

Matrix factorizations

Gerard Sleijpen

Universiteit Utrecht

Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/

Program Lecture 3

- Factorizations
- Factorizations for linear problems

LU-decomposition

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

Program Lecture 3

- Factorizations
- Factorizations for linear problems

LU-decomposition

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

Factorizations

$$\mathbf{A} = \mathbf{PQR},$$

where

— A is a given matrix

— P, Q and R are to be constructed and have attractive properties

NLA = Factorisations

Factorizations

$$\mathbf{A} = \mathbf{P}\mathbf{Q}\mathbf{R},$$

where

— A is a given matrix

— P, Q and R are to be constructed and have attractive properties

'one-sided' factorisations as $\mathbf{A} = \mathbf{L}\mathbf{U}$ for linear systems

similarity transforms as $A = VDV^{-1}$

for eigenvalue problems

congruency transforms as **A** = **VRV**^{*}

for linear systems and eigenvalue problems

Why not one-sided for eigenvalue problems?

Factorizations

$$\mathbf{A} = \mathbf{PQR},$$

where

— A is a given matrix

— P, Q and R are to be constructed and have attractive properties

- LU-decomposition: A = LU, PA = LU,
 Cholesky decomposition: (if A is PD) A = CC*
- **QR-factorization**: A = QR
- Eigenvalue decomposition: $A = VDV^{-1}$
- Schur decomposition: $A = QSQ^*$
- Singular value decomposition: A = VDQ*

Program Lecture 3

- Factorizations
- Factorizations for linear problems

${\sf LU-decomposition}$

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

LU-decomposition

A is a non-singular $n \times n$ matrix. Assignment. Solve Ax = b for x.

Strategy.

• Use Gaussian elimination to obtain

A = LU

with **L** lower- Δ with diag(**L**) = **I**, and **U** upper- Δ .

- Solve Ly = b for y,
- Solve $\mathbf{U}\mathbf{x} = \mathbf{y}$ for \mathbf{x} .

LU-decomposition, costs

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Costs (i.e., # flops) depend on the sparsity structure. If **A** is full: $\frac{2}{3}n^3$ flop If **A** has bandwidth p (i.e., $a_{ij} = 0$ if |i - j| > p): $2p^2 n$ flop. Costs may be much less if **A** has an 'arrowhead' structure.

Use a **pivoting** strategy to improve **A**'s structure, i.e., find a row permutation \mathbf{P}_r and a column permutation \mathbf{P}_c such that $\mathbf{P}_r \mathbf{A} \mathbf{P}_c$ has a more favourable structure (smaller bandwidth, longer 'arrows', ...).

Solve Ax = b:

 $\mathbf{P}_r \mathbf{A} \mathbf{P}_c = \mathbf{L} \mathbf{U}, \quad \mathbf{U} \mathbf{y} = \mathbf{P}_r \mathbf{b}, \quad \mathbf{U} \mathbf{z} = \mathbf{y}, \quad \mathbf{x} = \mathbf{P}_c^\top \mathbf{z}.$

LU-decomposition, costs

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Costs (i.e., # flops) depend on the sparsity structure. If **A** is full: $\frac{2}{3}n^3$ flop If **A** has bandwidth p (i.e., $a_{ij} = 0$ if |i - j| > p): $2p^2 n$ flop. Costs may be much less if **A** has an 'arrowhead' structure.

Rule of the thumb. Gaussion elimination may not be feasibe (i.e., costs are too high) if $n > 30\,000$ for full matrices if $n > 300\,000$ for sparse matrices (even with pivoting)

If Gaussian elimination is unfeasable, use some iterative method: see the following lectures

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

With $\widehat{\mathbf{L}}, \widehat{\mathbf{U}}, \widehat{\mathbf{y}}, and \widehat{\mathbf{x}}$ the computed quantities:

Theorem. $(\mathbf{A} + \Delta_A)\hat{\mathbf{x}} = \mathbf{b}$ with

 $|\Delta_A| \leq 3 p \mathbf{u} |\widehat{\mathbf{L}}| |\widehat{\mathbf{U}}| \approx 3 p \mathbf{u} |\mathbf{L}| |\mathbf{U}|.$

Here $|\cdot|$ and \leq matrix-entry-wise, p bandwidth of **A**.

 Δ_A is the **backward error** of Gaussian elimination. This leads to following bound on the **forward error**:

 $\frac{\|\widehat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \mu \equiv p \, \mathbf{u} \, \mathcal{C}(\mathbf{A}) \, \Im \, \rho, \quad \text{where} \quad \rho \equiv \frac{\|\|\mathbf{L}\| \|\mathbf{U}\|}{\|\mathbf{A}\|}.$

Here $\|\cdot\|$ is a vector norm.

Recall: $fl(\mathbf{A}\mathbf{x}) = (\mathbf{A} + \Delta_A)\mathbf{x}$ with $|\Delta_A| \le p \mathbf{u} |\mathbf{A}|$.

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

 $\beta \rho \equiv \beta (\| |\mathbf{L}| |\mathbf{U}| \|) / \|\mathbf{A}\|$

• Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \mathbf{1} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}.$$

Here, $\|\mathbf{A}\|_{\max} = \|(a_{i,j})\|_{\max} \equiv \max_{i,j} |a_{i,j}|.$

• Extra factor ρ_{∞} can be large (2^{n-1}) even if $\|\mathbf{L}\|_{\max} = 1$.

