
Utrecht, 3 oktober 2017

Matrix factorizations

Gerard Sleijpen Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

Program Lecture 3

• Factorizations

• Factorizations for linear problems

LU-decomposition

• Intermezzo: orthonormal matrices

• Factorizations for linear problems

QR-decomposition

Program Lecture 3

• Factorizations

• Factorizations for linear problems

LU-decomposition

• Intermezzo: orthonormal matrices

• Factorizations for linear problems

QR-decomposition

Factorizations

A = PQR,

where

— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

NLA = Factorisations

Factorizations

A = PQR,

where

— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

‘one-sided’ factorisations as A = LU for linear systems

similarity transforms as A = VDV−1

for eigenvalue problems

congruency transforms as A = VRV∗
for linear systems and eigenvalue problems

Why not one-sided for eigenvalue problems?

Factorizations

A = PQR,

where

— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

• LU-decomposition: A = LU, PA = LU,

Cholesky decomposition: (if A is PD) A = CC∗

• QR-factorization: A = QR

• Eigenvalue decomposition: A = VDV−1

• Schur decomposition: A = QSQ∗

• Singular value decomposition: A = VDQ∗

Program Lecture 3

• Factorizations

• Factorizations for linear problems

LU-decomposition

• Intermezzo: orthonormal matrices

• Factorizations for linear problems

QR-decomposition

LU-decomposition

A is a non-singular n× n matrix.

Assigment. Solve Ax = b for x.

Strategy.

• Use Gaussian elimination to obtain

A = LU

with L lower-∆ with diag(L) = I, and
U upper-∆.

• Solve Ly = b for y,

• Solve Ux = y for x.

LU-decomposition, costs

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Costs (i.e., # flops) depend on the sparsity structure.

If A is full: 2
3n3 flop

If A has bandwidth p (i.e., aij = 0 if |i− j| > p): 2p2 n flop.

Costs may be much less if A has an ‘arrowhead’ structure.

Use a pivoting strategy to improve A’s structure, i.e.,
find a row permutation Pr and a column permutation Pc

such that PrAPc has a more favourable structure (smaller

bandwidth, longer ‘arrows’, . . .).

Solve Ax = b:

PrAPc = LU, Uy = Prb, Uz = y, x = PT
c z.

LU-decomposition, costs

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Costs (i.e., # flops) depend on the sparsity structure.

If A is full: 2
3n3 flop

If A has bandwidth p (i.e., aij = 0 if |i− j| > p): 2p2 n flop.

Costs may be much less if A has an ‘arrowhead’ structure.

Rule of the thumb. Gaussion elimination may not be

feasibe (i.e., costs are too high)
if n > 30000 for full matrices
if n > 300000 for sparse matrices (even with pivoting)

If Gaussian elimination is unfeasable, use some iterative

method: see the following lectures

LU-decomposition, stability

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

With L̂,Û, ŷ, and x̂ the computed quantities:

Theorem. (A + ∆A)x̂ = b with

|∆A| ≤ 3 pu |L̂| |Û| ≈ 3 pu |L| |U|.
Here | · | and ≤ matrix-entry-wise, p bandwidth of A.

∆A is the backward error of Gaussian elimination.
This leads to following bound on the forward error:

‖x̂− x‖
‖x‖ ≤ µ ≡ pu C(A) 3 ρ, where ρ ≡ ‖ |L| |U| ‖‖A‖ .

Here ‖ · ‖ is a vector norm.

Recall: fl(Ax) = (A + ∆A)x with |∆A| ≤ pu |A|.

LU-decomposition, stability

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an “extra” factor

3ρ ≡ 3(‖ |L| |U| ‖)/‖A‖
• Note that

ρ∞ ≡ ‖ |L| |U| ‖∞‖A‖∞
=
‖ |L| (|U|1) ‖∞
‖A1‖∞

≤ p2 ‖L‖max
‖U‖max

‖A‖max
.

Here, ‖A‖max = ‖(ai,j)‖max ≡ maxi,j |ai,j|.

• Extra factor ρ∞ can be large (2n−1) even if ‖L‖max = 1.

LU-decomposition, stability

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an “extra” factor

3ρ ≡ 3(‖ |L| |U| ‖)/‖A‖
• Note that

ρ∞ ≡ ‖ |L| |U| ‖∞‖A‖∞
=
‖ |L| (|U|1) ‖∞
‖A1‖∞

≤ p2 ‖L‖max
‖U‖max

‖A‖max
.

