Utrecht, 3 oktober 2017

Matrix factorizations

IR

7 N = "5; Universiteit Utrecht

Gerard Sleijpen /‘{/AA!*' Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/

Program Lecture 3

Factorizations

Factorizations for linear problems
L U-decomposition

Intermezzo: orthonormal matrices

Factorizations for linear problems

QR-decomposition

Program Lecture 3

Factorizations

Factorizations for linear problems
LU-decomposition

Intermezzo: orthonormal matrices

Factorizations for linear problems

QR-decomposition

Factorizations

A =PQR,

where
— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

NLA = Factorisations

Factorizations

A = PQR,

where
— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

‘one-sided’ factorisations as A = LU for linear systems

similarity transforms as A = vDV!
for eigenvalue problems

congruency transforms as A = VRV*
for linear systems and eigenvalue problems

Why not one-sided for eigenvalue problems?

Factorizations

A = PQR,

where
— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

e LU-decomposition: A=LU, PA=LU,
Cholesky decomposition: (if A is PD) A = CC*

e QR-factorization: A =QR

e Eigenvalue decomposition: A = VvDV1

e Schur decomposition: A = QSQ*

e Singular value decomposition: A =VDQ*

Program Lecture 3

Factorizations

Factorizations for linear problems
LU-decomposition

Intermezzo: orthonormal matrices

Factorizations for linear problems

QR-decomposition

LU-decomposition

A is a non-singular n X n matrix.
Assigment. Solve AXx = b for X.

Strategy.
e Use Gaussian elimination to obtain

A=LU

with L lower-A with diag(L) =1, and
U upper-A.

e Solve Ly = b for vy,
e Solve UxXx =y for X.

LU-decomposition, costs
Aisnxn. Solve AX=b: A=LU, Ly=Db, Ux=y

Costs (i.e., # flops) depend on the sparsity structure.

If A is full: 3n3 flop
If A has bandwidth p (i.e., a;; = 0 if |i —j| > p): 2p?n flop.

Costs may be much less if A has an ‘arrowhead’ structure.

Use a pivoting strategy to improve A’s structure, i.e.,
find a row permutation P, and a column permutation P,

such that P,AP. has a more favourable structure (smaller
bandwidth, longer ‘arrows’, ...).

Solve AX = b:
P.AP.=LU, Uy=P,b, Uz=y, x=P/z

LU-decomposition, costs
Aisnxn. Solve AX=b: A=LU, Ly=Db, Ux=y

Costs (i.e., # flops) depend on the sparsity structure.

If A is full: 3n3 flop
If A has bandwidth p (i.e., a;; = 0 if |i —j| > p): 2p?n flop.

Costs may be much less if A has an ‘arrowhead’ structure.

Rule of the thumb. Gaussion elimination may not be

feasibe (i.e., costs are too high)
if n > 30000 for full matrices
if n > 300000 for sparse matrices (even with pivoting)

LU-decomposition, stability
Aisnxn. Solve AX=b: A=LU, Ly=Db, Ux=y

With L,U, ¥, and X the computed quantities:
Theorem. (A+ A4)X=Db with

A4l < 3pu|L]|U| = 3pulL||U|.

A 4 is the backward error of Gaussian elimination.
This leads to following bound on the forward error:

L] Y]]
—— < u=puC(A)3p, where p= :
[1x]] A

LU-decomposition, stability
Aisnxn. Solve AX=b: A=LU, Ly=D>b, Ux=y

Stability Gaussian elimination involves an ‘“extra’” factor

p= (Il D/lIA]
e Note that
LU L|(|U[1 U
OoEIII [1U] lloo __ LI (U)||°°§p2||L||max 1O [max
||A||OO ||A1Hoo ||A||max

e Extra factor ps can be large (2" 1) even if ||L|lmax = 1.

LU-decomposition, stability
Aisnxn. Solve AX=b: A=LU, Ly=Db, Ux=y

Stability Gaussian elimination involves an ‘“extra’” factor

p= (Il D/lIA]
e Note that
LU L|(|U[1 U
OoEIII [1U] lloo __ LI (U)||°°§p2||L||max 1O [max
||A||OO ||A1Hoo ||A||max

e Extra factor po can be large (2" 1) even if ||L|max = 1.