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

 $\beta \rho \equiv \beta (\| |\mathbf{L}| |\mathbf{U}| \|) / \|\mathbf{A}\|$

• Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \mathbf{1} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}.$$

• Extra factor ρ_{∞} can be large (2^{n-1}) even if $\|\mathbf{L}\|_{\max} = 1$.

Wilkinson's Miracle [±1960]. In practice, almost always,

$$\|\mathbf{L}\|_{\max} = 1 \quad \Rightarrow \quad \frac{\|\mathbf{U}\|_{\max}}{\|\mathbf{A}\|_{\max}} \leq 16.$$

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

 $3\rho \equiv 3(\||\mathbf{L}||\mathbf{U}|\|)/\|\mathbf{A}\|$

• Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \mathbf{1} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}.$$

With so-called **Partial Pivoting**, we find a row permutation **P** such that $\|\mathbf{L}\|_{\max} = 1$ (i.e., $\mathbf{P}_r = \mathbf{P}$ and $\mathbf{P}_c = \mathbf{I}$).

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

 $\beta \rho \equiv \beta (\| |\mathbf{L}| |\mathbf{U}| \|) / \|\mathbf{A}\|$

• Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \mathbf{1} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}.$$

Note. In practice, partial pivoting may spoil sparsity:

balans efficiency and stability.

For large n and sparse **A**, partial pivotting may even be unfeasible and Gaussian elimination may not be sufficiently stable. **Strategy for solving** Ax = b for x (*).

1) Apply row scaling to (*) (to reduce $C(\mathbf{A})$, that is, try to reduce the forward error of (*)), i.e., solve

$$(D^{-1}A)x = D^{-1}b$$
 for x (**)

Here $\mathbf{D} = \mathbf{D}_r = (d_{ij})$ is a diagonal matrix with $d_{ii} = \|\mathbf{A}^* \mathbf{e}_i\|$, the norm of the *i*th row of \mathbf{A} .

Notes. • Is cheap, preserves sparsity, destroys symmetry.

- Column scaling reduces the error on $D_c x$ (rather than on x).
- Row scaling changes may lead to larger errors on **b**.

• (**) is an instance of a more general strategy to improve the conditioning, called **preconditioning**: $M^{-1}Ax = \tilde{b} \equiv$ $M^{-1}b$ where systems as $M\tilde{b} = b$ are easy to solve and $C(M^{-1}A)$ is smaller than C(A).

For ease of notation,

we assume **A** to be replaced by $\mathbf{D}^{-1}\mathbf{A}$ and **b** by $\mathbf{D}^{-1}\mathbf{b}$.

Strategy for solving Ax = b for x (*).

1) Apply row scaling to (*).

2) If feasible find appropriate permutations \mathbf{P}_r and \mathbf{P}_c and LU-factors L and U: $\mathbf{P}_r \mathbf{A} \mathbf{P}_c = \mathbf{L} \mathbf{U}$.

'Feasible', that is, if costs permit.

Notes. • For optimal stability, use partial pivoting. This, however, may destroy a favourable structure that **A** may have (sparsity or symmetry or . . .).

- Feasibility may require another pivoting strategy.
- Computation of L and U may be unfeasible for any pivoting strategy (if A is dense, n is huge).

For ease of notation,

we assume **A** to be replaced by $\mathbf{P}_r \mathbf{A} \mathbf{P}_c$ and **b** by $\mathbf{P}_r \mathbf{b}$, we denote the computed L and U factors by **L** and **U**.

Strategy for solving Ax = b for x (*).

1) Apply row scaling to (*).

2) If feasible find appropriate permutations \mathbf{P}_r and \mathbf{P}_c and LU-factors L and U: $\mathbf{P}_r \mathbf{A} \mathbf{P}_c = \mathbf{L} \mathbf{U}$.

3) Estimate $\mu \equiv 3p \mathbf{U} C(\mathbf{A}) \rho$ by, say, $\hat{\mu}$. Recall that $\|\hat{\mathbf{x}} - \mathbf{x}\| \leq \mu \|\mathbf{x}\|$ and $\rho \equiv (\||\mathbf{L}||\mathbf{U}|\|)/\||\mathbf{A}|\|$. If $\hat{\mu}$ is sufficient small, do 4) else do 5).

4) Solve Ly = b, Ux = y and undo the row permutation on x.

5) If $\hat{\mu} \ll 1$

a) apply a few steps of iterative refinement

else

b) consider using a QR-decomposition to solve (*).

Details on 5.a) and 5.b) on the next transparancies.