• Extra factor ρ∞ can be large (2n−1) even if ‖L‖max = 1.

Wilkinson’s Miracle [±1960]. In practice, almost always,

‖L‖max = 1 ⇒ ‖U‖max

‖A‖max
≤ 16.

LU-decomposition, stability

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an “extra” factor

3ρ ≡ 3(‖ |L| |U| ‖)/‖A‖
• Note that

ρ∞ ≡ ‖ |L| |U| ‖∞‖A‖∞
=
‖ |L| (|U|1) ‖∞
‖A1‖∞

≤ p2 ‖L‖max
‖U‖max

‖A‖max
.

With so-called Partial Pivoting, we find a row permuta-

tion P such that ‖L‖max = 1 (i.e., Pr = P and Pc = I).

LU-decomposition, stability

A is n× n. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an “extra” factor

3ρ ≡ 3(‖ |L| |U| ‖)/‖A‖
• Note that

ρ∞ ≡ ‖ |L| |U| ‖∞‖A‖∞
=
‖ |L| (|U|1) ‖∞
‖A1‖∞

≤ p2 ‖L‖max
‖U‖max

‖A‖max
.

Note. In practice, partial pivoting may spoil sparsity:

balans efficiency and stability.

For large n and sparse A, partial pivotting may even be

unfeasible and Gaussian elimination may not be sufficiently

stable.

Strategy for solving Ax = b for x (∗) .

1) Apply row scaling to (∗) (to reduce C(A),

that is, try to reduce the forward error of (∗)), i.e., solve

(D−1A)x = D−1b for x (∗∗)
Here D = Dr = (dij) is a diagonal matrix with dii = ‖A∗ei‖,
the norm of the ith row of A.

Notes. • Is cheap, preserves sparsity, destroys symmetry.

• Column scaling reduces the error on Dc x (rather than on x).

• Row scaling changes may lead to larger errors on b.

• (∗∗) is an instance of a more general strategy to improve

the conditioning, called preconditioning: M−1Ax = b̃ ≡
M−1b where systems as Mb̃ = b are easy to solve and

C(M−1A) is smaller than C(A).

For ease of notation,
we assume A to be replaced by D−1A and b by D−1b.

Strategy for solving Ax = b for x (∗) .

1) Apply row scaling to (∗).
2) If feasible find appropriate permutations Pr and Pc and

LU-factors L and U: Pr APc = LU.

‘Feasible’, that is, if costs permit.

Notes. • For optimal stability, use partial pivoting.

This, however, may destroy a favourable structure that A

may have (sparsity or symmetry or . . .).

• Feasibility may require another pivoting strategy.

• Computation of L and U may be unfeasible for any pi-

voting strategy (if A is dense, n is huge).

For ease of notation,
we assume A to be replaced by Pr APc and b by Prb,
we denote the computed L and U factors by L and U.

Strategy for solving Ax = b for x (∗) .

1) Apply row scaling to (∗).
2) If feasible find appropriate permutations Pr and Pc and

LU-factors L and U: Pr APc = LU.

3) Estimate µ ≡ 3pu C(A)ρ by, say, µ̂.

Recall that ‖x̂− x‖ ≤ µ ‖x‖ and ρ ≡ (‖ |L| |U| ‖)/‖ |A| ‖.
If µ̂ is sufficient small, do 4) else do 5).

4) Solve Ly = b, Ux = y and undo the row permutation on x.

5) If µ̂¿ 1

a) apply a few steps of iterative refinement

else

b) consider using a QR-decomposition to solve (∗).

Details on 5.a) and 5.b) on the next transparancies.

5.a) If µ¿ 1 (e.g., µ ≈ 10−2) apply a few steps of

iterative refinement

(on the row-scaled, permuted, system)

x0 = 0
for j = 0,1, . . . do

break if xj is sufficiently accurate

compute the residual rj ≡ b−Axj,

solve Auj = rj for uj
using the L and U factors of A

update x: xj+1 = xj + ûj

Theorem. ‖xj − x‖ . µj‖x‖:
the forward error is reduced by a factor µ per step.

Note that the expensive part, row-scaling, pivoting, com-

puting L and U has to be done only once.