Wilkinson’s Miracle [£1960]. In practice, almost always,

[[U][max < 16.
[A[[max

ILffmax =1 =

LU-decomposition, stability
Aisnxn. Solve AX=b: A=LU, Ly=Db, Ux=y

Stability Gaussian elimination involves an ‘“extra’” factor

p= (Il D/lIA]
e Note that
LU L|(|U[1 U
OoEIII [1U] lloo __ LI (U)||°°§p2||L||max 1O [max
||A||OO ||A1Hoo ||A||max

With so-called Partial Pivoting, we find a row permuta-
tion P such that ||L||max=1 (i.e., P, =P and P.=1).

LU-decomposition, stability
Aisnxn. Solve AX=b: A=LU, Ly=D>b, Ux=y

Stability Gaussian elimination involves an ‘“extra’” factor

p= (Il D/lIA]
e Note that
LU L|(|U[1 U
OoEIII [1U] lloo __ LI (U)||°°§p2||L||max 1O [max
||A||OO ||A1Hoo ||A||max

Note. In practice, partial pivoting may spoil sparsity:
balans efficiency and stability.

For large n and sparse A, partial pivotting may even be
unfeasible and Gaussian elimination may not be sufficiently
stable.

Strategy for solving Ax=Db for x () .

1) Apply row scaling to (x) (to reduce C(A),
that is, to reduce the forward error of (%)), i.e., solve

(D" !AXX=D"'b for x (%)
Here D = D, = (d;;) is a diagonal matrix with d;; = ||A*e;|],
the norm of the :th row of A.
Notes. e Is cheap, preserves sparsity, destroys symmetry.
e Column scaling reduces the error on D.X (rather than on x).

e Row scaling changes may lead to larger errors on b.

e (xx) is an instance of a more general strategy to improve
the conditioning, called preconditioning: M- 1Ax = b =
M~—1b where systems as Mb = b are easy to solve and
C(M~1A) is smaller than C(A).

For ease of notation,
we assume A to be replaced by D 1A and b by D 1b.

Strategy for solving Ax=Db for x () .

1) Apply row scaling to (x).

2) If feasible find appropriate permutations P, and P, and
LU-factors L and U: PAP.=LU.

‘Feasible’, that is, if costs permit.

Notes. e For optimal stability, use partial pivoting.

This, however, may destroy a favourable structure that A
may have (sparsity or symmetry or ...).

e Feasibility may require another pivoting strategy.

e Computation of L and U may be unfeasible for any pi-
voting strategy (if A is dense, n is huge).

For ease of notation,
we assume A to be replaced by P AP. and b by P,b,
we denote the computed L and U factors by L and U.

Strategy for solving Ax=Db for x () .

1) Apply row scaling to (x).

2) If feasible find appropriate permutations P, and P, and
LU-factors L and U: PAP.=LU.

3) Estimate u=3puC(A)p by, say, p.

If o is sufficient small, do 4) else do 5).

4) Solve Ly =b, Ux =y
5 Ifnk1
a) apply a few steps of iterative refinement

else
b) consider using a QR-decomposition to solve (x).

5.) If u < 1 (e.g., p~1072) apply a few steps of
iterative refinement

(on the row-scaled, permuted, system)

Xo=0
for 7=0,1,... do
break if X; is sufficiently accurate
compute the residual r; =b — AX;,
solve AuU; =1r; for u;
using the L and U factors of A
update X: X ;41 =X+ U;

Theorem. 1%; — x|| < 1 ||x]|:

the forward error is reduced by a factor u per step.

Note that the expensive part, row-scaling, pivoting, com-
puting L and U has to be done only once.

Iterative refinement is an instance of
the basic iterative scheme

Select X

X =Xg, Fr=b— AX

for 9 =1 : Jmax
break if ||r|| < tol

Compute an approximate solution U of

AUu=r
X «— X4 u
r — r— AU

If X; IS some approximate solution of AX = b with error u;,
l.e., X =X; +u,, then u; satisfies

AUj:rij—AXj
If Xj_|_1 = Xj -+ l/jj then I’j_|_1 = b — AXj_|_1 = I’j — AGJ

5.b) If u=3pulC(A)

LU

IA]

£ 1 use a

QR-decomposition

@ can be non-small if the Gaussian elimination process is
unstable (which is unlikely when combined with partial pi-

voting).

QR-decompositions spoil sparsity and are not feasible for
square systems of high dimension

QR-decompositions are useful for “solving” (in some adju-
sted way) ill-conditioned systems of modest dimension

L||U
1A

5.b) If u=3pulC(A) £ 1 use a

QR-decomposition

QR-decompositions of n x k systems (i.e., A is an n X k
matrix), with £ modest, allow stable computa-
tions and form the backbone of many methods for high
dimensional problems

e Intermezzo: orthonormal matrices

Intermezzo: orthonormal matrices
Suppose V = [V1,...,Vq] is orthonormal.
The column vector v; form an orthonormal basis of

VY =span(V) = span{vy,...,Vq}.

