no:

x? + y solves (∗) for any y ∈ N (A(J , :))

and for the least norm solution xLN we may have that

‖xLN‖2 ¿ ‖x?‖2.
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However, in some applications it is known that

‖x?‖0 ≡#{i | x?
i 6= 0} ¿ n,

the solution vector x? is sparse, d-sparse, where d ≡ ‖x?‖0.



Sparse reconstruction

With A an n× n matrix and b an n-vector: Ax? = b.

Suppose for J ⊂ {1,2, . . . , n} only b(J ) is available.

Can we solve (∗) A(J , :)x = b(J ) to obtain x??

However, in some applications it is known that

‖x?‖0 ≡#{i | x?
i 6= 0} ¿ n,

the solution vector x? is sparse.

Idea. Solve min ‖x‖0 such that A(J , :)x = b(J ).

Is xmin = x??



Compressed sensing: an example

Let n = 2m and let x? be such that ‖x?‖0 = 3.

Can we “sense” x? by only inspecting a few coordinates?

Select J ⊂ {1, . . . , n} randomly such that |J | = 8.

a) Take x(J ) ≡ x?(J ) and x is zero elsewhere.

b) View x? as a function on {1,2, . . . ,2m}.
Let A = F be the Fourier transform, b = Ax? = x̂?.

Find x such that ‖x‖0 = 3 and x̂(J ) = x̂?(J ).

What is the probability that x = x??

If |J | = 1 we would already know that x? 6= 0

J random to avoid aliasing.
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Note that in a) A = I.
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What is the probability that x = x??

Conclusion. Depending on A the idea might work.



Compressed sensing: an example

Let n = 2m and let x? be such that ‖x?‖0 = 3.

Can we “sense” x? by only inspecting a few coordinates?

Select J ⊂ {1, . . . , n} randomly such that |J | = 8.

a) Take x(J ) ≡ x?(J ) and x is zero elsewhere.

b) View x? as a function on {1,2, . . . ,2m}.
Let A = F be the Fourier transform, b = Ax? = x̂?.

Find x such that ‖x‖0 = 3 and x̂(J ) = x̂?(J ).

What is the probability that x = x??

In, for instance MRI, A is a 2 (or 3) dimensional Fourier transform.
The MRI scanner measures b, the Fourier transform of the (discre-
tized) density function x of water in the scanned tissue. Measuring
b only partially would reduce the scanning time (by a factor |J |/n).
With respect to, for instance, an appropriate wavelet basis, x is sparse,
i.e., ‖x‖0 ¿ n. However the value of ‖x‖0 is unknown.



Sparse reconstruction

Idea. Solve min ‖x‖0 such that A(J , :)x = b(J ).

‖x‖0 is not a norm and leads to mathematical problems.

Alternative:

Solve min ‖x‖1 such that A(J , :)x = b(J ).



Sparse reconstruction

xmin ≡ argmin{‖x‖1 | x ∈ Rn st A(J , :)x = A(J , :)x?}

For A = F (1,2, or 3-d), d < k < n and random

J ⊂ {1, . . . , n}, |J | = k, consider the following statement.

Statement.

For all x? with ‖x?‖0 = d, we have that x? = xmin.

Theorem. The statement holds with high probability,

where the probability depends on the ratios d : k : n.

No such result if ‖ · ‖1 Ã ‖ · ‖2!



Sparse reconstruction

xmin ≡ argmin{‖x‖1 | x ∈ Rn st A(J , :)x = A(J , :)x?}

For A = F (1,2, or 3-d), d < k < n and random

J ⊂ {1, . . . , n}, |J | = k, consider the following statement.

Statement.

For all x? with ‖x?‖0 = d, we have that x? = xmin.

Theorem. The statement holds with high probability,

where the probability depends on the ratios d : k : n.

Typical conditions: if k
d ≥ 1

µ ln n
d, then the probability that

the statement is not correct is less than 2 exp(−kµ). µ is

some fix constant (as µ = 0.003) independent of d, k, n.



Sparse reconstruction

xmin ≡ argmin{‖x‖1 | x ∈ Rn st A(J , :)x = A(J , :)x?}

For A = F (1,2, or 3-d), d < k < n and random

J ⊂ {1, . . . , n}, |J | = k, consider the following statement.

Statement.

For all x? with ‖x?‖0 = d, we have that x? = xmin.

Theorem. The statement holds with high probability,

where the probability depends on the ratios d : k : n.

Expanation. Let V ⊂ Rn be a random k-dim. subspace.

Let x ∈ Rn with the orthogonal component xV in V. Then

Prob

(∣∣∣∣∣1−
n

k

‖xV ‖22
‖x‖22

∣∣∣∣∣ > 2ε

)
≤ 2exp(−k/ε2).

There are only a ‘few’ d-sparse vectors: all d-sparse vec-

tors are likely to be “sensed” in a random k dimensional

subspace.



Sparse reconstruction

xmin ≡ argmin{‖x‖1 | x ∈ Rn st A(J , :)x = A(J , :)x?}

For A = F (1,2, or 3-d), d < k < n and random

J ⊂ {1, . . . , n}, |J | = k, consider the following statement.

Statement.

For all x? with ‖x?‖0 = d, we have that x? = xmin.

Theorem. The statement holds with high probability,

where the probability depends on the ratios d : k : n.

In practice b̃ ≡ A(J , :)x? + δb is measured with ‖δb‖2 ≤ δ.

Solve min ‖x‖1 such that ‖A(J , :)x− b̃‖2 ≤ δ.

The following statement holds with high probability.

Statement. For some modest constant κ, we have

‖x? − xmin‖2 ≤ κδ for all x? with ‖x?‖0 = d.



Sparse reconstruction

Some general observations.