Iterative refinement is an instance of
the basic iterative scheme

Select x0

x = x0, r = b−Ax

for j = 1 : jmax

break if ‖r‖ ≤ tol

Compute an approximate solution û of

Au = r

x ← x + û

r ← r−Aû

If xj is some approximate solution of Ax = b with error uj,
i.e., x = xj + uj, then uj satisfies

Auj = rj ≡ b−Axj

If xj+1 = xj + ûj then rj+1 = b−Axj+1 = rj −Aûj.

5.b) If µ ≡ 3 pu C(A) ‖ |L| |U| ‖‖A‖ 6¿ 1 use a

QR-decomposition

Before discussion QR-decomposition some comments.

µ can be non-small if the Gaussian elimination process is

unstable (which is unlikely when combined with partial pi-

voting).

QR-decompositions spoil sparsity and are not feasible for

square systems of high dimension as n ≥ 20000.

QR-decompositions are useful for “solving” (in some adju-

sted way) ill-conditioned systems of modest dimension as

n ≤ 20000

5.b) If µ ≡ 3 pu C(A) ‖ |L| |U| ‖‖A‖ 6¿ 1 use a

QR-decomposition

Before discussion QR-decomposition some comments.

QR-decompositions of n × k systems (i.e., A is an n × k

matrix), with k modest, as k < 200, allow stable computa-

tions and form the backbone of many methods for high

dimensional problems with n > 107.

Program Lecture 3

• Factorizations

• Factorizations for linear problems

LU-decomposition

• Intermezzo: orthonormal matrices

• Factorizations for linear problems

QR-decomposition

Intermezzo: orthonormal matrices

Suppose V = [v1, . . . ,vq] is orthonormal.

The column vector vi form an orthonormal basis of

V ≡ span(V) = span{v1, . . . ,vq}.

[Ex.3.7]P ≡ VV∗ is an orthogonal projection onto V:
Px ∈ V (x ∈ Cn), Px = x (x ∈ V), x−Px ⊥ Px (x ∈ Cn)

I−VV∗ is an orthogonal projection onto V⊥.

[ex.3.8]Householder reflections. H ≡ I− 2VV∗ is unitary,

a reflection wrt the ‘mirror space’ V⊥:
if x = xV + xV⊥ then Hx = −xV + xV⊥. (xV ∈ V, xV⊥ ∈ V⊥).

Exercise. Determine # flop to compute xV, xV⊥, Hx

Program Lecture 3

• Factorizations

• Factorizations for linear problems

LU-decomposition

• Intermezzo: orthonormal matrices

• Factorizations for linear problems

QR-decomposition

QR-factorization

Let A = [a1, . . . ,ak] be an n× k matrix.

A = QR

with Q orthonormal, R upper-∆, matching dimensions:

— Q ≡Q1 n× n (Unitary) & R ≡ R1 n× k

— Q ≡Q0 n× k & R ≡ R0 k × k (economical form).

Matlab: [Q1,R1]=qr(A); [Q0,R0]=qr(A,’0’);

QR-factorization

Let A = [a1, . . . ,ak] be an n× k matrix.

A = QR

with Q orthonormal, R upper-∆, matching dimensions:

— Q ≡Q1 n× n (Unitary) & R ≡ R1 n× k

— Q ≡Q0 n× k & R ≡ R0 k × k (economical form).

We may expect good stability properties since

‖ |Q| |R| ‖2
‖A‖2

≤ n (
‖Q‖2 ‖R‖2
‖A‖2

= 1).

Recall that with A = LU the stability is determined

by the size of ‖ |L| |U| ‖
‖A‖ .

QR-factorization

Let A = [a1, . . . ,ak] be an n× k matrix.

A = QR

with Q orthonormal, R upper-∆, matching dimensions:

— Q ≡Q1 n× n (Unitary) & R ≡ R1 n× k

— Q ≡Q0 n× k & R ≡ R0 k × k (economical form).

We may expect good stability properties since

‖ |Q| |R| ‖2
‖A‖2

≤ n (
‖Q‖2 ‖R‖2
‖A‖2

= 1).

Costs. Q0 is a full matrix. Q−1
1 = Q∗1.

QR-factorization

Let A = [a1, . . . ,ak] be an n× k matrix.

A = QR

with Q orthonormal, R upper-∆, matching dimensions:

— Q ≡Q1 n× n (Unitary) & R ≡ R1 n× k

— Q ≡Q0 n× k & R ≡ R0 k × k (economical form).

