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Program Lecture 4

® Basic methods for eigenproblems.
* Power method
¢ Shift-and-invert Power method
* QR algorithm

* Basic iterative methods for linear systems
® Richardson’s method
¢ Jacobi, Gauss-Seidel and SOR
* |terative refinement

* Steepest decent and the Minimal residual method
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Basic methods for eigenproblems

The eigenvalue problem
Av = \v

can not be solved in a direct way for problems of order > 4, since
the eigenvalues are the roots of the characteristic equation

det(A — A\I) = 0.

Today we will discuss two iterative methods for solving the
eigenproblem.
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The Power method

The Power method is the classical method to compute in
modulus largest eigenvalue and associated eigenvector of a
matrix.

Multiplying with a matrix amplifies strongest the eigendirection
corresponding to the in modulus largest eigenvalues.

Successively multiplying and scaling (to avoid overflow or
underflow) yields a vector in which the direction of the largest
eigenvector becomes more and more dominant.
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The Power method In action

1
AUQ

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

2
AUQ

/-

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A3 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

4
AUQ

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A5 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A6 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

1&7 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A8 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |

%
National Master Course TUDelft



The Power method In action

A9 o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |

%
National Master Course TUDelft



The Power method In action

AlO ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

11
A o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

12
A o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A13 ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

14
A o

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A15 ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A17 ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A18 ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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The Power method In action

A19 ug

A =1.1, X2 =0.9,

A

| 11041 —0.0204
0.0408  0.8959 |
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Algorithm

The Power method for an n x n matrix A.

u € C"isgiven
fork=1,2,...

u = Au

u =u /[ [}

A =u" u
end for
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Algorithm

The Power method for an n x n matrix A.

ug € C™ iIs given
fork=1,2,...
up — Auy_q
u, = ug/[[ug2
AR = ur_ 1y
end for

If uy, Is an eigenvector corresponding to A;, then

AR — wr Auy, = A ufue = N |lug ]2 = ).
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Convergence (1)

Let the n eigenvalues \; with eigenvectors v;, Av; = \;v;, be

ordered such that |Ay| > | X2 > ... > |\l

e Assume the eigenvectors vy,...,v, form a basis.

e Assume |Ai| > |Asl.
Each arbitrary starting vector ug can be written as:

Ug = Q1V] + QoVo + ... + apVp

and if a1 #£ 0, then it follows that

k k - aj (A ’
Au():()q)\l Vi + \Z
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Convergence (2)

Using this equality we conclude that

k Ao |*
M —AP) =0 = (k — 00)
A1
and also that u;. directionally converges to vy:
k
the angle between u; and vy is of order %
1

If [A\1] > |\;] forall 7 > 1, then we call
A1 the dominant eigenvalue and

v, the dominant eigenvector
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Convergence (2)

Using this equality we conclude that

k Ao |*
M —AP) =0 = (k — 00)
A1
and also that u;. directionally converges to vy:
k
the angle between u; and vy is of order %
1

Auy, ~ \Fu,  for k large: with residual r = Auy — APy,

k
Ty,
ol = el = 0 < ) b
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Convergence (3)

e If the component av; In ug IS small as compared to, say asvo,
l.e. |a1| < |asg|, then initially convergence may seem to be
dominated by Ao (until |as 5| < |ag AF)).

e If the basis of eigenvectors is ill-conditioned, then some
eigenvector components in ug may be large even if ug is modest
and initially convergence may seem to be dominated by
non-dominant eigenvalues.

e up = Va, where V=|vy,...,v,], a=(ai,...,a,)".
Hence, |[uoll < [[V|]lal and [lall = [V uoll < [[V7H[luo] : the
constant in the ‘O-term’ may depend on the conditioning of the
basis of eigenvectors.
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Convergence (4)

Note that there is a problem if |A{| = | A2/, which is the case for
instance if A\; = \s.

A vector ug can be written as

n
Uyg = X1V1 + QoVy + Z Qv .
j=3
The component in the direction of vs, ..., v, will vanish in the
Power method if | A\2| > |A3], but uz will not tend to a limit if ug
has nonzero components in vi and ve and |A\;| = [As|, A1 # o.
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Shifting

Clearly, the (asymptotic) convergence depends on ]%\.
To speed-up convergence the Power method can also be applied
to the shifted problem

(A—ocD)v=(A—o)v

The asymptotic rate of convergence now becomes

)\2—0'
AN —O

Moreover, by choosing a suitable shift o (how?) convergence
can be forced towards the smallest eigenvalue of A.
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Shift-and-invert

Another way to speed-up convergence is to apply the Power
method to the shifted and inverted problem

(A —oI)" v = pv, A= ! + o.
L

This technique allows us to compute eigenvalues near the shift.
However, for this the solution of a system is required in every
iteration!