• Similar results for some other classes of matrices.

• Whether minimisation resolves x? depends on A(J , :)
(A = I not solvable, A = F solvable)

and the number of non-zeros of x?, not on the values
or the location (index) of the non-zeros.

• Some randomness (in selecting J ) is required.

• A (that is, A(J , :)) will not be sparse
(otherwise b is sparse if x is sparse).

Nevertheless c = A(J , :)u might be efficiently computable
(if A = F then FFT can be used
to compute c′ ≡ Au and c = c′(J )).



Constrained 1-norm minimisation

Let A be an k × n matrix, k < n and b a k-vector.

With f(x) ≡ 1
2‖b−Ax‖22 and g(x) ≡ ‖x‖1, solve

xmin = argmin{g(x) | x ∈ Rn st f(x) = δ2}

Standard approach. Find λ ∈ R (Lagrange multiplier)

and x (solution) that solve the Lagrange equation

∇f(x) + λ∇g(x) = 0 & f(x) = δ2.

Note that, with the solution τ = λ, the minimizer x of f + τg,

xmin = argmin{f(x) + τg(x) | x ∈ Rn}
also solves the Lagrange equation.

However, g is not differentiable.



Constrained 1-norm minimisation

Let A be an k × n matrix, k < n and b a k-vector.

With f(x) ≡ 1
2‖b−Ax‖22 and g(x) ≡ ‖x‖1, solve

xmin = argmin{g(x) | x ∈ Rn st f(x) = δ2}

Find appropriate τ > 0. Solve

xmin = argmin{ρ(x) | x ∈ Rn} with ρ ≡ f + τg.

Note that with g(x) = ‖x‖22 gives Tykhonov regularisa-

tion.



1-norm regularisation

Let A be an k × n matrix, k < n and b a k-vector.

With f(x) ≡ 1
2‖b−Ax‖22 and g(x) ≡ ‖x‖1, solve

xmin = argmin{ρ(x) | x ∈ Rn} with ρ ≡ f + τg.



1-norm regularisation

Let A be an k × n matrix, k < n and b a k-vector.

With f(x) ≡ 1
2‖b−Ax‖22 and g(x) ≡ ‖x‖1, solve

xmin = argmin{ρ(x) | x ∈ Rn} with ρ ≡ f + τg.

Example. Soft threshholding

sτ(b)j ≡ sign(bj) max(|bj| − τ,0)

solves the minimisation for A = I:

sτ(b) = argmin{12‖b− x‖22 + τ‖x‖1 | x ∈ Rn}
Proof. Find tmin = argmin{12|β − t|2 + τ |t| | t ∈ R}.



1-norm regularisation

Let A be an k × n matrix, k < n and b a k-vector.

With f(x) ≡ 1
2‖b−Ax‖22 and g(x) ≡ ‖x‖1, solve

xmin = argmin{ρ(x) | x ∈ Rn} with ρ ≡ f + τg.

Towards an iterative solution method.
Let x0 be an approximate solution.
For updating x0, use Taylor expansion to bound f .

∇f(x) = −A∗(b−Ax). Select an L ≥ λmax(A∗A). Then

f(x) ≤ f(x0) + (x− x0,∇f(x0)) + 1
2
L‖x− x0‖22

= d0 + 1
2
L‖x− x′0‖22,

where

d0 ≡ f(x0)− 1
2L
‖∇f(x0)‖22, x′0 ≡ x0 − 1

L
∇f(x0).

In particular,

min ρ(x) ≤ d0 + min{1
2
L‖x− x′0‖22 + g(x)} ≤ ρ(x0).

The second term is minimised by x1 ≡ sτ/L(x
′
0).



Iterative Shrinkage-Thresholdong Algorithm

Find an L > λmax(A∗A).

ISTA

Select an x0. x = x0

Repeat

r = b−Ax, s = A∗r

x ← x + 1
Ls

x ← sτ/L(x)



Iterative Shrinkage-Thresholdong Algorithm

Find an L > λmax(A∗A).

ISTA

Select an x0. x = x0

Repeat

r = b−Ax, s = A∗r

x ← x + 1
Ls

x ← sτ/L(x)

Observations.
• If τ = 0, then s0(x) = x and ISTA = Richardson

with damping parameter 1
L for solving A∗Ax = A∗b.



Iterative Shrinkage-Thresholdong Algorithm

Find an L > λmax(A∗A).

ISTA

Select an x0. x = x0

Repeat

r = b−Ax, s = A∗r

x ← x + 1
Ls

x ← sτ/L(x)

Observations.
• It can be proved that, for some modest κ,

ρ(xk)− ρ(x?) ≤ κ/k.

Often, ISTA appears to converge slowly (conform upperbound).

• Convergence estimate does not depend on λmin(A∗A).



Iterative Shrinkage-Thresholdong Algorithm

Find an L > λmax(A∗A).

ISTA

Select an x0. x = x0

Repeat

r = b−Ax, s = A∗r

x ← x + 1
Ls

x ← sτ/L(x)

Observations.
• FastISTA combines the last two iterates

for O(1/k2) convergence.
Combination based on upperbounds for ρ(xk)− ρ(x?).



Iterative Shrinkage-Thresholdong Algorithm

Find an L > λmax(A∗A).

ISTA

Select an x0. x = x0

Repeat

r = b−Ax, s = A∗r

x ← x + 1
Ls

x ← sτ/L(x)

Observations.
• Subspace acceleration may not work well: a basis trans-

form of the x may spoil the sparsity of the vectors.



Program

• Multigrid (PDEs)

• Compressed Sensing (MRI)

• Model order reduction (Electronics)

• Relax to the max (QCD)



Airplanes can vibrate



Vibrations are fuelled by turbulence in the airflow



Flutter

Possibly with a dramatic effect (within a fraction of a second)



Erasmus bridge, Rotterdam, Netherlands

Dynamical properties affected by rain



Effects of a large earthquake in Taiwan



Electrical Circuits.

