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Program Lecture 4

• Basic methods for eigenproblems.

• Power method

• Shift-and-invert Power method

• QR algorithm

• Basic iterative methods for linear systems

• Richardson’s method

• Jacobi, Gauss-Seidel and SOR

• Iterative refinement

• Steepest decent and the Minimal residual method
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Basic methods for eigenproblems

The eigenvalue problem

Av = λv

can not be solved in a direct way for problems of order > 4, since

the eigenvalues are the roots of the characteristic equation

det(A − λI) = 0.

Today we will discuss two iterative methods for solving the

eigenproblem.



October 5, 2016 4

National Master Course

The Power method

The Power method is the classical method to compute in

modulus largest eigenvalue and associated eigenvector of a

matrix.

Multiplying with a matrix amplifies strongest the eigendirection

corresponding to the in modulus largest eigenvalues.

Successively multiplying and scaling (to avoid overflow or

underflow) yields a vector in which the direction of the largest

eigenvector becomes more and more dominant.
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The Power method in action

A1 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,



October 5, 2016 6

National Master Course

The Power method in action

A2 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A3 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A4 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A5 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A6 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A7 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A8 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A9 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A10 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A11 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A12 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A13 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959
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5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A14 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A15 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A17 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A18 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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The Power method in action

A19 u0

A≡=

2

4

1.1041 −0.0204

0.0408 0.8959

3

5.

λ1 = 1.1, λ2 = 0.9,
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Algorithm

The Power method for an n × n matrix A.

u0 ∈ Cn is given

for k = 1, 2, ...

ũk = Auk−1

uk = ũk/‖ũk‖2

λ(k) = u∗
k−1ũk

end for

If uk is an eigenvector corresponding to λj , then

λ(k+1) = u∗
kAuk = λj u∗

kuk = λj ‖uk‖
2
2 = λj .
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Algorithm

The Power method for an n × n matrix A.

u0 ∈ Cn is given

for k = 1, 2, ...

ũk = Auk−1

uk = ũk/‖ũk‖2

λ(k) = u∗
k−1ũk

end for

If uk is an eigenvector corresponding to λj , then

λ(k+1) = u∗
kAuk = λj u∗

kuk = λj ‖uk‖
2
2 = λj .
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Convergence (1)

Let the n eigenvalues λi with eigenvectors vi, Avi = λivi, be

ordered such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

• Assume the eigenvectors v1, . . . ,vn form a basis.

• Assume |λ1| > |λ2|.

Each arbitrary starting vector u0 can be written as:

u0 = α1v1 + α2v2 + ... + αnvn

and if α1 6= 0, then it follows that

Ak u0 = α1λ
k
1


v1 +

n∑

j=2

αj

α1

(
λj

λ1

)k

vj


 .
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Convergence (2)

Using this equality we conclude that

|λ1 − λ(k)| = O

(∣∣∣∣
λ2

λ1

∣∣∣∣
k
)

(k → ∞)

and also that uk directionally converges to v1:

the angle between uk and v1 is of order

∣∣∣∣
λ2

λ1

∣∣∣∣
k

.

If |λ1| > |λj | for all j > 1, then we call

λ1 the dominant eigenvalue and

v1 the dominant eigenvector .
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Convergence (2)

Using this equality we conclude that

|λ1 − λ(k)| = O

(∣∣∣∣
λ2

λ1

∣∣∣∣
k
)

(k → ∞)

and also that uk directionally converges to v1:

the angle between uk and v1 is of order

∣∣∣∣
λ2

λ1

∣∣∣∣
k

.

Auk ≈ λ(k)uk for k large: with residual rk ≡ Auk − λ(k)uk

‖rk‖2

‖uk‖2
= ‖rk‖2 = O

(∣∣∣∣
λ2

λ1

∣∣∣∣
k
)

(k → ∞)
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Convergence (3)
• If the component α1v1 in u0 is small as compared to, say α2v2,

i.e. |α1| ≪ |α2|, then initially convergence may seem to be

dominated by λ2 (until |α2λ
k
2 | < |α1λ

k
1)).

