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Program Lecture 2

• LU-decomposition

• Basic algorithm

• Cost

• Stability

• Pivoting

• Cholesky decomposition

• Sparse matrices and reorderings
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Gaussian elimination

Consider the system

Ax =




2 1 1

4 1 0

−2 2 1







x1

x2

x3


 =




1

−2

7




Then we can reduce this system to upper triangular form

1. Subtract 2× equation one from equation two

2. Subtract −1× equation one from equation three

3. Subtract −3× the second equation from the third
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Gaussian elimination (2)

The resulting equivalent system is

Ux =




2 1 1

0 −1 −2

0 0 −4







x1

x2

x3


 =




1

−4

−4




This system can be solved by back substitution .

If we have a different right-hand side, do we have to do the same

operations? Or can we save what we did?
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Gaussian elimination (3)
The first reduction step was ‘Subtract 2× equation one from

equation two’. The so-called elementary matrix E2,1 that

performs this operations is

E2,1 ≡




1 0 0

−2 1 0

0 0 1


 = I− 2 e2 e∗1.

Here, e1 ≡ (1, 0, 0)T,

. . .

Multiplying A with this matrix yields

E2,1A =




2 1 1

0 −1 −2

−2 2 1


 .
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Gaussian elimination (4)
The second reduction step“Subtract −1× equation one from

equation three’ is equivalent with multiplying with the matrix

E3,1 ≡




1 0 0

0 1 0

1 0 1


 = I + e3 e∗1

and ’Subtract −3× the second equation from the third’ is

equivalent with multiplying with the matrix

E3,2 ≡




1 0 0

0 1 0

0 3 1


 = I + 3 e3 e∗2.
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Gaussian elimination (5)
Hence, we can write

E3,2 E3,1 E2,1 A = U

Notice that the matrix E3,2 E3,1 E2,1 is a product of lower

triangular matrices and therefore lower triangular.

The above equation can also be written as

A = E−1
2,1 E−1

3,1 E−1
3,2 U

Since the inverse of a lower triangular matrix is lower triangular,

the matrix E−1
2,1 E−1

3,1 E−1
3,2 must be lower triangular:

L ≡ E−1
2,1 E−1

3,1 E−1
3,2, A = LU
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Gaussian elimination (6)
It is easy to check that

E−1
2,1 =




1 0 0

2 1 0

0 0 1


 , E−1

3,1 =




1 0 0

0 1 0

−1 0 1


 , E−1

3,2 =




1 0 0

0 1 0

0 −3 1


 ,

and that

L = E−1
2,1 E−1

3,1 E−1
3,2 =




1 0 0

2 1 0

−1 −3 1
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Gaussian elimination (6)
It is easy to check that (I− α ei e

∗
j)

−1 = I + α ei e
∗
j (i 6= j)

E−1
2,1 =




1 0 0

2 1 0

0 0 1


 , E−1

3,1 =




1 0 0

0 1 0

−1 0 1


 , E−1

3,2 =




1 0 0

0 1 0

0 −3 1


 ,

and that

L = E−1
2,1 E−1

3,1 E−1
3,2 =




1 0 0

2 1 0

−1 −3 1




(I + α ei e
∗
j )(I + β ek e∗ℓ ) = (I + α ei e

∗
j + β ek e∗ℓ ) (j 6= k).
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Gaussian elimination (7)

Clearly L is lower triangular, with 1’s on the main diagonal. The

special thing is that the entries below the diagonal are exactly

the multipliers 2, −1, −3 used in the elimination steps.

The example shows that an “LU-decomposition ” can be made

by

• Reducing A to upper triangular form by elementary row

operations, this gives U,

• Storing all the multipliers in a lower triangular matrix L that

has ones on the main diagonal.
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Gaussian elimination algorithm
Given A = (aij) ∈ Cn×n, the following algorithm computes the

LU-factorisation : A = LU.

for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do

η = aik/akk

aik = η

for j = k + 1, . . . , n

aij ← aij − η akj

end for

end for

end for

The element akk is called the kth pivot .
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Some remarks (1)

• The algorithm overwrites the matrix A with the matrix U

(upper triangular part) and the matrix L (strictly lower

triangular part). The main diagonal of L is not stored.