Assignment. Show that the shifted and inverted problem and
the original problem share the same eigenvectors.
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QR-factorisation, power method

Consider the QR-decomposition A = QR
with Q = [q,,...,q,] unitary and R = (r;;) upper triangular.

Observations.

1) Ae; =ri19q;.

2) Since A*Q =R", we also have A*q, =T, en.
The QR-decomposition incorporates one step of the power
method with A in the first column of Q and with (A*)~! in the
last column of Q (without inverting Al).

3) Since span(qy,...,q;) = A(span(ey,...,ex)), the first k
columns of QQ represent one step of subspace power method.

%
National Master Course TUDelft



Intermezzo

Consider the standard basis eq,...,e, In C" and
the ‘rotated’ basis qy,...,q,.
Consider and x € C™:
x = (x1,...,2,)" represents x w.r.t. ey,...,e,.

x = Q"x represents x W.I.t. q;,...,q,, : Qx =x.

e; = (1,0,...,0)" represents q; W.r.t. qq,...,q, : Qe; =q
Q*Aq; represents Aq; w.rt. q;,...,q,.

Q*AQe; represents Aq, w.rt. q,...,q,.

Put A; = Q*AQ.

A e, represents Aq,, the second step of the Power method!

~ Octobers,2016 3
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Intermezzo

Consider the standard basis eq,...,e, In C" and

the ‘rotated’ basis qy,...,q,.

Consider and x € C™:
x = (x1,...,2,)" represents x w.r.t. ey,...,e,.

x = Q"x represents x W.I.t. q;,...,q,, : Qx =x.

e; = (1,0,...,0)" represents q; W.r.t. qq,...,q, : Qe; =q
Q*Aq; represents Aq; w.rt. q;,...,q,.

Q*AQe; represents Aq, w.rt. q,...,q,.

Put A; = Q*AQ = Q" (QR)Q = RQ : reverse factors!

A e, represents Aq,, the second step of the Power method!

~ Octobers,2016 3
%
National Master Course TUDelft



QR-factorisation, power method

Consider the QR-decomposition A = QR
with Q = [q,,...,q,] unitary and R = (r;;) upper triangular.

Observations.

1) Ae; =ri19q;.

2) Since A*Q =R", we also have A*q, =T, en.
The QR-decomposition incorporates one step of the power
method with A in the first column of Q and with (A*)~! in the
last column of Q (without inverting Al).

To continu, ‘rotate’ the basis: instead of eq, ..., e,,

take qy,...,q, as new basis in domain and image space of A.
A = Q"AQ = RQ is the matrix of A w.r.t. this rotated basis.
In the new basis q,; and q,, are represented by e; and e,,, resp..
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The QR method (1)

This leads to the QR method , a popular technigque in particular
to solve small or dense eigenvalue problems.
The method repeatedly uses QR-factorisation.

The method starts with the matrix Ag = A,
factorsitinto Ay = Qg Ro,
and then reverses the factors: A; = Ry Q.

Assignment. Show that Ay and A, are similar (share the same
eigenvalues).
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The QR method (1)

This leads to the QR method , a popular technigue in particular
to solve small or dense eigenvalue problems.
The method repeatedly uses QR-factorisation.

The method starts with the matrix Ag = A,
factorsitinto Ay = Qg Ro,
and then reverses the factors: A; = Ry Q.

Assignment. Show that Ay and A, are similar (share the same
eigenvalues).

Ay Qy=QyRoQy=Qy A,
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The QR method (2)

And repeats these steps:
factor Ap = Q. Rk, multiply Axi1 =RiQ;,.
Hence, A;Q.=Q;Ax+1 and

Ay (Q0Q1 Tt Qk—l) — (Q0Q1 Tt Qk—l) Ay

U =QyQq-...-Qi_; IS unitary,
AgU, =U,AL: Ayand A, are similar.
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The QR method (2)

And repeats these steps:
factor Ap = Q. Rk, multiply Axi1 =RiQ;,.
Hence, with U, =Q Q- Q_1,

AU =Up A = UpgQ Ry = Ug 1 Ry,

In particular, Augk) = Tugkﬂ) with 7 the (1, 1)-entry of Ry:

the first columns u§k> of the Uy, represent the power method.
Here, we used that R, is upper triangular.

~ Octobers,2006 3%
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The QR method (2)

And repeats these steps:
factor Ap = Q. Rk, multiply Axi1 =RiQ;,.
Hence, U, =Q,Q; ... -Q;_; IS unitary and
A* Ui = U Ry

In particular, A* ™ = 7 u® now with r the (n,n)-entry of

... the last column uq(f) of Uy incorporates the inverse power
method. Here, we used that R; is lower triangular.