P =VV~* is an orthogonal projection onto V:
PxeV (xeC"), Px=x(XxeV), x—PxLPx (xeC"

I - VV* is an orthogonal projection onto Vi,

Householder reflections. H=1—- 2VV* is unitary,
a reflection wrt the ‘mirror space’ V-
if X =Xy + X1 then HX = —Xp + X\,1. (xv €V, xp c V).

Exercise. Determine # flop to compute Xy, X,,1, HX

Program Lecture 3

Factorizations

Factorizations for linear problems
L U-decomposition

Intermezzo: orthonormal matrices

Factorizations for linear problems

QR-decomposition

QR-factorization

Let A =[a1,...,a,] be an n x kK matrix.
A= QR

with Q orthonormal, R upper-A, matching dimensions:
— Q=Q1 nxn (Unitary) & R=R1 n x k
— Q=Qpnxk & R=Rgykxk (economical form).

Matlab: [Q1,R1]=qr(A); [QO,RO0]=qr(A,’0°);

QR-factorization

Let A =[a1,...,a,] be an n x kK matrix.
A= QR

with Q orthonormal, R upper-A, matching dimensions:
— Q=Q1 nxn (Unitary) & R=R1 n x k
— Q=Qpnxk & R=Rgykxk (economical form).

We may expect good stability properties since

R R
lQIRI2 (IRl _
e Al

QR-factorization

Let A =[a1,...,a,] be an n x kK matrix.
A= QR

with Q orthonormal, R upper-A, matching dimensions:
— Q=Q1 nxn (Unitary) & R=R1 n x k
— Q=Qpnxk & R=Rgykxk (economical form).

We may expect good stability properties since

R R
lQIRI2 (IRl _
O Al

Costs. Qg is a full matrix. Q7! = Q1.

QR-factorization

Let A =[a1,...,a,] be an n x kK matrix.

A=QR

with Q orthonormal, R upper-A, matching dimensions:
— Q=Q1 nxn (Unitary) & R=R1 n x k
— Q=Qpnxk & R=Rgykxk (economical form).

We may expect good stability properties since

R R
HQIIRM2 - IRAU20R]2 _
A2 [A]l2

1).

Existence. Exists (unconditionally).
Proof: Gram-Schmidt.

The columns qq,...,q, of Q form
an orthonormal basis of Range(A) = span(A).

Constructing a QR-factorization

(classical) Gram—Schmidt:

Normalise: q; = ai/[|ai]|>

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: qz; = az —aj(djas)

Normalise: do = Qo/||As||2

Constructing a QR-factorization

(classical) Gram—Schmidt:

Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 613/||a3||2

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 63/”63“2

Then A=QR (economical form),

|laill> aja> aqjasz |
[a1,a5,a3] = [d1, do, d3] 0 |lazll2 a%as
0 0 [lasl2]

GS constructs an orthonormal basis q1, 4>, d3 for span(A).
The upper triangular factor R appears as a side product.
The QR-factorization shows up in economical form.

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 613/”6]3“2

modified Gram—Schmidt:
Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: d3 = 63/”63“2

Note that g%a = g%as, because g5q; = 0.

In exact arithmetic: clasGS = modGsS.

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 63/”63“2

modified Gram—Schmidt:
Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: qdsz = ds/||azl|>

Householder-QR:
find v1 such that ||vi|[> = 1 and
(I — 2v1v”1‘)a1 =T11€1, A(l) = (I — 2V1V>'1<> A.

If X and y are normalised, then (I —2vv*)X = 71y
for some scalar 7, if v=v/||V||» with v=Xx+y.
For optimal stability, select sign to have ||v||> largest.

Constructing a QR-factorization

(classical) Gram—Schmidt:

Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 613/”6]3“2

modified Gram—-Schmidt:

Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: d3 = 63/”6]3“2

Householder-QR:
find v, such that ||vo|> =1, ejvo =0, and

(I — 2v2v§)agl) = 72€9, A(Q) = (I — 2V2V§) A(l)

Constructing a QR-factorization

(classical) Gram—Schmidt:

Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 613/”6]3“2

modified Gram—-Schmidt:

Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: d3 = 63/”6]3“2

Householder-QR:
find v3 such that ||v3|[o =1, ejvz =0, e5v3 =0, and

(I — 2v3v§)ag2) = 73€3, A(S) = (I — 2V3V§) A(z)

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 63/”63“2

modified Gram—Schmidt:
Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: d3 = (~]3/||€|3||2

Householder-QR:
find v3 such that ||v3|[o =1, ejvz =0, e5v3 =0, and

(I — 2v3v§)ag2) = 73€3, A(3) = (I — 2V3V§) A(Q)

Then [ai,az,a3] = QR, with Q unitary,

R=AGB) 5 x3upper-A,
Q= ((I —2v3Vv3s) (I — 2vov3) (I — 2v1v>{))*, n X n.