We may expect good stability properties since

‖ |Q| |R| ‖2
‖A‖2

≤ n (
‖Q‖2 ‖R‖2
‖A‖2

= 1).

[Ass.3.1]
Existence. Exists (unconditionally).

Proof: Gram–Schmidt.

The columns q1, . . . ,qk of Q form
an orthonormal basis of Range(A) = span(A).

Constructing a QR-factorization

(classical) Gram–Schmidt:

Normalise: q1 = a1/‖a1‖2

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃2 = a2 − q1(q
∗
1a2)

Normalise: q2 = q̃2/‖q̃2‖2

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

Then A = QR (economical form),

[a1,a2,a3] = [q1,q2,q3]



‖a1‖2 q∗1a2 q∗1a3

0 ‖q̃2‖2 q∗2a3

0 0 ‖q̃3‖2




GS constructs an orthonormal basis q1,q2,q3 for span(A).

The upper triangular factor R appears as a side product.

The QR-factorization shows up in economical form.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Note that q∗2q̃ = q∗2a3, because q∗2q1 = 0.

In exact arithmetic: clasGS = modGS.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Householder-QR:

find v1 such that ‖v1‖2 = 1 and

(I− 2v1v
∗
1)a1 = τ1e1, A(1) = (I− 2v1v

∗
1)A.

If x and y are normalised, then (I− 2vv∗)x = τy

for some scalar τ , if v ≡ ṽ/‖ṽ‖2 with ṽ ≡ x± y.

For optimal stability, select sign to have ‖ṽ‖2 largest.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Householder-QR:

find v2 such that ‖v2‖2 = 1, e∗1v2 = 0, and

(I− 2v2v
∗
2)a

(1)
2 = τ2e2, A(2) = (I− 2v2v

∗
2)A

(1).

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Householder-QR:

find v3 such that ‖v3‖2 = 1, e∗1v3 = 0, e∗2v3 = 0, and

(I− 2v3v
∗
3)a

(2)
3 = τ3e3, A(3) = (I− 2v3v

∗
3)A

(2).

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Householder-QR:

find v3 such that ‖v3‖2 = 1, e∗1v3 = 0, e∗2v3 = 0, and

(I− 2v3v
∗
3)a

(2)
3 = τ3e3, A(3) = (I− 2v3v

∗
3)A

(2).

Then [a1,a2,a3] = QR, with Q unitary,

R ≡ A(3), n× 3 upper-∆,

Q ≡
(
(I− 2v3v

∗
3)(I− 2v2v

∗
2)(I− 2v1v

∗
1)

)∗
, n× n.

Constructing a QR-factorization

(classical) Gram–Schmidt:

Orthogonalise: q̃3 = a3 − q1(q
∗
1a3)− q2(q

∗
2a3)

Normalise: q3 = q̃3/‖q̃3‖2

modified Gram–Schmidt:

Orthogonalise: q̃ = a3 − q1(q
∗
1a3), q̃3 = q̃− q2(q

∗
2q̃)

Normalise: q3 = q̃3/‖q̃3‖2

Householder-QR:

find v3 such that ‖v3‖2 = 1, e∗1v3 = 0, e∗2v3 = 0, and

(I− 2v3v
∗
3)a

(2)
3 = τ3e3, A(3) = (I− 2v3v

∗
3)A

(2).

Then [a1,a2,a3] = QR, with Q unitary,

R ≡ A(3), n× 3 upper-∆,

Q ≡ (I− 2v1v
∗
1)(I− 2v2v

∗
2)(I− 2v3v

∗
3), n× n.

QR-factorization, stability

For the computed factors Q̂ and R̂, we have

A + ∆A = Q̂ R̂

for some n× k ∆A with

• R̂ upper triangular,

• ‖∆A‖F ≤ κu ‖A‖F , with κ modest:

κ = 4k2 (clasGS), 4k2 (modGS), 4kn (Householder-QR).