5.a) If $\mu \ll 1$ (e.g., $\mu \approx 10^{-2}$) apply a few steps of **iterative refinement**

(on the row-scaled, permuted, system)

 $\begin{aligned} \mathbf{x}_0 &= \mathbf{0} \\ \text{for } j &= 0, 1, \dots \text{ do} \\ \text{break if } \mathbf{x}_j \text{ is sufficiently accurate} \\ \text{compute the residual } \mathbf{r}_j &\equiv \mathbf{b} - \mathbf{A}\mathbf{x}_j, \\ \text{solve } \mathbf{A}\mathbf{u}_j &= \mathbf{r}_j \text{ for } \mathbf{u}_j \\ \text{ using the } \mathbf{L} \text{ and } \mathbf{U} \text{ factors of } \mathbf{A} \\ \text{update } \mathbf{x} \colon \mathbf{x}_{j+1} &= \mathbf{x}_j + \hat{\mathbf{u}}_j \end{aligned}$

Theorem. $\|\mathbf{x}_j - \mathbf{x}\| \lesssim \mu^j \|\mathbf{x}\|$:

the forward error is reduced by a factor μ per step.

Note that the expensive part, row-scaling, pivoting, computing L and U has to be done only once.

Iterative refinement is an instance of the **basic iterative scheme**

Select
$$\mathbf{x}_0$$

 $\mathbf{x} = \mathbf{x}_0$, $\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$
for $j = 1 : j_{max}$
break if $\|\mathbf{r}\| \le tol$
Compute an approximate solution $\hat{\mathbf{u}}$ of
 $\mathbf{A}\mathbf{u} = \mathbf{r}$
 $\mathbf{x} \leftarrow \mathbf{x} + \hat{\mathbf{u}}$
 $\mathbf{r} \leftarrow \mathbf{r} - \mathbf{A}\hat{\mathbf{u}}$

If \mathbf{x}_j is some approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ with error \mathbf{u}_j , i.e., $\mathbf{x} = \mathbf{x}_j + \mathbf{u}_j$, then \mathbf{u}_j satisfies

$$\mathbf{A}\mathbf{u}_j = \mathbf{r}_j \equiv \mathbf{b} - \mathbf{A}\mathbf{x}_j$$

If $\mathbf{x}_{j+1} = \mathbf{x}_j + \hat{\mathbf{u}}_j$ then $\mathbf{r}_{j+1} = \mathbf{b} - \mathbf{A}\mathbf{x}_{j+1} = \mathbf{r}_j - \mathbf{A}\hat{\mathbf{u}}_j$.

5.b) If
$$\mu \equiv 3 p \mathbf{u} C(\mathbf{A}) \frac{\||\mathbf{L}||\mathbf{U}|\|}{\|\mathbf{A}\|} \ll 1$$
 use a

QR-decomposition

Before discussion QR-decomposition some comments.

 μ can be non-small if the Gaussian elimination process is unstable (which is unlikely when combined with partial pivoting).

QR-decompositions spoil sparsity and are not feasible for square systems of high dimension as $n \ge 20\,000$.

QR-decompositions are useful for "solving" (in some adjusted way) ill-conditioned systems of modest dimension as $n \le 20\,000$

5.b) If
$$\mu \equiv 3 p \mathbf{u} C(\mathbf{A}) \frac{\||\mathbf{L}||\mathbf{U}|\|}{\|\mathbf{A}\|} \not\ll 1$$
 use a

QR-decomposition

Before discussion QR-decomposition some comments.

QR-decompositions of $n \times k$ systems (i.e., **A** is an $n \times k$ matrix), with k modest, as k < 200, allow stable computations and form the backbone of many methods for high dimensional problems with $n > 10^7$.

Program Lecture 3

- Factorizations
- Factorizations for linear problems

LU-decomposition

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

Intermezzo: orthonormal matrices

Suppose $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_q]$ is orthonormal. The column vector \mathbf{v}_i form an orthonormal basis of

 $\mathcal{V} \equiv \operatorname{span}(\mathbf{V}) = \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_q\}.$

 $\mathbf{P} \equiv \mathbf{V}\mathbf{V}^* \text{ is an orthogonal projection onto } \mathcal{V}:$ $\mathbf{P}\mathbf{x} \in \mathcal{V} \text{ } (\mathbf{x} \in \mathbb{C}^n), \ \mathbf{P}\mathbf{x} = \mathbf{x} \text{ } (\mathbf{x} \in \mathcal{V}), \ \mathbf{x} - \mathbf{P}\mathbf{x} \perp \mathbf{P}\mathbf{x} \text{ } (\mathbf{x} \in \mathbb{C}^n)$ [Ex.3.7]

 $\mathbf{I} - \mathbf{V}\mathbf{V}^*$ is an orthogonal projection onto \mathcal{V}^{\perp} .

Householder reflections. $H \equiv I - 2VV^*$ is unitary, [ex.3.8] a reflection wrt the 'mirror space' \mathcal{V}^{\perp} : if $\mathbf{x} = \mathbf{x}_{\mathcal{V}} + \mathbf{x}_{\mathcal{V}^{\perp}}$ then $H\mathbf{x} = -\mathbf{x}_{\mathcal{V}} + \mathbf{x}_{\mathcal{V}^{\perp}}$. $(\mathbf{x}_{\mathcal{V}} \in \mathcal{V}, \mathbf{x}_{\mathcal{V}^{\perp}} \in \mathcal{V}^{\perp})$.

Exercise. Determine # flop to compute $\mathbf{x}_{\mathcal{V}}$, $\mathbf{x}_{\mathcal{V}^{\perp}}$, **Hx**

Program Lecture 3

- Factorizations
- Factorizations for linear problems

LU-decomposition

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

Let $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ be an $n \times k$ matrix.