This system contains also non-linear elements

linearization Ã linear system



Dynamical systems. The (given) quantities (A,E,b,c, d)

define a linear, time invariant, dynamical system:




E
•
x (t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

A (state space) and E are n× n matrices

n is the number of states or order of the system.

E may be non-singular, but (A,E) is a regular pencil

s Ã det(sE−A) not trivial on C.

b (input), c (output) n-vectors,

d ∈ R, t Ã u(t) given real-valued (control) function on R.

The function t Ã y(t) is the function of interest:
the output of the system.



{
E ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

Examples

Electrical Circuits.

Characteristics.

• In electronic chips: n is huge, 104 ∼ 108.

• A, E are sparse, G is not structured.

• Entries of A and E do not vary smoothly,

neighboring entries may differ order of magnitudes.



{
E ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

Examples

Power systems.



{
E ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

Examples

Technical constructions.

Structural mechanics Ã
set of partial differential equation.

Discretization of the spatial part Ã
dynamical system.

Input from forcing acting on certain points,

Interested in the response at certain points (output).



{
E ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

b is n× 1, u is real-valued single input

c is n× 1, y is real-valued single outut:

Single Input Single Output (SISO) system.

In practice.

b is n×m, u is Rm-valued multiple input

c is n× p, y is Rp-valued multiple outut:

Multiple Input Multiple Output (MIMO) system.

Non-linear (apply linearization), n in the range 104 − 108.

A, E are sparse, and (often) unstructured.
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{
E ẋ(t) = Ax(t) + bu(t)

y(t) = c∗x(t) + d u(t)

Transfer function

Analysis strategy. Apply Laplace transform:

for s ∈ C, consider u(t) ≡ est (t ∈ R)

then x(t) = (sE−A)−1b est

and y(t) =
[
c∗(sE−A)−1b + d

]
est

H(s) ≡ c∗(sE−A)−1b + d

is the transfer function of the system.



H(s) ≡ c∗(sE−A)−1b + d

The transfer function describes

how the system responses at the output

to an harmonic oscillation with frequency ω if s = 2πiω.



[Martins Lima Pinto 96]
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H(s) ≡ c∗(sE−A)−1b + d

The transfer function describes

how the system responses at the output

to an harmonic oscillation with frequency ω if s = 2πiω.

In a design stage,

depending on the application, oscillations with frequencies

in a certain range have to “damped”

(to avoid flutter, for earthquake resistancy,. . . )

in other ranges have to be “amplified”

(radio receivers, amplifiers, equalizers,. . . )



H(s) ≡ c∗(sE−A)−1b + d

The transfer function describes

how the system responses at the output

to an harmonic oscillation with frequency ω if s = 2πiω.

Computational obstacles.

• n large

• H needed for a wide range of ω (i.e., s = 2πiω ∈ iR),

• preconditioners are hard to include

(preconditioner for A is not a preconditioner for A− sE),

• solutions required for a number of systems

(in a design stage).



H(s) ≡ c∗(sE−A)−1b + d

The transfer function describes

how the system responses at the output

to an harmonic oscillation with frequency ω if s = 2πiω.

Computational obstacles.

• n large

• H needed for a wide range of ω (i.e., s = 2πiω ∈ iR),

• preconditioners are hard to include

(preconditioner for A is not a preconditioner for A− sE),

• solutions required for a number of systems

(when a non-linear system is to be analyzed).



Model Order Reduction

Find a kth order system (Ã, Ẽ, b̃, c̃, d) with k ¿ n such that

• ‖y(t)− ỹ(t)‖ ‘small’ all u

(2-norm, Hankel-norm,. . . )

• preservation of (physical and numerical) properties

(as, stability, passivity,. . . )

• computationally efficient and stable

• cheap measurement for the error

(when constructing reduced system)

◦ preserve structure (from 2nd order system)

◦ realizable

◦ fit in existing simulation software



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

For ease of explanation, in the remainder E = I



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

Find n× k matrices Vk, Wk such that W∗
kVk = Ik.

Project the system

Ã ≡W∗
kAVk, b̃ ≡W∗

kb, c̃ ≡ V∗k c



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

Find n× k matrices Vk, Wk such that W∗
kVk = Ik.

Project the system

Ã ≡W∗
kAVk, b̃ ≡W∗

kb, c̃ ≡ V∗k c

Note that W∗
k (A− σI)Vk = Ã− σIk.

If (Ã− σIk)y = b̃ and xk ≡ Vky ⇒ (A− σI)xk ≈ b and
c∗(A− σI)−1b ≈ c∗xk = c∗Vky = c̃∗y = c̃∗(Ã− σIk)

−1b̃



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

H(s) = c∗(sI−A)−1b + d

|s| large

(sI−A)−1 = s−1(I−s−1A)−1 = s−1(I+s−1A+s−2A2+. . .):

Take

span(Vk) ≡ Kk(A,b) = span(b,Ab,A2b, . . . ,Ak−1b)

Wk = Vk (Arnoldi) or, span(Wk) ≡ Kk(A
∗,c) (bi-Lanczos)



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

H(s) = c∗(sI−A)−1b + d

|s| small

(sI−A)−1 = (sA−1 − I)−1A−1 = −(I + sA−1 + . . .)A−1:

Take span(Vk) ≡ Kk(A
−1,A−1b)

Wk = Vk or, span(Wk) ≡ Kk(A
−∗,c)



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

H(s) = c∗(sI−A)−1b + d

|s− s0| small

(sI−A)−1 = ((s− s0)I + (s0I−A))−1 =

((s− s0)(s0I−A)−1 + I)−1(s0I−A)−1



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

Arnoldi

• Vk orthonormal, spans Kk((s0I−A)−1, (s0I−A)−1b).