• The numerical stability of the algorithm depends on the size

of the pivots. If a pivot is zero the algorithm breaks down. If

a pivot is close to zero large numerical errors may occur.

• The number of floating point operations to compute the

LU-decomposition is
2

3
n3.
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Some remarks (2)

• A more ’symmetrical’ variant of the LU-decomposition is the

LDU-decomposition . Here D is a diagonal that scales the

main diagonal elements of U to one.

• A system of the form Ax = LUx = b can be solved by

a forward substitution : solve Ly = b for y (y ≡ Ux),

and a back substitution : solve Ux = y for x.

Once the LU-decomposition of A is known, any system with

A can simply be solved by forward and back substitution

with the LU-factors.

• Both the back and forward substitution (algorithms given in

the next two slides) require n2 flops.
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Forward substitution
Given an n× n non-singular lower triangular matrix L = (ℓij) and

b = (bi) ∈ Cn, the following algorithm finds y = (yi) ∈ Cn such

that Ly = b.

Forward substitution algorithm

for i = 1, . . . , n do

yi = bi

for j = 1, . . . , i− 1 do

yi ← yi − ℓij yj

end for

yi ← yi/ℓii

end for
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Backward substitution
Given an n× n non-singular upper triangular matrix U = (uij)

and y = (yi) ∈ Cn, the following algorithm finds x = (xi) ∈ Cn

such that Ux = y.

Back substitution algorithm

for i = n, . . . , 1 do

xi = yi

for j = i + 1, . . . , n do

xi ← xi − uij xj

end for

xi ← xi/uii.

end for
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Round off errors, a bound

Recall

Convention. For A = (aij) and B = (bij) in C
m×n,

• |A| ≡ (|aij |)

• B ≤ A means bij , aij ∈ R, bij ≤ aij (all i, j)
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Round off errors, a bound

Theorem. Let L̂ and Û be the computed LU-factors of the n× n

floating point matrix A. If ŷ is the computed solution of L̂y = b

and x̂ is the computed solution of Ûx = ŷ, then

(A + ∆A)x̂ = b with |∆A| ≤ 3nu |L̂| |Û|+O(u2).

Proof. see Golub and van Loan p.107 for a slightly weaker result

or Exer. 2.16, in our exercise set.
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Round off errors, discussion

(A + ∆A)x̂ = b with |∆A| ≤ 3nu |L̂| |Û|.

• Except for the factor 3n, the bound is sharp.

• A bound on ∆A better than |∆A| ≤ nu |A| is not to be

expected: because (if A is dense) the multiplication Ax in

floating point arithmetic already results in a vector equal to

(A + ∆A)x with ∆A sharply satisfying |∆A| ≤ nu |A| .

• Except for the modest constant 3, the factor

‖ |L̂| |Û| ‖

‖ |A| ‖

appears to characterize the stability of Gaussian elimination .
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Round off errors, discussion (2)
The term |L̂||Û| can be much larger than |A| if a small pivot is

encountered during the elimination process:

Example.

A =


 ǫ 1

1 0




Assignment. Compute the LU factors of A and bound |L| |U|.

Note. Small pivots do not necessarily indicate an ill-conditioned

problem.

Conclusion. Gaussian elimination (without further precautions)

can give arbitrarily poor results, even for well-conditioned

problems. The method may be unstable, depending on A.
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Permutations
The problem in the previous example can of course be solved by

interchanging the rows (or columns). This is a row permutation.

Let ei denote the ith column of the identity matrix I.

A row permuted version of A is given by PA, where

the jth row of the permutation matrix P equals eT
π(j)

and π permutes (1, 2, . . . , n).

The matrix APT is a column permuted version of A.
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Permutations
The problem in the previous example can of course be solved by

interchanging the rows (or columns). This is a row permutation.

Let ei denote the ith column of the identity matrix I.

A row permuted version of A is given by PA, where

the jth row of the permutation matrix P equals eT
π(j)

and π permutes (1, 2, . . . , n).

Note. If Pi ≡ [π(1), . . . , π(n)], then, in MATLAB, A(Pi,:) equals

PA, while A(:,Pi) equals APT.

Exchanging rows (and/or columns) for selecting (large) pivots is

called pivoting .
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Partial pivoting
A simple strategy to avoid small pivots is partial pivoting :

• Determine the in absolute value largest element below the

pivot.