• If the basis of eigenvectors is ill-conditioned, then some

eigenvector components in u0 may be large even if u0 is modest

and initially convergence may seem to be dominated by

non-dominant eigenvalues.

• u0 = Va, where V ≡ [v1, . . . ,vn], a ≡ (α1, . . . , αn)T.

Hence, ‖u0‖ ≤ ‖V‖ ‖a‖ and ‖a‖ = ‖V−1u0‖ ≤ ‖V−1‖ ‖u0‖ : the

constant in the ‘O-term’ may depend on the conditioning of the

basis of eigenvectors.
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Convergence (4)

Note that there is a problem if |λ1| = |λ2|, which is the case for

instance if λ1 = λ2.

A vector u0 can be written as

u0 = α1v1 + α2v2 +

n∑

j=3

αjvj .

The component in the direction of v3, . . . ,vn will vanish in the

Power method if |λ2| > |λ3|, but uk will not tend to a limit if u0

has nonzero components in v1 and v2 and |λ1| = |λ2|, λ1 6= λ2.
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Shifting

Clearly, the (asymptotic) convergence depends on |λ2

λ1
|.

To speed-up convergence the Power method can also be applied

to the shifted problem

(A − σI)v = (λ − σ)v

The asymptotic rate of convergence now becomes
∣∣∣∣
λ2 − σ

λ1 − σ

∣∣∣∣

Moreover, by choosing a suitable shift σ (how?) convergence

can be forced towards the smallest eigenvalue of A.
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Shift-and-invert

Another way to speed-up convergence is to apply the Power

method to the shifted and inverted problem

(A − σI)−1v = µv, λ =
1

µ
+ σ.

This technique allows us to compute eigenvalues near the shift.

However, for this the solution of a system is required in every

iteration!

Assignment. Show that the shifted and inverted problem and

the original problem share the same eigenvectors.
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QR-factorisation, power method
Consider the QR-decomposition A = QR

with Q = [q1, . . . ,qn] unitary and R = (rij) upper triangular.

Observations.
1) Ae1 = r11 q1.

2) Since A∗Q = R∗, we also have A∗qn = rnn en.

The QR-decomposition incorporates one step of the power

method with A in the first column of Q and with (A∗ )−1 in the

last column of Q (without inverting A!).

3) Since span(q1, . . . ,qk) = A(span(e1, . . . , ek)), the first k

columns of Q represent one step of subspace power method.
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Intermezzo
Consider the standard basis e1, . . . , en in C

n and

the ‘rotated’ basis q1, . . . ,qn.

Consider and x ∈ C
n:

x = (x1, . . . , xn)T represents x w.r.t. e1, . . . , en.

x̃ ≡ Q∗x represents x w.r.t. q1, . . . ,qn : Qx̃ = x.

e1 = (1, 0, . . . , 0)T represents q1 w.r.t. q1, . . . ,qn : Qe1 = q1

Q∗Aq1 represents Aq1 w.r.t. q1, . . . ,qn.

Q∗AQe1 represents Aq1 w.r.t. q1, . . . ,qn.

Put A1 ≡ Q∗AQ .

A1e1 represents Aq1, the second step of the Power method!
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Intermezzo
Consider the standard basis e1, . . . , en in C

n and

the ‘rotated’ basis q1, . . . ,qn.

Consider and x ∈ C
n:

x = (x1, . . . , xn)T represents x w.r.t. e1, . . . , en.

x̃ ≡ Q∗x represents x w.r.t. q1, . . . ,qn : Qx̃ = x.

e1 = (1, 0, . . . , 0)T represents q1 w.r.t. q1, . . . ,qn : Qe1 = q1

Q∗Aq1 represents Aq1 w.r.t. q1, . . . ,qn.

Q∗AQe1 represents Aq1 w.r.t. q1, . . . ,qn.

Put A1 ≡ Q∗AQ = Q∗(QR)Q = RQ : reverse factors!