$\mathbf{A} = \mathbf{Q}\mathbf{R}$

with **Q** orthonormal, **R** upper- Δ , matching dimensions: — **Q** \equiv **Q**₁ $n \times n$ (Unitary) & **R** \equiv **R**₁ $n \times k$ — **Q** \equiv **Q**₀ $n \times k$ & **R** \equiv $R_0 k \times k$ (economical form).

Matlab: [Q1,R1]=qr(A); [Q0,R0]=qr(A,'0');

Let $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ be an $n \times k$ matrix.

A = QR

with **Q** orthonormal, **R** upper- Δ , matching dimensions: — **Q** \equiv **Q**₁ $n \times n$ (Unitary) & **R** \equiv **R**₁ $n \times k$ — **Q** \equiv **Q**₀ $n \times k$ & **R** \equiv $R_0 k \times k$ (economical form).

We may expect good stability properties since

$$\frac{\| \left| \mathbf{Q} \right| \left| \mathbf{R} \right| \|_2}{\| \mathbf{A} \|_2} \le n \qquad \left(\begin{array}{c} \| \mathbf{Q} \|_2 \| \mathbf{R} \|_2 \\ \| \mathbf{A} \|_2 = 1 \right).$$

Recall that with $\mathbf{A} = \mathbf{L}\mathbf{U}$ the stability is determined by the size of $\frac{\||\mathbf{L}||\mathbf{U}|\|}{\|\mathbf{A}\|}$.

Let $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ be an $n \times k$ matrix.

$\mathbf{A} = \mathbf{Q}\mathbf{R}$

with **Q** orthonormal, **R** upper- Δ , matching dimensions: — **Q** \equiv **Q**₁ $n \times n$ (Unitary) & **R** \equiv **R**₁ $n \times k$ — **Q** \equiv **Q**₀ $n \times k$ & **R** \equiv $R_0 k \times k$ (economical form).

We may expect good stability properties since

$$\frac{\|\|\mathbf{Q}\|\|\mathbf{R}\|\|_2}{\|\mathbf{A}\|_2} \le n \qquad (\frac{\|\mathbf{Q}\|_2\|\mathbf{R}\|_2}{\|\mathbf{A}\|_2} = 1).$$
Costs. \mathbf{Q}_0 is a full matrix. $\mathbf{Q}_1^{-1} = \mathbf{Q}_1^*.$

Let $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ be an $n \times k$ matrix.

A = QR

with **Q** orthonormal, **R** upper- Δ , matching dimensions: — **Q** \equiv **Q**₁ $n \times n$ (Unitary) & **R** \equiv **R**₁ $n \times k$ — **Q** \equiv **Q**₀ $n \times k$ & **R** \equiv $R_0 k \times k$ (economical form).

We may expect good stability properties since

$$\frac{\|\|\mathbf{Q}\|\|\mathbf{R}\|\|_2}{\|\mathbf{A}\|_2} \le n \qquad (\frac{\|\mathbf{Q}\|_2 \|\mathbf{R}\|_2}{\|\mathbf{A}\|_2} = 1).$$

Existence. Exists (unconditionally).

Proof: Gram–Schmidt.

The columns $\mathbf{q}_1, \dots, \mathbf{q}_k$ of \mathbf{Q} form an orthonormal basis of Range(\mathbf{A}) = span(\mathbf{A}). [Ass.3.1]

(classical) Gram–Schmidt:

Normalise: $\mathbf{q}_1 = \mathbf{a}_1 / \|\mathbf{a}_1\|_2$

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_2)$ Normalise: $\mathbf{q}_2 = \tilde{\mathbf{q}}_2 / \|\tilde{\mathbf{q}}_2\|_2$

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^*\mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^*\mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Then $\mathbf{A} = \mathbf{Q}R$ (economical form), $[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3] \begin{bmatrix} \|\mathbf{a}_1\|_2 & \mathbf{q}_1^*\mathbf{a}_2 & \mathbf{q}_1^*\mathbf{a}_3 \\ 0 & \|\widetilde{\mathbf{q}}_2\|_2 & \mathbf{q}_2^*\mathbf{a}_3 \\ 0 & 0 & \|\widetilde{\mathbf{q}}_3\|_2 \end{bmatrix}$

GS constructs an orthonormal basis $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ for span(**A**). The upper triangular factor R appears as a side product. The QR-factorization shows up in economical form.

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Note that $\mathbf{q}_2^* \widetilde{\mathbf{q}} = \mathbf{q}_2^* \mathbf{a}_3$, because $\mathbf{q}_2^* \mathbf{q}_1 = 0$. In exact arithmetic: clasGS = modGS.

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Householder-QR:

find \mathbf{v}_1 such that $\|\mathbf{v}_1\|_2 = 1$ and $(\mathbf{I} - 2\mathbf{v}_1\mathbf{v}_1^*)\mathbf{a}_1 = \tau_1\mathbf{e}_1$, $\mathbf{A}^{(1)} = (\mathbf{I} - 2\mathbf{v}_1\mathbf{v}_1^*)\mathbf{A}$.