• Take Wk = Vk. Project onto Vk.

Variants: block versions,

Rational Krylov Sequence,

two-sided versions bi-Lanczos

. . .



Approaches

MOR Eigenvalue computation

• Balanced truncation,

Hankel norm appr.

• QZ (dense systems)

(n not large)

• Padé approximation,

moment matching

• Bi-Lanczos & Arnoldi

• Modal approximation • (Jacobi–)Davidson

Modal approximations.

Compute Vk, Wk k × n matrices with columns

appropriate right, left, respectively eigenvectors A,.



H(s) = c∗(sI−A)−1b + d

Dominant poles

λ is pole of H if lims→λ |H(s)| =∞.

Poles are eigenvalues of A: for non-zero vi, wi

Avi = λivi right eigenvectors

w∗iA = λiw
∗
i left eigenvectors

Select (vi,wi, λi) such that

• λi 6= λj (i 6= j)

• b =
∑

βivi, c =
∑

γiwi

• scaled such that w∗ivi = 1 if w∗ivi 6= 0.



H(s) = c∗(sI−A)−1b + d

Dominant poles

λ is pole of H if lims→λ |H(s)| =∞.

Poles are eigenvalues of A: for non-zero vi, wi

Avi = λivi right eigenvectors

w∗iA = λiw
∗
i left eigenvectors

H(s) =
n′∑

i=1

Ri

s− λi
+ d, Ri = (c∗vi)(w

∗
ib)

Ri are the residuals. Note. Ri = 0 if w∗ivi = 0.



H(s) = c∗(sI−A)−1b + d

Dominant poles

λ is pole of H if lims→λ |H(s)| =∞.

Poles are eigenvalues of A: for non-zero vi, wi

Avi = λivi right eigenvectors

w∗iA = λiw
∗
i left eigenvectors

H(s) =
n′∑

i=1

Ri

s− λi
+ d, Ri = (c∗vi)(w

∗
ib)

A pole λi is ‘dominant’ if
|Ri|

|Re(λi)|
is large.

(determine the high peaks in the Bode plot.)



Practice.

# dominant poles ¿ # poles < # eigenvalues ≤ n

Approach. Project onto (and work in) the spaces span-

ned by the eigenvectors associated with dominant poles: b

onto the space spanned by appropriate right eigenvectors,

c onto the space of appropriate left eigenvectors.
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Practice.

# dominant poles ¿ # poles < # eigenvalues ≤ n

Approach. Project onto (and work in) the spaces span-

ned by the eigenvectors associated with dominant poles: b

onto the space spanned by appropriate right eigenvectors,

c onto the space of appropriate left eigenvectors.

How to compute the dominant poles and associated

eigenvectors?



H(s) =
n′∑

i=1

Ri

s− λi
+ d, Ri = (c∗vi)(w

∗
ib)

[Aguirre 93, Varga 95, Green Limebeer 95]

A pole λi is ‘dominant’ if
|Ri|

|Re(λi)|
is large.

[Hamdan Nayfeh 89]

In our convergence analysis:

A pole λi is dominant if |Ri| > |Rj| for all j.

Definition. (two-sided) Rayleigh quotient

ρ(x,y) = ρ(A,x,y) ≡ y∗Ax

y∗x
provided y∗x 6= 0

Note that y∗x can be 0



H(s) =
n′∑

i=1

Ri

s− λi
+ d, Ri = (c∗vi)(w

∗
ib)

[Aguirre 93, Varga 95, Green Limebeer 95]

A pole λi is ‘dominant’ if
|Ri|

|Re(λi)|
is large.

[Hamdan Nayfeh 89]

In our convergence analysis:

A pole λi is dominant if |Ri| > |Rj| for all j.

Definition. (two-sided) Rayleigh quotient

ρ(x,y) = ρ(A,x,y) ≡ y∗Ax

y∗x
provided y∗x 6= 0

ρ(x) ≡ ρ(x,x)



Dominant Pole Algorithm

Select s0 ∈ C and tol > 0.

Set ν = 1, s = s0
While ν > tol repeat

Solve (sI−A)x = b for x

Solve (sI−A)∗y = c for y

s = y∗Ax
y∗x

ν = max(‖Ax− sx‖2, ‖y∗A− sy∗‖2)
end while



Dominant Pole Algorithm

Select s0 ∈ C and tol > 0.

Set ν = 1, s = s0
While ν > tol repeat

Solve (sI−A)x = b for x

Solve (sI−A)∗y = c for y

s = y∗Ax
y∗x

ν = max(‖Ax− sx‖2, ‖y∗A− sy∗‖2)
end while

Note. For the moment, assume
exact LU-decomposition sI−A is feasible.



DPA is Newton ⇒
if sk → λi, then convergence is quadratic

Theorem. Av = vλ and w∗A = λw∗, w∗v = 1.

Apply DPA. Then

xk → v ⇔ yk → w ⇔ sk+1 = ρ(xk,yk)→ λ.

If convergence, then quadratic convergence:

‖v− xk+1‖ ≤ κ ‖v− xk‖2 ‖w− yk‖2

‖w− yk+1‖ ≤ κ ‖v− xk‖2 ‖w− yk‖2



[Ostrowski 59, Parlett 74]

Two-sided Rayleigh quotient iteration:

x and y right, left, respectively, eigenvector approximations

use, not only

the best available eigenvalue approximation s ≡ ρ(x,y)

but also the best available eigenvector approximation

x ← (sI−A)−1x and y∗ ← y∗(sI−A)−1,

s =
y∗Ax

y∗x

[Ostrowski 59, Parlett 74]

Theorem. Cubic convergence.