• Interchange the corresponding row with the pivot row.

• Eliminate all non-zeros elements below the pivot.

Practical remarks. Interchange the rows in the ‘active’ part of

the matrix as well as the corresponding rows in the already

constructed ‘L-part’.

Define Pi=1:n at the start of the LU-decompostion process and

interchange Pi(i) and Pi(k) whenever row i and row k are

interchanges. Then Pi defines the permutation P.
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Partial pivoting (2)
Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row exchanges.

With partial pivoting, no multiplier is > 1 in absolute value:

‖L‖M ≤ 1, where ‖A‖M ≡ max
i,j
|aij |.
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Partial pivoting (2)
Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row exchanges.

With partial pivoting, no multiplier is > 1 in absolute value:

‖L‖M ≤ 1, where ‖A‖M ≡ max
i,j
|aij |.

In particular, with ρpart(A) ≡ ‖U‖M/‖A‖M ,

we then have ‖ |L̂| |Û| ‖∞ ≤ n2 ρpart(A) ‖A‖∞.

n2 can be repaced by the square of the bandwidth of A.

Note that n3 can be large for high-dimensional systems.
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Partial pivoting (2)
Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row exchanges.

With partial pivoting, no multiplier is > 1 in absolute value:

‖L‖M ≤ 1, where ‖A‖M ≡ max
i,j
|aij |.

In particular, with ρpart(A) ≡ ‖U‖M/‖A‖M ,

we then have ‖ |L̂| |Û| ‖∞ ≤ n2 ρpart(A) ‖A‖∞.

Theorem. We have the sharp bound ρpart(A) ≤ 2n−1.

See, Exer. 2.19.
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Partial pivoting (2)
Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row exchanges.

With partial pivoting, no multiplier is > 1 in absolute value:

‖L‖M ≤ 1, where ‖A‖M ≡ max
i,j
|aij |.

In particular, with ρpart(A) ≡ ‖U‖M/‖A‖M ,

we then have ‖ |L̂| |Û| ‖∞ ≤ n2 ρpart(A) ‖A‖∞.

Theorem. We have the sharp bound ρpart(A) ≤ 2n−1.

Wilkinson’s miracle [1963]. In practise, ρ(A) ≤ 16.
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Partial pivoting (2)
Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row exchanges.

With partial pivoting, no multiplier is > 1 in absolute value:

‖L‖M ≤ 1, where ‖A‖M ≡ max
i,j
|aij |.

In particular, with ρpart(A) ≡ ‖U‖M/‖A‖M ,

we then have ‖ |L̂| |Û| ‖∞ ≤ n2 ρpart(A) ‖A‖∞.

Theorem. We have the sharp bound ρpart(A) ≤ 2n−1.

Note. Computing ‖ |L̂| |Û| ‖∞ = ‖ |L̂| (|Û|1) ‖∞ costs n2 flop.
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Partial pivoting (3)
According to Wilkinson’s miracle, LU-decomposition with partial

pivoting is usually sufficiently stable (a modest factor [n2?] less

stable than the system Ax = b).

The stability can be estimated from ρ(A) (or ‖ |L̂| |Û| ‖∞/‖A‖∞).

In the extremely rare (according to Wilkinson) cases where this

quantity is large, one can switch to a more stable approach:
• Iterative refinement

(using the same “expensive” LU-factors).

• Complete pivoting Th. ρcomp(A) ≤ c
√

n n
1

4
ln n

(where it was conjectured that ρcomp(A) . n).

• Form a QR-decomposition (which is 2× as expensive as

an LU-decomp., but stable. Here Q is unitary, R upper ∆).
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Row scaling

The stability of the system Ax = b can often be improved by

scaling the rows (row equilibration ):

find a diagonal matrix D such that the condition number of the

matrix D−1A is (much) smaller than that of the matrix A and

solve the scaled system

Ãx = b̃ with Ã ≡ D−1A and b̃ ≡ D−1b

using LU-decomposition with partial pivoting.

Example. D = diag(‖e∗1A‖∞, . . . , ‖e∗nA‖∞)
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Symmetric positive definite systems

In many applications the matrix A = (aij) ∈ C
n×n, used in the

linear system Ax = b, is positive definite , that is,

x∗Ax > 0 (x ∈ C
n, x 6= 0).