A1e1 represents Aq1, the second step of the Power method!
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QR-factorisation, power method
Consider the QR-decomposition A = QR

with Q = [q1, . . . ,qn] unitary and R = (rij) upper triangular.

Observations.
1) Ae1 = r11 q1.

2) Since A∗Q = R∗, we also have A∗qn = rnn en.

The QR-decomposition incorporates one step of the power

method with A in the first column of Q and with (A∗ )−1 in the

last column of Q (without inverting A!).

To continu, ‘rotate’ the basis: instead of e1, . . . , en,
take q1, . . . ,qn as new basis in domain and image space of A.
A1 ≡ Q∗AQ = RQ is the matrix of A w.r.t. this rotated basis.
In the new basis q1 and qn are represented by e1 and en, resp..



October 5, 2016 34

National Master Course

The QR method (1)
This leads to the QR method , a popular technique in particular

to solve small or dense eigenvalue problems.

The method repeatedly uses QR-factorisation.

The method starts with the matrix A0 ≡ A,

factors it into A0 = Q0 R0,

and then reverses the factors: A1 = R0 Q0.

Assignment. Show that A0 and A1 are similar (share the same

eigenvalues).
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The QR method (1)
This leads to the QR method , a popular technique in particular

to solve small or dense eigenvalue problems.

The method repeatedly uses QR-factorisation.

The method starts with the matrix A0 ≡ A,

factors it into A0 = Q0 R0,

and then reverses the factors: A1 = R0 Q0.

Assignment. Show that A0 and A1 are similar (share the same

eigenvalues).

A0 Q0 = Q0 R0 Q0 = Q0 A1
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The QR method (2)
And repeats these steps:

factor Ak = QkRk, multiply Ak+1 = RkQk.

Hence, Ak Qk = Qk Ak+1 and

A0 (Q0Q1 · . . . · Qk−1) = (Q0Q1 · . . . · Qk−1)Ak

Uk ≡ Q0Q1 · . . . ·Qk−1 is unitary,

A0Uk = UkAk : A0 and Ak are similar.
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The QR method (2)
And repeats these steps:

factor Ak = QkRk, multiply Ak+1 = RkQk.

Hence, with Uk ≡ Q0Q1 · · ·Qk−1,

AUk = Uk Ak = UkQk Rk = Uk+1 Rk.

In particular, Au
(k)
1 = τ u

(k+1)
1 with τ the (1, 1)-entry of Rk:

the first columns u
(k)
1 of the Uk represent the power method.

Here, we used that Rk is upper triangular.
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The QR method (2)
And repeats these steps:

factor Ak = QkRk, multiply Ak+1 = RkQk.

Hence, Uk ≡ Q0Q1 · . . . ·Qk−1 is unitary and

A∗ Uk+1 = Uk R∗
k.

In particular, A∗u
(k+1)
n = τ u

(k)
n , now with τ the (n, n)-entry of

R∗
k: the last column u

(k)
n of Uk incorporates the inverse power

method. Here, we used that R∗
k is lower triangular.



October 5, 2016 36

National Master Course

The QR method (2)
And repeats these steps:

factor Ak = QkRk, multiply Ak+1 = RkQk.

Hence, Uk ≡ Q0Q1 · . . . · Qk−1 is unitary,

Uk converges to an unitary matrix U,

Rk converges to an upper triangular matrix S, and

AUk = Uk+1Rk → AU = US,

which is a so-called Schur decomposition of A.

The eigenvalues of A are on the main diagonal of S

(They appear on the main diagonal of Ak and of Rk).
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The QR method (3)
Normally the algorithm is used with shifts

• Ak − σkI = QkRk, Ak+1 = RkQk + σkI

Check that Ak+1 is similar to Ak.

• The process incorporates shift-and-invert iteration

(in the last column of Uk ≡ Q0 · . . . ·Qk−1).

The shifted algorithm (with proper shift) converges quadratically.

An eigenvalue of the 2 × 2 right lower block of Ak is such a

proper shift (Wilkinson’s shift ).