If **x** and **y** are normalised, then $(\mathbf{I} - 2\mathbf{v}\mathbf{v}^*)\mathbf{x} = \tau\mathbf{y}$ for some scalar τ , if $\mathbf{v} \equiv \tilde{\mathbf{v}}/\|\tilde{\mathbf{v}}\|_2$ with $\tilde{\mathbf{v}} \equiv \mathbf{x} \pm \mathbf{y}$. For optimal stability, select sign to have $\|\tilde{\mathbf{v}}\|_2$ largest.

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Householder-QR:

find \mathbf{v}_2 such that $\|\mathbf{v}_2\|_2 = 1$, $\mathbf{e}_1^* \mathbf{v}_2 = 0$, and $(\mathbf{I} - 2\mathbf{v}_2\mathbf{v}_2^*)\mathbf{a}_2^{(1)} = \tau_2\mathbf{e}_2$, $\mathbf{A}^{(2)} = (\mathbf{I} - 2\mathbf{v}_2\mathbf{v}_2^*)\mathbf{A}^{(1)}$.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Householder-QR:

find \mathbf{v}_3 such that $\|\mathbf{v}_3\|_2 = 1$, $\mathbf{e}_1^* \mathbf{v}_3 = 0$, $\mathbf{e}_2^* \mathbf{v}_3 = 0$, and $(\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{a}_3^{(2)} = \tau_3\mathbf{e}_3$, $\mathbf{A}^{(3)} = (\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{A}^{(2)}$.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Householder-QR:

find
$$\mathbf{v}_3$$
 such that $\|\mathbf{v}_3\|_2 = 1$, $\mathbf{e}_1^* \mathbf{v}_3 = 0$, $\mathbf{e}_2^* \mathbf{v}_3 = 0$, and
 $(\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{a}_3^{(2)} = \tau_3\mathbf{e}_3$, $\mathbf{A}^{(3)} = (\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{A}^{(2)}$.

Then
$$[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \mathbf{Q}\mathbf{R}$$
, with \mathbf{Q} unitary,
 $\mathbf{R} \equiv \mathbf{A}^{(3)}, \quad n \times 3$ upper- Δ ,
 $\mathbf{Q} \equiv \left((\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)(\mathbf{I} - 2\mathbf{v}_2\mathbf{v}_2^*)(\mathbf{I} - 2\mathbf{v}_1\mathbf{v}_1^*) \right)^*, \quad n \times n.$

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3) - \mathbf{q}_2(\mathbf{q}_2^* \mathbf{a}_3)$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

modified Gram–Schmidt:

Orthogonalise: $\tilde{\mathbf{q}} = \mathbf{a}_3 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_3)$, $\tilde{\mathbf{q}}_3 = \tilde{\mathbf{q}} - \mathbf{q}_2(\mathbf{q}_2^* \tilde{\mathbf{q}})$ Normalise: $\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|_2$

Householder-QR:

find
$$\mathbf{v}_3$$
 such that $\|\mathbf{v}_3\|_2 = 1$, $\mathbf{e}_1^* \mathbf{v}_3 = 0$, $\mathbf{e}_2^* \mathbf{v}_3 = 0$, and
 $(\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{a}_3^{(2)} = \tau_3\mathbf{e}_3$, $\mathbf{A}^{(3)} = (\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{A}^{(2)}$.

Then
$$[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \mathbf{Q}\mathbf{R}$$
, with \mathbf{Q} unitary,
 $\mathbf{R} \equiv \mathbf{A}^{(3)}, \quad n \times 3$ upper- Δ ,
 $\mathbf{Q} \equiv (\mathbf{I} - 2\mathbf{v}_1\mathbf{v}_1^*)(\mathbf{I} - 2\mathbf{v}_2\mathbf{v}_2^*)(\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*), \quad n \times n.$

QR-factorization, stability

For the computed factors $\widehat{\mathbf{Q}}$ and $\widehat{\mathbf{R}},$ we have

$$\mathbf{A} + \Delta_A = \widehat{\mathbf{Q}} \, \widehat{\mathbf{R}}$$

for some $n imes k \ \Delta_A$ with

- $\widehat{\mathbf{R}}$ upper triangular,
- $\|\Delta_A\|_F \leq \kappa \mathbf{u} \|\mathbf{A}\|_F$, with κ modest:

 $\kappa = 4k^2$ (clasGS), $4k^2$ (modGS), 4kn (Householder-QR).

QR-factorization, stability

For the computed factors $\widehat{\boldsymbol{Q}}$ and $\widehat{\boldsymbol{R}},$ we have

$$\mathbf{A} + \Delta_A = \widehat{\mathbf{Q}} \, \widehat{\mathbf{R}}$$

for some $n imes k \ \Delta_A$ with

- $\widehat{\mathbf{R}}$ upper triangular,
- $\|\Delta_A\|_F \leq \kappa \, \mathbf{u} \, \|\mathbf{A}\|_F$, with κ modest,
- $\|\widehat{\mathbf{Q}}^*\widehat{\mathbf{Q}} I\|_2 \approx \kappa \mathbf{u} (\mathcal{C}_2(\mathbf{A}))^i$ with κ of order \sqrt{kn} and