~ Octobers,2006 3%
%
National Master Course TUDelft



The QR method (2)

And repeats these steps:
factor Ap = Q. Rk, multiply Axi1 =RiQ;,.

Hence, Uy =Q,Q; ... - Qx_; IS unitary,
U, converges to an unitary matrix U,
R, converges to an upper triangular matrix S, and

AU, =U, R, — AU=US,

which is a so-called Schur decomposition of A.

The eigenvalues of A are on the main diagonal of S
(They appear on the main diagonal of A; and of R;).
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The QR method (3)

Normally the algorithm is used with shifts
® Ak — O'kI = QkRk, Ak_|_1 — Rka + OkI
Check that Ag,q Is similar to Ay.

e The process incorporates shift-and-invert iteration
(in the last column of U, =Qq ...  Qr_q).

The shifted algorithm (with proper shift) converges quadratically.

An eigenvalue of the 2 x 2 right lower block of A;. is such a
proper shift (Wilkinson’s shift ).
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The QR method (4)

Other ingredients of an effective algorithm of the QR method:

e Deflation is used, that s,
converged columns and rows (the last ones) are removed.

Theorem. A, is Hessenberg if A is Hessenberg:
e Select Ay = U; A Uj to be upper Hessenberg.

Costs to compute all eigenvalues (do not compute U)
of the n x n matrix A to full accuracy: =~ 12n° flop.
Stability is optimal

(order of nux stability of the eigenvalue problem of A).
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The QR method for eigenvalues

Ingredients (summary):
1) Bring A to upper Hessenberg form

2) Select an appropriate shift strategy
3) Repeat: shift, factor, reverse factors & multiply, de-shift

4) Deflate upon convergence

Find all eigenvalues A\, on the diagonal of S.

Costs ~ 12n? flop.
Discard one of the ingredients ~ costs O(n*) or higher.

n = 103: Matlab needs a few seconds. What about n = 10*?
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The QR method for eigenvectors

Property. If Sy = Ay, then Av = \v for v = Uy.
For A =.5;;, y easily to be computed by back substitution
starting from y; with, say, y; = 1 (and y; = 0 for 5 > 7).

However,
computing U as Q- ... - Q, costs O(n*) flop (when k = O(n)).

Alternative. Apply one step of Shift-and-invert with shift A:
solve (A — A\I)v=1¢; for x

(with LU-decomp. and A upper Hessenberq) for each .

Total costs (including rotation to ‘undo’ Hessenberg) ~ 8n? flop.

No need to update (nor store) U;..
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The QR method: concluding remarks

e The QR method is the method of choice for dense systems of
size n with n up to a few thousend.

e Usually, for large values of n, one is only interested in a few
eigenpairs or a part of the spectrum. The QR-method computes
all eigenvalues. The order in which the method detects the
eigenvalues can not be pre-described. Therefore, all
eigenvalues are computed and the wanted ones are selected.

e For larger values of n, methods are used (to be discussed in a
following lectures) that project the eigenvalue problem onto low
dimensional spaces, where the QR method is used.

e The method of choice for computing zeros of polynomials is
also the QR method (applied to the companion system).
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lterative methods for linear systems

lterative methods construct successive approximations x;. to the
solution of the linear systems Ax = b. Here k Is the iteration
number, and the approximation x;. is also called the iterate .
The vector e, = x; — x IS the error,

rp, =b — Ax; (= —Aeg) isthe residual .

The iterative methods are composed of only a few different basic
operations:

* Products with the matrix A

* Vector operations (updates and inner product operations)

* Preconditioning operations
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Preconditioning

Usually iterative methods are applied not to the original system
Ax = Db,

but to the preconditioned system
M 1Ax = M !b,
where the preconditioner M is chosen such that:

* Preconditioning operations (operations with M1, i.e.,
solves Mw = r for w) are cheap;

* The iterative method converges much faster for the
preconditioned system with appropriate preconditioner.
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Basic iterative methods

The first iterative methods we will discuss are the basic iterative
methods . Basic iterative methods only use information of the
previous iteration.

Until the 70’s they were quite popular. Some are still used but as
preconditioners in combination with an acceleration technique.

They also still play a role in multigrid techniqgues where they are
used as smoothers.

~ October5,2016
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Basic iterative methods (2)

Basic iterative methods are usually constructed using
a splitting of A:
A=M-R.

Successive approximations are then computed using the
iterative process

MXk_|_1 = RXk —|— b

which is equivalent too
Xk+1 = X T M_l(b — AXk) = XL + M_lrk

The next few slides we look at M = 1.