•

Part of the complex plane

Dominant pole −0.456± 8.96i (white • ).
DPA converges for s0 in red and yellow
RQI converges for s0 in red and light blue
Dark blue convergence to less dominant poles.



Why is the convergence region of DPA so much bigger

than the convergence region of RQI?

Heuristics. Recal Ri = (c∗vi)(w
∗
ib).

DPA keeps using info from b and c:

x = (sI−A)−1b, y∗ = c∗(sI−A)−1

RQI convergences faster (cubically)

but tends to converge to eigenvalue closest to s0.



Selecting initial shift s0

DPA: s0 =
c∗Ab

c∗b
. Reasonable? What if c∗b = 0?

RQI: x0 = b, y0 = c. Reasonable? What if c∗b = 0?

Recall that b represents input, c represents output.

Therefore,

Select s0.

In RQI: x0 = (s0I−A)−1b, y∗0 = c∗(s0I−A)−1.

We stop if ν ≤ 10−8.



[Rommes Martins 06]

Example. Brazilian Interconnect Power System.

A and E are of dimension n = 13,251, E is singular.

Both b and c have only one non-zero entry, c∗Eb = 0.



•

Average number
of steps
DPA: 7.2
RQI: 6.0

In red region
DPA: 6.1
RQI: 5.9

Part of the complex plane

Dominant pole −20.5± 1.1i (white • ).
DPA converges for s0 in red and yellow
RQI converges for s0 in red and light blue
Dark blue convergence to less dominant poles.



Conclusions

• DPA has better global convergence than RQI to domi-

nant poles for a large class of dynamical systems:

DPA has (much) larger convergence areas for dominant po-

les than RQI, becoming larger with increasing dominance.

• The local cubic convergence of RQI versus the local

quadratic convergence of DPA leads to a small advantage

for RQI in iteration steps (typically, 10%–20%)

• The computational costs per step are ≈ the same

(DPA slightly more efficient).



Program

• Multigrid (PDEs)

• Compressed Sensing (MRI)

• Model order reduction (Electronics)

• Relax to the max (QCD)



Problem

Ax=b

Compute efficiently a x̃ with residual accuracy ε (i.e., ‖b−Ax̃‖ ≤ ε)

Properties of the square matrix A:

• The matrix A is expensive to store (dimension, density)

but

• we have a device that approximates Au by Aη(u) s.t.

Aη(u) = Au + f with ‖f‖ ≤ η ‖A‖ ‖u‖,
η is the relative accuracy of the matrix-vector mult.,

• is more costly for higher ‘rel. accuracy’ (i.e., smaller η).



Aη(u) = Au + f with ‖f‖ ≤ η ‖A‖ ‖u‖
Computation Aη(u) more costly for smaller η

Examples.

• In floating point arithmetic: η = O(rel. machine prec.)

• Schurcomplement systems

• Matrix sign functions

...



Schurcomplement system

Fields of applications.

[Bouras Fraysse 00,
Bouras Fraysse Giraud 00]

◦ Domain decomposition

[van den Eshof S. van Gijzen 03]◦ Oceanography

◦ Optimisation

◦ CFD

◦ Electronic circuit simulation

...



Schurcomplement system


 H B∗1
B2 −C





y

z


 =


g

0




is equivalent to the Schurcomplement system

(i.e., eliminate y, solve for z, as in Lecture 11):

Schurcomplement

( C + B2 H−1 B∗1
︸ ︷︷ ︸

A

) z

x

= B2 H−1g
︸ ︷︷ ︸

b

.

To compute c = Au with relative accuracy η, use suffi-

ciently many steps of an iterative meth. to solve Hũ = B∗1u

higher accuracy (=smaller η) requires more iterative steps.



Matrix sign functions

Fields of applications.

[Cundy van den Eshof
Frommer Krieg
Lippert Schäfer 04]

◦ Quantum Chromodynamics (QCD)

Computational challenge.

•Monte Carlo simulations:

very high dimensional linear systems are repeatedly solved

b random, A some randomness.



[Neuberger 98]

Lattice QCD and the overlap operator

A = ρΓ5 + sign(H), where ρ ≥ 1, Γ5 ≡
[
I 0
0 −I

]

Properties H

• H is explicitly available (coeff. from stochastic process)

• H is sparse and Hermitian (H∗ ≡ H̄
T

= H)

• H is high-dimensional (164 ·12 ≈ 0.79106, 324 ·12 = 12.5106)

• sign(H) ≡ V sign(Λ)V∗, where H = VΛV∗, Λ diagonal

and sign(λ) ≡ λ/|λ|

Properties A.

• Γ5 H 6= HΓ5, • A∗ = A 6> 0, • No preconditioner for A.

No problem computing Hu. What about Au?

Via sign(H)u? Computing eigensystem H is not feasable.



[van den Eshof Frommer Lippert Schilling van den Vorst 02]

Computing the sign of a matrix
sign(λ) = λ√

λ2

sign(H) = H(H2)−
1
2 = Hf(H2), where f(λ) ≡ 1/

√
λ

Determine scalars ωi, τi (explicit solutions are available)

such that f(λ) ≈
m∑

i=1

ωi
1

λ + τi
⇒

sign(H)u ≈
m∑

i=0

ωi H (H2 + τi I)
−1u

︸ ︷︷ ︸
Solve with CG
(multishift CG)

Computation Au to high accuracy is very costly.
Costs are higher if higher accuracy is required.