QR-factorization, stability

For the computed factors Q̂ and R̂, we have

A + ∆A = Q̂ R̂

for some n× k ∆A with

• R̂ upper triangular,

• ‖∆A‖F ≤ κu ‖A‖F , with κ modest,

• ‖Q̂∗Q̂− I‖2 ≈ κu (C2(A))i with κ of order
√

kn and

i ≥ 2 for clasGS (conjecture: i = 2)

i = 1 for modGS

i = 0 for Householder-QR

QR-factorization, stability

For the computed factors Q̂ and R̂, we have

A + ∆A = Q̂ R̂

for some n× k ∆A with

• R̂ upper triangular,

• ‖∆A‖F ≤ κu ‖A‖F , with κ modest,

• ‖Q̂∗Q̂− I‖2 ≈ κu (C2(A))i with κ of order
√

kn and

i ≥ 2 for clasGS (conjecture: i = 2)

i = 1 for modGS

i = 0 for Householder-QR

Questions. Costs?
Why differences in loss of orthogonality?
Why worry about loss of orthogonality?

Intermezzo: condition numbers

For a general (possibly non-square) matrix A, we define

σmax ≡ max
‖Ax‖
‖x‖ , σmin ≡ min

‖Ax‖
‖x‖ , and C(A) ≡ σmax

σmin
,

where we take the max. and min. over all non-trival vectors

x (or, equivalently, over all x with ‖x‖ = 1).

C(A) is called the condition number if A.

Note. σmax = ‖A‖. If A is square and non-singular, then

σmin = 1/‖A−1‖ and C(A) = ‖A‖ ‖A−1‖.

In case of the 2-norm,

σmin (σmax) is the smallest (largest) singular value of A.

QR-factorization, costs

Costs in case k ¿ n (neglecting lower order terms)

2k2n for clasGS, modGS as well as Householder QR

For Householder-QR it is assumed that Q is used and

stored in factorized form as a product of the Householder

reflections (store the vi). Forming the Q by explicitly

performing the product, will make Householder-QR

twice as expensive and less stable. (Recall that in LU-

factorization, forming L from the factors I−`ie
∗
i is trivial).

• Hence, if the vectors qi are required, clasGS or modGS,

are preferred over Householder QR.

• classGS allows parallelisation.

Costs in case k = n (neglecting lower order terms)

for Housholder QR: 4
3n3 (twice the costs of LU fact.).

for clasGS and modGS: 2n3 (thrice LU).

Loss of orthogonality: Householder-QR

Householder-QR gives a unitary matrix since the Househol-

der reflections are unitary regardless the accuracy of the

vectors vi:

keep Q in factorized form and work with its factors.

Loss of orthogonality: GS

GS can lose orthogonality already in orthonormalizing one

vector against another, say a2 against q1:

q̃2 = a2 − q1(q
∗
1a2), q2 = q̃2/‖q̃2‖2.

Let q̂2 = q2 + ∆q be the computed q2. If δ is the error in

q∗1a2 then ∆q = δ q1/‖q̃2‖2 (plus other error terms):

‖∆q‖2 ≤
nu ‖a2‖2
‖q̃2‖2

≈ nu

sin∠(a2,q1)
.

Conclusion. Orthogonality is (likely to be) lost if the angle

between the two vectors is small.

Remedy. If q̃2 is not numerically 0 (q1 and a2 are not nu-

merically orthogonal), then repeat the orthogonalisation:

q̃2 = q̂2 − q1(q
∗
1q̂2), q2 = q̃2/‖q̃2‖2.

Theorem. Twice is enough.

Loss of orthogonality: Gram-Schmidt

The strategy of GS for orthonormalizing a vector ak+1
against q1, . . . ,qk relies on the assumption that q1, . . . ,qk
is an orthonormal system. If this assumption is not correct,
then the loss of orthognality is amplified in the next vector.

Remedy. Repeat the orthogonalisation against all q1, . . . ,qk.

When to repeat?

DGKS: If ∠ ak+1 and span(q1, . . . ,qk) is < 45◦.

Is twice enough?
In practise, Repeated GS as stable as Householder QR.

modGS can be viewed (also in rounded arithmetic) as
Householder-QR on a matrix extended at the top with a
k× k block of zeros, where A is n× k. This insight can be
exploited to prove that modGS has a better orthonormali-
sation property than classGS

Effects of loss of orthogonality

Consider the case where A is square.

Let Q̂ and R̂ be the computed QR factors.

Put E ≡ Q̂
∗
Q̂− I and assume ‖E‖2 < 1.

Using the QR factors, Ax = b will be solved as

y = Q̂
∗
b, solve R̂x = y for x.

whereas y should be y = Q̂
−1

b (given the QR factors).

Since (I + E)−1Q̂
∗
Q̂ = I, we see that

Q̂
−1

= (I + E)−1Q̂
∗ ≈ (I−E)Q̂

∗
.