October 5, 2016 38

National Master Course

The QR method (4)

Other ingredients of an effective algorithm of the QR method:

• Deflation is used, that is,

converged columns and rows (the last ones) are removed.

Theorem. Ak+1 is Hessenberg if Ak is Hessenberg:

• Select A0 = U∗
0 AU0 to be upper Hessenberg.

Costs to compute all eigenvalues (do not compute U)

of the n × n matrix A to full accuracy: ≈ 12n3 flop.

Stability is optimal

(order of nu× stability of the eigenvalue problem of A).
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The QR method for eigenvalues

Ingredients (summary):

1) Bring A to upper Hessenberg form

2) Select an appropriate shift strategy

3) Repeat: shift, factor, reverse factors & multiply, de-shift

4) Deflate upon convergence

Find all eigenvalues λj on the diagonal of S.

Costs ≈ 12n3 flop.

Discard one of the ingredients costs O(n4) or higher.

n = 103: Matlab needs a few seconds. What about n = 104?
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The QR method for eigenvectors

Property. If Sy = λy, then Av = λv for v ≡ Uy.

For λ = Sjj , y easily to be computed by back substitution

starting from yj with, say, yj = 1 (and yi = 0 for j > i).

However,

computing U as Q0 · . . . · Qk costs O(n4) flop (when k = O(n)).

Alternative. Apply one step of Shift-and-invert with shift λ:

solve (A − λI)v = e1 for x

(with LU-decomp. and A0 upper Hessenberg) for each λ.

Total costs (including rotation to ‘undo’ Hessenberg) ≈ 8n3 flop.

No need to update (nor store) Uk.
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The QR method: concluding remarks
• The QR method is the method of choice for dense systems of

size n with n up to a few thousend.

• Usually, for large values of n, one is only interested in a few

eigenpairs or a part of the spectrum. The QR-method computes

all eigenvalues. The order in which the method detects the

eigenvalues can not be pre-described. Therefore, all

eigenvalues are computed and the wanted ones are selected.

• For larger values of n, methods are used (to be discussed in a

following lectures) that project the eigenvalue problem onto low

dimensional spaces, where the QR method is used.

• The method of choice for computing zeros of polynomials is

also the QR method (applied to the companion system).
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Iterative methods for linear systems

Iterative methods construct successive approximations xk to the

solution of the linear systems Ax = b. Here k is the iteration

number, and the approximation xk is also called the iterate .

The vector ek ≡ xk − x is the error ,

rk ≡ b− Axk (= −Aek) is the residual .

The iterative methods are composed of only a few different basic

operations:

• Products with the matrix A

• Vector operations (updates and inner product operations)

• Preconditioning operations
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Preconditioning

Usually iterative methods are applied not to the original system

Ax = b,

but to the preconditioned system

M−1Ax = M−1b,

where the preconditioner M is chosen such that:

• Preconditioning operations (operations with M−1, i.e.,

solves Mw = r for w) are cheap;

• The iterative method converges much faster for the

preconditioned system with appropriate preconditioner.
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Basic iterative methods

The first iterative methods we will discuss are the basic iterative
methods . Basic iterative methods only use information of the

previous iteration.

Until the 70’s they were quite popular. Some are still used but as

preconditioners in combination with an acceleration technique.

They also still play a role in multigrid techniques where they are

used as smoothers.
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Basic iterative methods (2)

Basic iterative methods are usually constructed using

a splitting of A:

A = M − R.

Successive approximations are then computed using the

iterative process

Mxk+1 = Rxk + b

which is equivalent too

xk+1 = xk + M−1(b −Axk) = xk + M−1rk

The next few slides we look at M = I.
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Richardson’s method

The choice M = I, R = I −A gives Richardson’s method ,

which is the most simple iterative method possible.

The iterative process becomes

xk+1 = xk + (b − Axk) = b + (I − A)xk
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Richardson’s method (2)

This process yields the following iterates:

Initial guess x0 = 0

x1 = b

x2 = b + (I − A)x1 = b + (I − A)b

x3 = b + (I − A)x2 = b + (I − A)b + (I − A)2b

Repeating this gives

xk+1 =

k∑

i=0

(I −A)ib
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Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for

(I − Z)−1 with Z = I − A. If this series converges we have

∞∑

i=0

(I − A)i = A−1.