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: Q3 = az — di(djas) — dx(dbasz)
Normalise: d3 = 63/”63“2

modified Gram—Schmidt:
Orthogonalise: q = a3z —di(djas), d3 = a — d>(a5q)
Normalise: d3 = (~]3/||€|3||2

Householder-QR:
find v3 such that ||v3|[o =1, ejvz =0, e5v3 =0, and

(I — 2v3v§)ag2) = 73€3, A(3) = (I — 2V3V§) A(Q)

Then [aj,ar,a3] = QR, with Q unitary,
R=AGB) 5 x3upper-A,
Q= (T—-2vyvi)(I—-2vov5)(I—-2v3Vvy), nXn.

QR-factorization, stability

For the computed factors (/5 and /R;, we have
A+A,=QR

for some n x k A 4 with

—~

e R upper triangular,
o [|[AllFr £ kUul|AllF, with K modest:

k= 4k? (clasGS), 4k? (modGS), 4kn (Householder-QR).

QR-factorization, stability

For the computed factors (/5 and /R;, we have
A+A,=QR

for some n x k A 4 with

—~

e R upper triangular,
o [|[AllFr £ kUl|A|F, with K modest,
e |Q'Q—1I|»~ru(Ca(A)) with k of order vkn and

1 > 2 for clasGS (conjecture: 1 = 2)
1 =1 for modGS
1 = 0 for Householder-QR

QR-factorization, stability

For the computed factors (/5 and /R;, we have
A+A,=QR
for some n x k A 4 with

—~

e R upper triangular,
o ||AyllF £ kUl|A|lF, with x modest,
e |[Q'Q—1I|»~ru(Ca(A)) with k of order vkn and

1 > 2 for clasGS (conjecture: 1 = 2)
1 =1 for modGS
1 = 0 for Householder-QR

Questions. Costs?
Why differences in loss of orthogonality?
Why worry about loss of orthogonality?

Intermezzo: condition numbers

For a general (possibly non-square) matrix A, we define

AX o
Omax = Max | H, nin = Min | H, and C(A) = 2
[|X]]]| O min
where we take the max. and min. over all non-trival vectors
x (or, equivalently, over all x with ||x]| =1).

C(A) is called the condition number if A.
Note. omax = ||A||. If A is square and non-singular, then

omin = 1/||A7Y| and C(A) = |A]||A7L].

In case of the 2-norm,
omin (omax) IS the smallest (largest) singular value of A.

QR-factorization, costs

Costs in case k£ < n (neglecting lower order terms)

2k2n for clasGS, modGS as well as Householder QR

For Householder-QR it is assumed that Q is used and
stored in factorized form as a product of the Householder
reflections (store the v;). Forming the Q by explicitly
performing the product, will make Householder-QR
twice as expensive and less stable. (Recall that in LU-
factorization, forming L from the factors 1—-{;e} is trivial).

e Hence, if the vectors q; are required, clasGS or modGsS,
are preferred over Householder QR.

e ClassGS allows parallelisation.

Costs in case £ = n (neglecting lower order terms)
for Housholder QR: %ns (twice the costs of LU fact.).
for clasGS and modGS: 2n3 (thrice LU).

Loss of orthogonality: Householder-QR

Householder-QR gives a unitary matrix since the Househol-
der reflections are unitary regardless the accuracy of the

vectors v;:
keep Q in factorized form and work with its factors.

Loss of orthogonality: GS

GS can lose orthogonality already in orthonormalizing one
vector against another, say a> against qy:

d> = az —qi(dajaz), d2 =dz/|ldz]l>.
Let do = dp + A, be the computed q5. If § is the error in
gjas then Ay =4ddi/||dzl2 (plus other error terms):
nulaz|a _ nu
laz][2 sin Z(az,d1)

Conclusion. Orthogonality is (likely to be) lost if the angle
between the two vectors is small.

[Aqll2 <

Remedy. If Q- is not numerically 0 (q; and as are not nu-
merically orthogonal), then repeat the orthogonalisation:

d> =d2 —d1(ajdz), do = do/||dz]2.