Hence,

‖Q̂∗b− Q̂
−1

b‖2 ≈ ‖EQ̂
∗
b‖2 ≤ ‖E‖2‖b‖2.

E could be computed,
but would make the methods more expensive!

Effects of loss of orthogonality

Consider the case where A is square.

Let Q̂ and R̂ be the computed QR factors.

Put E ≡ Q̂
∗
Q̂− I and assume ‖E‖2 < 1.

Using the QR factors, Ax = b will be solved as

y = Q̂
∗
b, solve R̂x = y for x.

whereas y should be y = Q̂
−1

b (given the QR factors).

Since (I + E)−1Q̂
∗
Q̂ = I, we see that

Q̂
−1

= (I + E)−1Q̂
∗ ≈ (I−E)Q̂

∗
.

Hence,

‖Q̂∗b− Q̂
−1

b‖2 ≈ ‖EQ̂
∗
b‖2 ≤ ‖E‖2‖b‖2.

Effectively, the repeated GS variant works with (I−E)Q̂
∗

rather than with Q̂
∗
(or Q̂

−1
): (I−Q̂Q̂

∗
)2 = I−Q̂(I−E)Q̂

∗
.

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

Terminology. ‘solve Ax = b in least square sense’.

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

Application areas. Computerized Tomography
X-ray CT, SPECT, old MRI, . . .

Seismography, . . .

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

Lemma. V k-dim subspace Cn.

b0 = argminv∈V ‖b− v‖2 ⇔ s ≡ b− b0 ⊥ V

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

Lemma. V k-dim subspace Cn.

b0 = argminv∈V ‖b− v‖2 ⇔ s ≡ b− b0 ⊥ V

tan(∠(b,V)) = ‖b−b0‖2
‖b0‖2 , cos(∠(b,V)) = ‖b0‖2

‖b‖2

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.14]

Alternative:

x = argmin‖b−Ay‖2,

minimising over all y ∈ Ck.

Lemma. V k-dim subspace Cn.

b0 = argminv∈V ‖b− v‖2 ⇔ s ≡ b− b0 ⊥ V

Normal equations.

x = argminy‖b−Ay‖ ⇔ A∗Ax = A∗b.

Least square, stability

A square, (A + ∆A)(x + ∆x) = b + ∆b ⇒
‖∆x‖2 . ‖A−1‖2 (‖∆b‖2 + ‖∆A‖2 ‖x‖2)

A is non-square, x solves Ax = b in least square sense.

(A + ∆A)(x + ∆x) = b + ∆b least square

⇒
‖∆x‖2 . 1

σmin
(‖∆b‖2 + ‖∆A‖2 ‖x‖2) + 1

σ2
min
‖∆A‖2 ‖s‖2

Normal eq. (A∗A + ∆̃A)(x + ∆x) = A∗b + ∆̃b

⇒ 1
σmin(A

∗A)
= 1

σmin(A)2

‖∆x‖2 . 1
σ2
min

(‖∆̃b‖2 + ‖∆̃A‖2 ‖x‖2)

Normal equations

Stability. C2(A)2 determines stability; C2(A) = σmax
σmin

.

Costs. Formation A∗A forms ‘extra’ costs.

Alternative. A = Q0R0 ⇒

A∗Ax = R∗0R0x = R∗0Q∗0b ⇒ R0x = Q∗0b

Note. R∗0R0 is Cholesky’s decomposition A∗A

Normal equations

Stability. C2(A)2 determines stability; C2(A) = σmax
σmin

.

Costs. Formation A∗A forms ‘extra’ costs.

Alternative. A = Q0R0 ⇒

A∗Ax = R∗0R0x = R∗0Q∗0b ⇒ R0x = Q∗0b

+ Stability. C(R0) determines stability: C(R0) = C(A)

except for the component b−Q0Q
∗
0b = b−Ax:

Optimal stability.

+ Costs.

QR versus LU

For small (n < 10000), dense systems:

LU. + easy and cheap to compute

+ easy and cheap to work with

stability requires permutation (and scaling)

QR. o easy and cheap to compute, but 2× the costs LU

o easy and cheap to work with, but 1.5× the costs LU

+ stable

For large n, sparse systems

both factorizations destroy sparsity structure. However,

LU: + ∃ effective incomplete LU with sparsity structure,

QR: no effective incomplete QR with sparsity structure.