The series expansion for 1
1−z

(z ∈ C) converges if |z| < 1.

The series
∑

i(I −A)i converges if

|1 − λ| < 1 all eigenvalues λ of A.
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Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for

(I − Z)−1 with Z = I − A. If this series converges we have

∞∑

i=0

(I − A)i = A−1.

The series expansion for 1
1−z

(z ∈ C) converges if |z| < 1.

The series
∑

i(I −A)i converges if

λ ∈ {ζ ∈ C | |1 − ζ| < 1} all eigenvalues λ of A.

For λ real this means that 0 < λ < 2.
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Richardson’s method (4)

In order to increase the radius of convergence and to speed up

the convergence, one can introduce a parameter α:

xk+1 = xk + α(b− Axk) = αb + (I − αA)xk

It is easy to verify that if all eigenvalues are real and positive the

optimal α is given by

αopt =
2

λmax + λmin
.

If all eigenvalues are in right half of the complex plane, i.e.,

Re(λ) > 0 all eigs. λ of A, then, for some α

|1 − αλ| < 1 all eigenvalues λ of A.
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Richardson’s method (4)
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Initial guess

Before, we assumed for the initial guess x0 = 0.

Starting with another initial guess x0 only

means that we have to solve a “shifted” system

A(y + x0) = b ⇔ Ay = b −Ax0 = r0

So the results obtained before remain valid, irrespective of the

initial guess.
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Stopping criterion
We want to stop once the error ‖xk − x‖ < ǫ, with ǫ some

prescribed tolerance. Unfortunately we do not know x, so this

criterion does not work in practice.

Alternatives are:

• ‖rk‖ = ‖b− Axk‖ = ‖Ax −Axk‖ < ǫ

Disadvantage: criterion not scaling invariant

• ‖rk‖/‖r0‖ < ǫ

Disadvantage: good initial guess does not reduce the

number of iterations

• ‖rk‖/‖b‖ < ǫ

Seems best (fits the idea of a small backward error).
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Convergence

To investigate the convergence of Basic Iterative Methods in

general, we look again at the formula

Mxk+1 = Rxk + b.

Remember that A = M −R. If we subtract Mx = Rx + b from

this equation we get a recursion for the error ek = xk − x:

Mek+1 = Rek
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Convergence (2)
We can also write this as

ek+1 = M−1Rek

This is a power iteration and hence the error will ultimately point

in the direction of the dominant eigenvector of M−1R.

The rate of convergence is determined by

the spectral radius ρ(M−1R) of M−1R (= I − M−1A):

ρ(M−1R) ≡ max{|λ| | λ eigenvalue M−1R}

= max{|1 − λ| | λ eigenvalue M−1A}

For convergence we must have that

ρ(M−1R) < 1.
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Linear convergence
Ultimately, we have ‖ek+1‖ ≈ ρ(M−1R) ‖ek‖, which means that

we have linear convergence.
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The vertical axis displays the size ‖ek‖2 of the error on log-scale.
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Convergence (3)

The relation ek+1 = M−1Rek describes the error propagation:

M−1R is the so-called error propagation matrix .

Since M−1A and M−1R commute (why?), this gives a

propagation relation for the residuals:

rk+1 = RM−1rk

RM−1 is the residual propagation matrix .

Note that the propagation matrices have the same eigenvalues.

Eventually,
‖rk+1‖

‖rk‖
≈ ρ(RM−1) = ρ(M−1R)
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Convergence (3)
Since x = M−1Rx + M−1b and xk+1 = M−1Rxk + M−1b,

we have,

(I − M−1R)(x − xk) = M−1b− (I −M−1R)xk = xk+1 − xk.

Therefore, eventually

ρ(M−1R) ≈ ‖rk‖
‖rk−1‖

& ‖x − xk‖ ≈ ρ(M
−1

R)

1−ρ(M
−1

R)
‖xk − xk−1‖ :

the error can be esitimated without knowing the exact solution!