 $i \ge 2$ for clasGS (conjecture: i = 2)

i = 1 for modGS

i = 0 for Householder-QR

QR-factorization, stability

For the computed factors $\widehat{\boldsymbol{Q}}$ and $\widehat{\boldsymbol{R}},$ we have

$$\mathbf{A} + \Delta_A = \widehat{\mathbf{Q}} \, \widehat{\mathbf{R}}$$

for some $n imes k \ \Delta_A$ with

- $\widehat{\mathbf{R}}$ upper triangular,
- $\|\Delta_A\|_F \leq \kappa \, \mathbf{u} \, \|\mathbf{A}\|_F$, with κ modest,
- $\|\widehat{\mathbf{Q}}^*\widehat{\mathbf{Q}} I\|_2 \approx \kappa \mathbf{u} (\mathcal{C}_2(\mathbf{A}))^i$ with κ of order \sqrt{kn} and

 $i \ge 2$ for clasGS (conjecture: i = 2)

i = 1 for modGS

i = 0 for Householder-QR

Questions. Costs? Why differences in loss of orthogonality? Why worry about loss of orthogonality?

Intermezzo: condition numbers

For a general (possibly non-square) matrix **A**, we define

$$\sigma_{\max} \equiv \max \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}, \ \sigma_{\min} \equiv \min \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}, \ \text{ and } \ \mathcal{C}(\mathbf{A}) \equiv \frac{\sigma_{\max}}{\sigma_{\min}},$$

where we take the max. and min. over all non-trival vector

where we take the max. and min. over all non-trival vectors \mathbf{x} (or, equivalently, over all \mathbf{x} with $\|\mathbf{x}\| = 1$). $\mathcal{C}(\mathbf{A})$ is called the **condition number** if \mathbf{A} .

Note. $\sigma_{\max} = \|\mathbf{A}\|$. If \mathbf{A} is square and non-singular, then $\sigma_{\min} = 1/\|\mathbf{A}^{-1}\|$ and $\mathcal{C}(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$.

In case of the 2-norm,

 σ_{\min} (σ_{\max}) is the smallest (largest) singular value of **A**.

QR-factorization, costs

Costs in case $k \ll n$ (neglecting lower order terms)

 $2k^2n$ for clasGS, modGS as well as Householder QR

For Householder-QR it is assumed that **Q** is used and stored in factorized form as a product of the Householder reflections (store the v_i). Forming the Q by explicitly performing the product, will make Householder-QR twice as expensive and less stable. (*Recall that in LUfactorization, forming* **L** *from the factors* $I - \ell_i e_i^*$ *is trivial*).

- Hence, if the vectors \mathbf{q}_i are required, clasGS or modGS, are preferred over Householder QR.
- classGS allows parallelisation.

Costs in case k = n (neglecting lower order terms) for Housholder QR: $\frac{4}{3}n^3$ (twice the costs of LU fact.). for clasGS and modGS: $2n^3$ (thrice LU).

Loss of orthogonality: Householder-QR

Householder-QR gives a unitary matrix since the Householder reflections are unitary regardless the accuracy of the vectors \mathbf{v}_i :

keep Q in factorized form and work with its factors.

Loss of orthogonality: GS

GS can lose orthogonality already in orthonormalizing one vector against another, say \mathbf{a}_2 against \mathbf{q}_1 :

$$\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1(\mathbf{q}_1^* \mathbf{a}_2), \quad \mathbf{q}_2 = \tilde{\mathbf{q}}_2 / \|\tilde{\mathbf{q}}_2\|_2.$$

Let $\hat{\mathbf{q}}_2 = \mathbf{q}_2 + \Delta_q$ be the computed \mathbf{q}_2 . If δ is the error in $\mathbf{q}_1^* \mathbf{a}_2$ then $\Delta_q = \delta \mathbf{q}_1 / \|\tilde{\mathbf{q}}_2\|_2$ (plus other error terms):

$$\|\Delta_q\|_2 \leq \frac{n \mathbf{u} \|\mathbf{a}_2\|_2}{\|\widetilde{\mathbf{q}}_2\|_2} \approx \frac{n \mathbf{u}}{\sin \angle (\mathbf{a}_2, \mathbf{q}_1)}$$

Conclusion. Orthogonality is (likely to be) lost if the angle between the two vectors is small.

Remedy. If $\tilde{\mathbf{q}}_2$ is not numerically **0** (\mathbf{q}_1 and \mathbf{a}_2 are not numerically orthogonal), then repeat the orthogonalisation:

$$\widetilde{\mathbf{q}}_2 = \widehat{\mathbf{q}}_2 - \mathbf{q}_1(\mathbf{q}_1^* \widehat{\mathbf{q}}_2), \quad \mathbf{q}_2 = \widetilde{\mathbf{q}}_2 / \|\widetilde{\mathbf{q}}_2\|_2.$$

Theorem. Twice is enough.

Loss of orthogonality: Gram-Schmidt

The strategy of GS for orthonormalizing a vector \mathbf{a}_{k+1} against $\mathbf{q}_1, \ldots, \mathbf{q}_k$ relies on the assumption that $\mathbf{q}_1, \ldots, \mathbf{q}_k$ is an orthonormal system. If this assumption is not correct, then the loss of orthognality is amplified in the next vector.

Remedy. Repeat the orthogonalisation against all $\mathbf{q}_1, \ldots, \mathbf{q}_k$.