Theorem. Twice is enough.

Loss of orthogonality: Gram-Schmidt

The strategy of GS for orthonormalizing a vector ag4q
against qq,...,d; relies on the assumption that d;,...,qd;
IS an orthonormal system. If this assumption is not correct,
then the loss of orthognality is amplified in the next vector.

Remedy. Repeat the orthogonalisation against all qq, ..., d;.

When to repeat?
DGKS: If £ agy4 and span(dy,...,dg) is < 45°.

Is twice enough?
In practise, Repeated GS as stable as Householder QR.

modGS can be viewed (also in rounded arithmetic) as
Householder-QR on a matrix extended at the top with a
k x k block of zeros, where A is n x k. This insight can be
exploited to prove that modGS has a better orthonormali-
sation property than classGS

Effects of loss of orthogonality

Consider the case where A is square.
et (AQ and R be the computed QR factors.

sk ——

Put E= Q Q-1 and assume |E]> < 1.
Using the QR factors, AxXx = Db will be solved as

—~

v=Q'b, solve Rx=y for x.
whereas y should be y = 6_1b (given the QR factors).
Since I+ E)"1Q'Q =1 we see that

Q' =01+B)'Q~1-B)Q"
Hence,

— /\—1 —=%k
IQb - Q bl =~ ||[EQ b|2 < ||E|2|b]2.

Effects of loss of orthogonality

Consider the case where A is square.
et (AQ and R be the computed QR factors.

sk ——

Put E= Q Q-1 and assume |E]> < 1.
Using the QR factors, AxXx = Db will be solved as

—~

v=Q'b, solve Rx=y for x.
whereas y should be y = CAQ_lb (given the QR factors).
Since I+ E)"1Q'Q =1 we see that

Q' =01+B)'Q~1-B)Q"
Hence,

— /\—1 —=%k
IQb - Q bl =~ ||[EQ b|2 < ||E|2|b]2.

Effectively, the repeated GS variant works with I-BE)Q"
rather than with Q" (or Q): I-QQ)2 =1-QI-E)Q".

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

Terminology. ‘solve AX = Db in least square sense’.

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

Application areas. Computerized Tomography

X-ray CT, SPECT, old MRI, ...

Seismography, ...

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

Lemma. V k-dim subspace C".
bo =argminyep|lb—vVv|2 & s=b-—-bglV

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

Lemma. V k-dim subspace C".
bo =argminyep|lb—vVv|2 & s=b-—-bglV

|b-Dgl|> __ [Poll>
Boly cos(Z(b,V))

tan(Z(b,V)) = [Le]P

QR-factorisation, least square

Application. If £ < n, then generally

solution x of AX = b does not exists!!
Alternative:

X = argmin||b — Ay||o,

minimising over all y € C*.

Lemma. V k-dim subspace C".
bo =argminyep|lb—vVv|2 & s=b-—-bglV

Normal equations.
X = argminy||b — Ay|| & AFAX = A'b.

Least square, stability

A is non-square, X solves AX = b in least square sense.

(A+A4)X+Az) =b+ A, least square

=
18zll2 S Z—(12sll2 + A all2 X]12) + —Z— 1A all2]Isll2

mln

Normal eq. (A*A + A D)X+ Ay) = A'b+ A

1 _ 1
- Jmin(A*A) o Umin(A)Q

1Azll2 S 21 Asll2 + 1A all2 [1X]]2)

mln

Normal equations

— Stability. Co(A)? determines stability;

— Costs. Formation A*A forms ‘extra’ costs.

Alternative. A = QoRg =

A*Ax = RiRox = RjQfb = Rox = Qgb

Note. RjRg is Cholesky's decomposition A*A

Normal equations

— Stability. Co(A)? determines stability;

— Costs. Formation A*A forms ‘extra’ costs.

Alternative. A = QoRg =

A*Ax = RiRox = RjQfb = Rox = Qgb

+ Stability. C(Rg) determines stability: C(Rg) = C(A)
except for the component b - QoQab = b — Ax:
Optimal stability.

+ Costs.

QR versus LU
For small (n < 10000), dense systems:

LU. -+ easy and cheap to compute
-+ easy and cheap to work with
— stability requires permutation (and scaling)

QR. O easy and cheap to compute, but 2x the costs LU
O easy and cheap to work with, but 1.5x the costs LU
-+ stable

For large n, sparse systems

both factorizations destroy sparsity structure. However,
LU: 4+ d effective incomplete LU with sparsity structure,
QR: =— no effective incomplete QR with sparsity structure.