Ax = b

Approach

• Use a Krylov subspace method
only MVs and basic linear algebra operations (AXPYs, DOTs)

• Relax the MV: replace Auk by Aηk(uk)

• Relax to the max,
i.e., apply a relaxation strategy that selects ηk ‘as large as
possible’ (ηk step dependent) without

◦ disturbing the speed of convergence

◦ spoiling the residual accuracy (i.e. ‖b−Ax̃‖ . ε)

Note. If the MV changes per step

⇒ not a Krylov subspace method



Conclusions

• ‘Relax to the max’ strategy exists.

For optimal profits

• Choose your basis for expansion wisely

• Use internal updates (low quality)

and external updates (high quality)



Subspace method

Repeat until convergence, i.e., ‖rk‖ ≤ tol

1) Expand the subspace Uk = span(Uk)

with the vector Auk. Here, Uk ≡ [u1,u2, . . . ,uk].

Note. The vector Auk may be modified
(orthogonalised against . . . ) to form uk+1

2) Extract some suitable approximate solution xk ∈ Uk

The basis vectors uj of Uk that are being multiplied by A to

expand the search subspace form the basis for expansion.

The basis vectors wj of Uk that are actually used to update

xk, xk =
∑

j≤k wjαj, form the basis for extraction.

Methods as GMRES use the same basis for expansion and

extraction, methods as GCR, CG use different basis.



Extraction strategies (optimal methods)

• Galerkin

xk ∈ Uk such that b−Axk ⊥ Uk

Particular implementations

General A: FOM
Symmetric A: ORTHORES, CG

Properties: may have many high peaks in convergence curve

• Minimal residuals

xk ∈ Uk such that ‖b−Axk‖ is minimal

Particular implementations

General A: GMRES, GCR
Symmetric A: MINRES, CR

Properties: monotonic convergence curve



Aη(u) = Au + f with ‖f‖ ≤ η ‖A‖ ‖u‖
Computation Aη(u) more costly for smaller η

Are highly accurate MVs required?

Question: How to “relax to the max”

that is, how to select η ‘as large as possible’ without

◦ disturbing the speed of convergence

◦ spoiling the residual accuracy (i.e. ‖b−Ax̃‖ . ε)



Analysis strategy

Our analysis is based on estimating the residual gap:

res.-gapk ≡
∣∣∣∣∣ ‖b−Axk︸ ︷︷ ︸

‖ − ρk

∣∣∣∣∣ , where ρk = ‖rk‖2
true residual

with xk and ρk as computed by the method.

On convergence (i.e., ρk ≤ ε), the residual gap determines

the residual accuracy, i.e, the size of ‖b−Axk‖2.
• Computed residual norms ρk are available

and in many methods the computed residual rk as well.

• Computation of true residuals would require
additional MVs. Expensive!

We focus on the accuracy (residual gap). Strategies that

allow high accuracy (i.e., small res. gap) also appear not

to hamper convergence (experimental evidence only).



Analysis strategy

Our analysis is based on estimating the residual gap:

res.-gapk ≡
∣∣∣∣∣ ‖b−Axk︸ ︷︷ ︸

‖ − ρk

∣∣∣∣∣ , where ρk = ‖rk‖2
true residual

with xk and ρk as computed by the method.

On convergence (i.e., ρk ≤ ε), the residual gap determines

the residual accuracy, i.e, the size of ‖b−Axk‖2.
• Computed residual norms ρk are available

and in many methods the computed residual rk as well.

• Computation of true residuals would require
additional MVs. Expensive!

Note that

| ‖b−Axk‖2 − ρk | ≤ ‖(b−Axk)− rk‖2.



Examples. For methods as CG, Bi-CGSTAB,. . . :

...

while ...

. . .

c = Au, compute α

x ← x + αu

r ← r− αc

In computation: c = Au + f with ‖f‖ ≤ η‖A‖ ‖u‖ ⇒
res.-gapk ≤

∑ ‖αjfj‖ ≤ ‖A‖
∑

ηj‖αjuj‖
≤ C(A)

∑
ηj‖αjcj‖ ≤ C(A)

∑
ηj(‖rj‖+ ‖rj+1‖),

where we sum over all j = 1, . . . , k.



Examples. For methods as CG, Bi-CGSTAB,. . . :

...

while ...

. . .

c = Au, compute α

x ← x + αu

r ← r− αc

In computation: c = Au + f with ‖f‖ ≤ η‖A‖ ‖u‖ ⇒
res.-gapk ≤

∑ ‖αjfj‖ ≤ ‖A‖
∑

ηj‖αjuj‖
≤ C(A)

∑
ηj‖αjcj‖ ≤ C(A)

∑
ηj(‖rj‖+ ‖rj+1‖),

where we sum over all j = 1, . . . , k.

Relaxation strategy. Take ηj = ε/(‖rj‖+ ‖rj+1‖).
Then res.-gapk ≤ kε.



Examples. For methods as CG, Bi-CGSTAB,. . . :

...

while ...

. . .

c = Au, compute α

x ← x + αu

r ← r− αc

In computation: c = Au + f with ‖f‖ ≤ η‖A‖ ‖u‖ ⇒
res.-gapk ≤

∑ ‖αjfj‖ ≤ ‖A‖
∑

ηj‖αjuj‖
≤ C(A)

∑
ηj‖αjcj‖ ≤ C(A)

∑
ηj(‖rj‖+ ‖rj+1‖),

where we sum over all j = 1, . . . , k.

Relaxation strategy. Take ηj = ε/(‖rj‖+ ‖rj+1‖).
Then res.-gapk ≤ kε.

However, when computing cj, rj+1 is unknown.



Examples. For methods as CG, Bi-CGSTAB,. . . :

...

while ...