When to repeat?

```
DGKS: If \angle \mathbf{a}_{k+1} and span(\mathbf{q}_1, \ldots, \mathbf{q}_k) is < 45^{\circ}.
```

Is twice enough?

In practise, Repeated GS as stable as Householder QR.

modGS can be viewed (also in rounded arithmetic) as Householder-QR on a matrix extended at the top with a $k \times k$ block of zeros, where **A** is $n \times k$. This insight can be exploited to prove that modGS has a better orthonormalisation property than classGS

Effects of loss of orthogonality

Consider the case where **A** is square. Let $\widehat{\mathbf{Q}}$ and $\widehat{\mathbf{R}}$ be the computed QR factors. Put $\mathbf{E} \equiv \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} - \mathbf{I}$ and assume $\|\mathbf{E}\|_2 < 1$. Using the QR factors, $\mathbf{A}\mathbf{x} = \mathbf{b}$ will be solved as $\mathbf{y} = \widehat{\mathbf{Q}}^* \mathbf{b}$, solve $\widehat{\mathbf{R}}\mathbf{x} = \mathbf{y}$ for \mathbf{x} . whereas \mathbf{y} should be $\mathbf{y} = \widehat{\mathbf{Q}}^{-1} \mathbf{b}$ (given the QR factors). Since $(\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} = \mathbf{I}$, we see that $\widehat{\mathbf{Q}}^{-1} = (\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \approx (\mathbf{I} - \mathbf{E}) \widehat{\mathbf{Q}}^*$.

Hence,

$$\|\widehat{\mathbf{Q}}^*\mathbf{b} - \widehat{\mathbf{Q}}^{-1}\mathbf{b}\|_2 pprox \|\mathbf{E}\widehat{\mathbf{Q}}^*\mathbf{b}\|_2 \le \|\mathbf{E}\|_2\|\mathbf{b}\|_2.$$

E could be computed, but would make the methods more expensive!

Effects of loss of orthogonality

Consider the case where **A** is square. Let $\widehat{\mathbf{Q}}$ and $\widehat{\mathbf{R}}$ be the computed QR factors. Put $\mathbf{E} \equiv \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} - \mathbf{I}$ and assume $\|\mathbf{E}\|_2 < 1$. Using the QR factors, $\mathbf{A}\mathbf{x} = \mathbf{b}$ will be solved as $\mathbf{y} = \widehat{\mathbf{Q}}^* \mathbf{b}$, solve $\widehat{\mathbf{R}}\mathbf{x} = \mathbf{y}$ for \mathbf{x} . whereas \mathbf{y} should be $\mathbf{y} = \widehat{\mathbf{Q}}^{-1} \mathbf{b}$ (given the QR factors). Since $(\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} = \mathbf{I}$, we see that $\widehat{\mathbf{Q}}^{-1} = (\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \approx (\mathbf{I} - \mathbf{E}) \widehat{\mathbf{Q}}^*$.

Hence,

$$\|\widehat{\mathbf{Q}}^*\mathbf{b} - \widehat{\mathbf{Q}}^{-1}\mathbf{b}\|_2 pprox \|\mathbf{E}\widehat{\mathbf{Q}}^*\mathbf{b}\|_2 \leq \|\mathbf{E}\|_2\|\mathbf{b}\|_2.$$

Effectively, the **repeated GS** variant works with $(\mathbf{I} - \mathbf{E})\widehat{\mathbf{Q}}^*$ rather than with $\widehat{\mathbf{Q}}^*$ (or $\widehat{\mathbf{Q}}^{-1}$): $(\mathbf{I} - \widehat{\mathbf{Q}}\widehat{\mathbf{Q}}^*)^2 = \mathbf{I} - \widehat{\mathbf{Q}}(\mathbf{I} - \mathbf{E})\widehat{\mathbf{Q}}^*$.

Application. If k < n, then generally
solution x of Ax = b does not exists!![Ex.3.14]Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$

minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Application. If k < n, then generally
solution x of Ax = b does not exists!![Ex.3.14]Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$

minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Terminology. 'solve Ax = b in **least square sense**'.

Application. If k < n, then generally solution x of Ax = b does not exists!! [Ex.3.14] **Alternative:** $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$ minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Application areas. Computerized **T**omography X-ray CT, SPECT, old MRI, ...

Seismography, ...

Application. If k < n, then generally
solution x of Ax = b does not exists!![Ex.3.14]Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$

minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Lemma. \mathcal{V} *k*-dim subspace \mathbb{C}^n . $\mathbf{b}_0 = \operatorname{argmin}_{\mathbf{V} \in \mathcal{V}} \|\mathbf{b} - \mathbf{v}\|_2 \quad \Leftrightarrow \quad \mathbf{s} \equiv \mathbf{b} - \mathbf{b}_0 \perp \mathcal{V}$

Application. If k < n, then generally
solution x of Ax = b does not exists!![Ex.3.14]Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$ minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Lemma.
$$\mathcal{V}$$
 k-dim subspace \mathbb{C}^n .
 $\mathbf{b}_0 = \operatorname{argmin}_{\mathbf{V} \in \mathcal{V}} \|\mathbf{b} - \mathbf{v}\|_2 \quad \Leftrightarrow \quad \mathbf{s} \equiv \mathbf{b} - \mathbf{b}_0 \perp \mathcal{V}$
 $\operatorname{tan}(\angle(\mathbf{b}, \mathcal{V})) = \frac{\|\mathbf{b} - \mathbf{b}_0\|_2}{\|\mathbf{b}_0\|_2}, \quad \cos(\angle(\mathbf{b}, \mathcal{V})) = \frac{\|\mathbf{b}_0\|_2}{\|\mathbf{b}\|_2}$