Since, xk+1 − xk = M−1R(xk − xk−1) the spectral radius can

also be esitimated from consecutive updates of the iterates.
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Classical Basic Iterative Methods

We will now briefly discuss the three best known basic iterative

methods

• Jacobi’s method

• The method of Gauss-Seidel

• Successive overrelaxation

These methods can be seen as Richardson’s method applied to

the preconditioned system

M−1Ax = M−1b .



October 5, 2016 79

National Master Course

Jacobi’s method
We first write A = L + D + U, with

L the strictly lower triangular part of A,
D the main diagonal, and
U the strictly upper triangular part.

Jacobi’s method is defined by the choice

M ≡ D ⇒ R = −L−U.

The process is given by

Dxk+1 = (−L−U)xk + b,

or, equivalently, by

xk+1 = xk + D−1(b − Axk).
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The Gauss-Seidel method
We write again A = L + D + U.

The Gauss-Seidel method is defined by the choice

M ≡ L + D ⇒ R = −U.

The process is given by

(L + D)xk+1 = −Uxk + b,

or, equivalently, by

xk+1 = xk + (L + D)−1(b −Axk).



October 5, 2016 81

National Master Course

Successive overrelaxation (SOR)
We write again A = L + D + U.

The SOR method is defined by the choice

M ≡
1

ω
D + L ⇒ R = (

1

ω
− 1)D − U.

The parameter ω is called the relaxation parameter .

The process is given by

( 1
ω
D + L)xk+1 = (( 1

ω
− 1)D − U)xk + b

or as
xk+1 = xk + ( 1

ω
D + L)−1(b −Axk)

With ω = 1 we get the method of Gauss-Seidel back.

In general the optimal value of ω is not known.
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Iterative refinement

Two weeks ago, we saw direct methods. For numerical stability it

is necessary to perform partial pivoting. However, this goes at

the expense of the efficiency.

If the LU -factors are inaccurate, such that A = LU − ∆A, they

might still be usable as preconditioner for the process

xk+1 = xk + (LU)−1(b − Axk)

This is called iterative refinement and is used to improve the

accuracy of the direct solution.
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One-step projection methods

The convergence of Richardson’s method is not guaranteed and

if the method converges, convergence is often very slow.

We now introduce two methods that are guaranteed to converge

for wide classes of matrices. The two methods take special

linear combinations of the vectors rk and Ark to construct a new

iterate xk+1 that satisfies a local optimality property.
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Steepest descent

Let A be Hermitian positive definite. Define the function

f(xk) ≡ ‖xk − x‖2
A = (xk − x)∗A(xk − x)

Let xk+1 = xk + αk rk. Then the choice

αk =
r∗krk

r∗kArk

minimizes f(xk+1) (given xk and rk).

Theorem. Steepest decent converges

if A is Hermitian positive definite.

Convergence is still usually very slow.
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(Local) Minimal residual

Let A be general square. Define the function

g(xk) ≡ ‖b− Axk‖
2
2 = r∗krk

Let xk+1 = xk + αk rk. Then the choice

αk =
r∗kArk

r∗kA
∗Ark

minimizes g(xk+1) (given xk and rk).

Theorem. The local minimal residual method converges

if Re(λ) > 0 for all eigenvalues λ of A.

Convergence is still usually very slow.
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Orthogonality properties

The optimality properties of the steepest descent method and

the minimal residual method are equivalent with the following

orthogonality properties:

For steepest descent

αk =
r∗krk

r∗kArk

⇔ rk+1 ⊥ rk.

For the (local) minimal residual method

αk =
r∗kArk

r∗kA
∗Ark

⇔ rk+1 ⊥ Ark .
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Concluding remarks

During the next lessons, the steepest decent method and the

minimal residual method will be generalised.

This will ultimately give rise to a class of optimal iterative

methods.

Moreover, we will see that these methods are closely linked to

eigenvalue method (as the simple iterative methods are to the

Power method).
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