Note. If A is positive definite, then aii > 0 for all i,

and A is Hermitian , i.e., A = A∗.

For this type of matrices, memory and CPU time can be saved:

since A is Hermitian only the elements aij with i ≤ j have to be

stored in memory.

Moreover, an ‘efficient’ LU-like decomposition exists.



September 27, 2017 24

National Master Course

The Cholesky decomposition
Let A = (aij) be positive definite. Then the following algorithm
computes the Cholesky decomposition A = CC∗ of A,

i.e., C = (cij) ∈ C
n×n is lower triangular and cii > 0 all i.

for k = 1, 2, . . . , n do

akk ← (akk −
k−1∑
p=1

a2
kp)

1/2

for i = k + 1, . . . , n do

aik ← (aik −
k−1∑
p=1

aip akp)/akk

end for

end for

The entry aij is overwritten by cij (i ≥ j).
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The Cholesky decomposition (2)
The Chol. dec. for p.d. matrices has many favourable properties:

• It exists without pivoting.

• C is real if A is real.

• The number of flops for the algorithm is 1
3n3;

both memory and operations are half that of the

LU-decomposition for general matrices.

• As for the LU-decomposition, we have that

(A + ∆A)x̂ = b with |∆A| ≤ 3nu |Ĉ| |Ĉ
∗
|.

The inequality ‖ |C| |C∗| ‖2 ≤ n‖C‖22 = n‖A‖2 shows

that the Cholesky decomposition is stable : pivoting is not

necessary (and is even harmful: it would destroy symmetry).
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Banded systems

In many applications the matrix is banded . This is the case

whenever the equations can be ordered so that each unknown

xi appears in only a few equations in a ‘neighbourhood’ of the ith

equation.

The matrix A has upper bandwidth q, where q ≥ 0 is the

smallest number such that aij = 0 whenever j > i + q, and

lower bandwidth p, where p ≥ 0 is the smallest number such

that aij = 0 whenever i > j + p.

Typical examples are obtained after finite element or finite

difference discretizations.
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Banded systems (2)

• Substantial reduction of both work and memory can be

realised for these systems, since there will only be fill in (non

zeros in the factors at locations (i, j) with aij = 0) inside the

band. In particular, L and U inherit the lower and upper

bandwidth of A.

This is easily checked by writing down some elimination steps

for a banded system of equations.

• The LU-decomposition can now be obtained using 2npq flops

if n≫ p and n≫ q.

• However, the band structure is to a large extend destroyed if

partial pivoting is applied.
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General sparse systems (1)

Large matrices with general sparsity patterns arise for example

in unstructured finite element calculation.

In order to limit the amount of fill in , the matrix is usually

reordered before it is decomposed.
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General sparse systems (2)

Therefore, solving a sparse system Ax = b with a direct

method normally consists of three phases:

• An analysis phase: a symbolic decomposition is made

during which a suitable ordering is determined.

• A decomposition phase: the permuted matrix is

decomposed.

• A solution phase: the solutions for one or more right-hand

sides are determined using back and forward substitution,

and back permutation to the original ordering.
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Ordering algorithms

Quite sophisticated ordering algorithms exist to minimise the fill

in. They are based on graph theory.

Some general principles that are used are:

• Try to minimise the bandwidth in every elimination step. An

example is the Reverse Cuthill-McKee algorithm.

• Select rows with the fewest non-zeros. An example is the

minimum degree ordering .

MATLAB backslash operator (x=A\b;) for sparse matrices is of the above type and is very
effective (especially for problems from discretized 2-dimensional PDEs and as long the
L- and U-factors are not explicitly required).
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Concluding remarks
• Direct solution methods are the preferred choice for dense

systems.

• Also for sparse methods they are widely used, in particular

for positive definite banded systems.

• For very large sparse systems iterative methods are usually

preferred. However, most of the time a combination of the

two is used. Iterative methods can be used to improve the

solution computed with the direct method, or an

approximate factorisation is used to accelerate the

convergence of an iterative method. These issues will be

discussed in the next lectures.
Further reading: Golub and Van Loan, pp. 87-160
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