Application. If k < n, then generally
solution x of Ax = b does not exists!![Ex.3.14]Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$ minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Lemma.
$$\mathcal{V}$$
 k-dim subspace \mathbb{C}^n .
 $\mathbf{b}_0 = \operatorname{argmin}_{\mathbf{V} \in \mathcal{V}} \|\mathbf{b} - \mathbf{v}\|_2 \quad \Leftrightarrow \quad \mathbf{s} \equiv \mathbf{b} - \mathbf{b}_0 \perp \mathcal{V}$

Normal equations.

 $\mathbf{x} = \operatorname{argmin}_{\mathbf{y}} \|\mathbf{b} - \mathbf{A}\mathbf{y}\| \quad \Leftrightarrow \quad \mathbf{A}^* \mathbf{A}\mathbf{x} = \mathbf{A}^* \mathbf{b}.$

Least square, stability

A square, $(\mathbf{A} + \Delta_A)(\mathbf{x} + \Delta_x) = \mathbf{b} + \Delta_b \Rightarrow$ $\|\Delta_x\|_2 \leq \|\mathbf{A}^{-1}\|_2 (\|\Delta_b\|_2 + \|\Delta_A\|_2 \|\mathbf{x}\|_2)$ A is non-square, x solves Ax = b in least square sense. $(\mathbf{A} + \Delta_A)(\mathbf{x} + \Delta_x) = \mathbf{b} + \Delta_h$ least square \Rightarrow $\|\Delta_{x}\|_{2} \lesssim \frac{1}{\sigma_{\min}} (\|\Delta_{b}\|_{2} + \|\Delta_{A}\|_{2} \|\mathbf{x}\|_{2}) + \frac{1}{\sigma_{\min}^{2}} \|\Delta_{A}\|_{2} \|\mathbf{s}\|_{2}$ $(\mathbf{A}^*\mathbf{A} + \widetilde{\Delta}_A)(\mathbf{x} + \Delta_x) = \mathbf{A}^*\mathbf{b} + \widetilde{\Delta}_b$ Normal eq. $\frac{1}{\sigma_{\min}(\mathbf{A}^*\mathbf{A})} = \frac{1}{\sigma_{\min}(\mathbf{A})^2}$ \Rightarrow $\|\Delta_x\|_2 \lesssim \frac{1}{\sigma_{\min}^2} (\|\widetilde{\Delta}_b\|_2 + \|\widetilde{\Delta}_A\|_2 \|\mathbf{x}\|_2)$

Normal equations

- Stability. $C_2(\mathbf{A})^2$ determines stability; $C_2(\mathbf{A}) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$.
- Costs. Formation **A*****A** forms 'extra' costs.

Alternative. $\mathbf{A} = \mathbf{Q}_0 \mathbf{R}_0 \Rightarrow$

$$\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{R}_0^*\mathbf{R}_0\mathbf{x} = \mathbf{R}_0^*\mathbf{Q}_0^*\mathbf{b} \Rightarrow$$

$$\mathbf{R}_0 \mathbf{x} = \mathbf{Q}_0^* \mathbf{b}$$

Note. $\mathbf{R}_0^* \mathbf{R}_0$ is Cholesky's decomposition $\mathbf{A}^* \mathbf{A}$

Normal equations

- Stability. $C_2(\mathbf{A})^2$ determines stability; $C_2(\mathbf{A}) = \frac{\sigma_{\max}}{\sigma_{\min}}$.
- Costs. Formation A*A forms 'extra' costs.

Alternative.
$$\mathbf{A} = \mathbf{Q}_0 \mathbf{R}_0 \Rightarrow$$

 $\mathbf{A}^* \mathbf{A} \mathbf{x} = \mathbf{R}_0^* \mathbf{R}_0 \mathbf{x} = \mathbf{R}_0^* \mathbf{Q}_0^* \mathbf{b} \Rightarrow$ $\mathbf{R}_0 \mathbf{x} = \mathbf{Q}_0^* \mathbf{b}$

+ Stability. $C(\mathbf{R}_0)$ determines stability: $C(\mathbf{R}_0) = C(\mathbf{A})$ except for the component $\mathbf{b} - \mathbf{Q}_0 \mathbf{Q}_0^* \mathbf{b} = \mathbf{b} - \mathbf{A}\mathbf{x}$: Optimal stability.

+ Costs.

QR versus LU

For small (n < 10000), dense systems:

- LU. + easy and cheap to compute
 - + easy and cheap to work with
 - stability requires permutation (and scaling)
- QR. o easy and cheap to compute, but 2× the costs LU
 o easy and cheap to work with, but 1.5× the costs LU
 + stable

For large n, sparse systems

both factorizations destroy sparsity structure. However, $LU: + \exists$ effective incomplete LU with sparsity structure, QR: - no effective incomplete QR with sparsity structure.