. . .

c = Au, compute α

x ← x + αu

r ← r− αc

In computation: c = Au + f with ‖f‖ ≤ η‖A‖ ‖u‖ ⇒
res.-gapk ≤

∑ ‖αjfj‖ ≤ ‖A‖
∑

ηj‖αjuj‖
≤ C(A)

∑
ηj‖αjcj‖ ≤ C(A)

∑
ηj(‖rj‖+ ‖rj+1‖),

where we sum over all j = 1, . . . , k.

Relaxation strategy. Take ηj = ε/‖rj‖.
Then res.-gapk ≤ ε

∑
peakj, where peakj ≡ 1 +

‖rj+1‖
‖rj‖ .



If the convergence does not exhibit peaks, is the choice

ηj =
ε

ρj
with ρj = ‖rj‖

a good relaxation strategy (also for methods that are not

of the type as on the previous transparancy)? Here, ρj is

the norm of the residual as computed by the method.

A simple example. In example

A = diag(1 : 3 : 300)− 13.6156 I, C(A) ≈ 4.6102.

Aη(u) ≡ Au + f with f random such that ‖f‖ = η ‖A‖ ‖u‖

Expansion at step j by Aηj(vj) with ηj as above

(vj is the expansion vector as selected by the method).



GMRES

k versus ‖true residual‖ —
k versus computed residual norm · · ·

ε = 10−12, ηk = ε/ρk

A = diag(1 : 3 : 300)− 13.6156 I

C(A) ≈ 4.6102
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CG

k versus ‖true residual‖ —
k versus computed residual norm · · ·

ε = 10−12, ηk = ε/ρk

A = diag(1 : 3 : 300)− 13.6156 I

C(A) ≈ 4.6102
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ORTHORES

k versus ‖true residual‖ —
k versus computed residual norm · · ·

ε = 10−12, ηk = ε/ρk

A = diag(1 : 3 : 300)− 13.6156 I

C(A) ≈ 4.6102
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GCR

k versus ‖true residual‖ —
k versus computed residual norm · · ·

ε = 10−12, ηk = ε/ρk

A = diag(1 : 3 : 300)− 13.6156 I

C(A) ≈ 4.6102
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AUk + Fk with ‖fj‖ ≤ ηj‖A‖‖uj‖, xk = Ukyk,

‖(b−Axk)− rk‖ = ‖Fkyk‖2 ≤
∑

j≤k

ηj ‖A‖ ‖uj‖ |e∗jyk|



AUk + Fk with ‖fj‖ ≤ ηj‖A‖‖uj‖, xk = Ukyk,

‖(b−Axk)− rk‖ = ‖Fkyk‖2 ≤
∑

j≤k

ηj ‖A‖ ‖uj‖ |e∗jyk|

Observations.

◦ xk = U yk =
∑

j≤k uj(e
∗
jyk):

uj(e
∗
jyk) is the component of xk in the direction uj.

◦ In all methods:

AUk + Fk copied from algorithm

yk requires some manipulation (without A)

Analysis assumes that the MV is the only source of errors



AUk + Fk with ‖fj‖ ≤ ηj‖A‖‖uj‖, xk = Ukyk,

‖(b−Axk)− rk‖ = ‖Fkyk‖2 ≤
∑

j≤k

ηj ‖A‖ ‖uj‖ |e∗jyk|

Observations.

◦ xk = U yk =
∑

j≤k uj(e
∗
jyk):

uj(e
∗
jyk) is the component of xk in the direction uj.

◦ In all methods:

AUk + Fk copied from algorithm

yk requires some manipulation (without A)

Analysis assumes that the MV is the only source of errors

• Estimate is ‘sharp’ (no specific directions in perturbs).

• Growth in ηj (j ↑) to be compensated by small ‖uj(e
∗
jyk)‖.



AUk + Fk with ‖fj‖ ≤ ηj‖A‖‖uj‖, xk = Ukyk,

‖(b−Axk)− rk‖ = ‖Fkyk‖2 ≤
∑

j≤k

ηj ‖A‖ ‖uj‖ |e∗jyk|

Observations (cont.).

• xk depends on the extraction method, not on basis Uk



AUk + Fk with ‖fj‖ ≤ ηj‖A‖‖uj‖, xk = Ukyk,

‖(b−Axk)− rk‖ = ‖Fkyk‖2 ≤
∑

j≤k

ηj ‖A‖ ‖uj‖ |e∗jyk|

Observations (cont.).

• xk depends on the extraction method, not on basis Uk

However, on termination xk ≈ x ⇒ no essential difference

between Galerkin xGal
k and minimal residual xmr

k .

Hence,

Uk ill-conditioned ⇒ some ‖uj‖ |e∗jyk| large



Basis used for expansion exact MV

• Orthogonal basis uk ⊥ uj

Particular implementations:

FOM ORTHORES Galerkin

GMRES MINRES Min. res.

general A symmetric A

• ‘A-Orthogonal’ basis Auk ⊥ uj

Particular implementations:

CG Galerkin

GCR CR Min. res.

general A symmetric A

Note. ‘A-Orthogonal’ basis guaranteed to be

a (well-conditioned) basis only if A positive definite.



res-gapk ≤
∑

j≤k

µj, µj ≡ ηj ‖A‖ ‖uj‖ |e∗jyk|

Estimates for exact MVs & orthogonal Uk

Galerkin: µj ≤ ηj C(A)
(
‖rmr

j ‖+ ‖rGal
k ‖

)
FOM

ORTHORES

Min. res.: µj ≤ ηj C(A) ‖rmr
j ‖ GMRES



res-gapk ≤
∑

j≤k

µj, µj ≡ ηj ‖A‖ ‖uj‖ |e∗jyk|

Estimates for exact MVs & orthogonal Uk

Galerkin: µj ≤ ηj C(A)
(
‖rmr

j ‖+ ‖rGal
k ‖

)
FOM

ORTHORES

Min. res.: µj ≤ ηj C(A) ‖rmr
j ‖ GMRES

Theoretical results are sharp (experimental evidence)

If A is positive definite

[Simoncini Szyld, 2003]Alternative analysis:

Galerkin:
min. res.:

µj ≤ ηj C(A) ‖rmr
j ‖



res-gapk ≤
∑

j≤k

µj, µj ≡ ηj ‖A‖ ‖uj‖ |e∗jyk|

Estimates for exact MVs & A-orth. Uk

Galerkin: µj ≤ ηj C(A)
(
‖rGal
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Theoretical results are sharp (experimental evidence)

If A is positive

Galerkin:
min. res.:

µj ≤ ηj C(A) ‖rmr
j ‖2



But

MV is not exact . . .

and rounding errors play a role



Example from QCD

DW = CONF6.0-0.0014x4.2000 (Matrix market, n = 3072)
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ε = 10−8, ηk = ε ε = 10−8, ηk = ε/ρk

k versus ‖true residual‖
CG —
ORTHORES − · −·
ηk · · ·

A ≡ Γ5 DW , b normalized random



(Amplification right picture)
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(coincides with Rutishauser)
ηk · · ·



Aη(u) = Au + f such that ‖f‖ ≤ η ‖A‖ ‖u‖

Total costs of MVs

Assume: costs Aη(u) are ∼ − log η.

Graphical interpretation total costs MVs if convergence unaltered

ηj = ε ηj = ε/‖rj‖
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logε

j versus
log‖rj‖

TC ∼ −
∑

j≤k

log ε TC ∼ −
∑

j≤k

(log ε− log ‖rj‖)
Total costs MVs (TC) ∼ size blue area



In case convergence accelerates:

+ reduces number of iteration steps :-)

limitted profit from relaxing MVs :-(



In case convergence accelerates:

+ reduces number of iteration steps :-)

limitted profit from relaxing MVs :-(

Alternatives: nest & relax MVs

Basic scheme:

for k = 0,1, . . .

Compute uk (e.g., s.t. Auk ≈ rk)

xk+1 = xk + uk

either rk+1 = rk −Auk

In “Compute uk”, relax:

A
η
(i)
k

(. . .) with η
(i)
k = ξk

‖rk‖
‖r(i)k ‖

.

In “update rk”, relax:

Aηj(uk) with ηk = ε
‖r0‖
‖rk‖



Aη(u) = Au + f ‖f‖ ≤ η ‖A‖ ‖u‖

Estimated costs with nesting & relaxed MV

ξ` l

j versus log‖rj‖
TC ∼ size blue area (inner loop)

+ size red area (outer loop)
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Alternative: nest & relax MVs

Inner iteration with (another) inexact solver.

Leads to a small number of outer iterations.

Advantages
• Only a few expensive MVs
◦ Modest accumulation of ‘errors’ MV

Drawback
• Loss of optimality Krylov solver ⇒ more MVs in total

Solvers for the ‘outer iteration’ must be ‘flexible’ (i.e.
must cope with variable preconditioners), e.g.:

• GMRES Repeated
• Flexible GMRES
. . .

(See also Hernández et al 00, Golub et al 00, Carpentieri 02)



[van den Eshof S van Gijzen 03]

Schurcomplement system

Example from Oceanography (barotropic flow)

[
r L−C α L̃

−L̃∗ M

] [
ψ
ζ

]
=

[
g
0

]
.

is equivalent to the Schur complement system

( M + α L̃
∗
(r L−C)−1L̃

︸ ︷︷ ︸
A

) ζ

x

= L̃
∗
(r L−C)−1g

︸ ︷︷ ︸
b

.

To get Au with relative accuracy η, use sufficiently many
steps of Bi-CGSTAB to solve (rL−C)ũ = L̃u

In example n = 26455. Costs ∼ # Bi-CGSTAB steps



[van den Eshof S van Gijzen 03]
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Costs versus log‖rj‖
+ + + GMRES, MV fixed prec. ε = 10−6
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∗∗ FGMRES(GMRES) & relaxed MV

◦◦ GMRESR(GMRES) & relaxed MV



[Cundy van den Eshof Frommer Krieg Lippert Schäfer 04]

Matrix sign function

(ρ I + Γ5 sign(H))x = b

[Jagels Reichel 94]

Solve with Shifted Unitary Minimal Residuals

(efficient variant of GMRES for shifted unitary matrices)

and variants:

SUMR (SUMR),
relaxed SUMR (relSUMR),
relaxed GMRESR(relaxed SUMR) (relGMRESR(SUMR))

In example, on a 84 lattice (n = 49152), ρ = 1.22.



[Cundy van den Eshof Frommer Krieg Lippert Schäfer 04]
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SUMR
relSUMR
relGMRESR(SUMR)

On 16 processors of ALiCE (cluster computer Wuppertal)

Time in seconds, improvement factor in brackets

SUMR 2510 relSUMR 1500 (1.67) relGMRESR(SUMR) 576 (4.36)



[Cundy van den Eshof Frommer Krieg Lippert Schäfer 04]

Matrix sign function

(ρ I + Γ5 sign(H))x = b

[Jagels Reichel 94]

Solve with Shifted Unitary Minimal Residuals

(efficient variant of GMRES for shifted unitary matrices)

and variants:

SUMR (SUMR),
relaxed SUMR (relSUMR),
relaxed GMRESR(relaxed SUMR) (relGMRESR(SUMR))

In example, on a 164 lattice (n = 786432), ρ = 1.06.

On 16 processors of ALiCE (cluster computer Wuppertal)

Time in seconds, improvement factor in brackets

SUMR 31550 relSUMR 18840 (1.67) relGMRESR(SUMR) 5974 (5.28)