%
National Master Course TUDelft



Richardson’s method

The choice M =1, R =1 — A gives Richardson’s method
which is the most simple iterative method possible.

The iterative process becomes

Xk4+1 = Xk + (b — AXk) = b+ (I — A)Xk
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Richardson’s method (2)

This process yields the following iterates:
Initial guess xg =0

X1:b
X2:b—|—(I—A)X1:b—|—(I—A)b
x3=b+(I-A)xys=b+(I-A)b+ (I-A)b

Repeating this gives
k

xpp1 =y (I-A)b

1=0
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Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for
(I - Z)~! with Z =T — A. If this series converges we have

O

Y @-Ay=A""

1=0
The series expansion for —— (z € C) converges if |z| < 1.

The series > .(I— A)" converges if

1 —A| <1 alleigenvalues )\ of A.
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Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for
(I - Z)~! with Z =T — A. If this series converges we have

O

Y @-Ay=A""
1=0
The series expansion for —— (z € C) converges if |z| < 1.

The series > .(I— A)" converges if
ANe{(eC|[1-(| <1} alleigenvalues X of A.

For )\ real this means that 0 < \ < 2.
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Richardson’s method (4)

In order to increase the radius of convergence and to speed up
the convergence, one can introduce a parameter o

Xk4+1 = Xk + Oé(b — AXk) = ab + (I — OéA)Xk

It is easy to verify that if all eigenvalues are real and positive the

optimal « is given by
2

)\max + )\min '
If all eigenvalues are in right half of the complex plane, i.e.,
Re(\) > 0 all eigs. A of A, then, for some «

Qopt —

1 —aA| <1 all eigenvalues X of A.
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Richardson’s method (4)

o=1

15

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.98
15

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.96
15

T T
Complex plane ® )\

%
National Master Course TUDelft



Richardson’s method (4)

a=0.94
15 T T
Complex plane ® )\
: O o\
1t |
05} :
0 ............ 0/:==.:a .......... I ...............................................
\ 1 &=
-0.5 :
_1_
-15 I 1 1 1 1 1
-0.5 0 0.5 1 1.5 2 2.5 3
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Richardson’s method (4)

a=0.92
15 T T
Complex plane ® )\
: O o\
1t |
05} :
0 ............ 0/:==.:d .......... I ................................................
\ 1 )
-0.5 :
_1_
-15 I 1 1 1 1 1
-0.5 0 0.5 1 1.5 2 2.5 3
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Richardson’s method (4)

a=0.9
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.88
15

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.86
15

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.84
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.82
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.8
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.78
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.76
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.74
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.72
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

a=0.7
1.5

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.68
15

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.66
15

T T
Complex plane ® )\
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Richardson’s method (4)

0=0.64
15 T T
Complex plane ® )\
: O o)\
1t ?
0.5 :
/ P e
orF 0 — t ............... :.. .....................
\\‘ e
-0.5 :
_1 -
-15 I 1 1 1 1 1
-0.5 0 0.5 1 15 2 2.5 3
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Richardson’s method (4)

0a=0.62
15 T T
Complex plane ® )\
: O o)\
1t ?
05 :
/ o @
— —®
0 ............ 0 —_— 4 . ....... 4 .....................
\B\‘ e
-0.5 :
_1 -
-15 I 1 1 1 1 1
-0.5 0 0.5 1 15 2 2.5 3
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Richardson’s method (4)

a=0.6
1.5

T T
Complex plane ® )\
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Initial guess

Before, we assumed for the initial guess x5 = 0.
Starting with another initial guess x; only
means that we have to solve a “shifted” system

Aly+x9g)=b < Ay=b—-Axy=ry

So the results obtained before remain valid, irrespective of the
Initial guess.
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Stopping criterion

We want to stop once the error ||x; — x|| < ¢, with e some
prescribed tolerance. Unfortunately we do not know x, so this
criterion does not work in practice.

Alternatives are:

* |rrll = llb— Axy| = [[Ax — Axf| <
Disadvantage: criterion not scaling invariant

® lrxll/llroll <e
Disadvantage: good initial guess does not reduce the

number of iterations

* |rxll/[Ib]] < e
Seems best (fits the idea of a small backward error).
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Convergence

To investigate the convergence of Basic Iterative Methods in
general, we look again at the formula

Mxpi1 = Rxg + b.

Remember that A = M — R. If we subtract Mx = Rx + b from
this equation we get a recursion for the error e, = x;. — X:

Mek_|_1 = Rek
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Convergence (2)

We can also write this as
€pt1 = M_lRek
This is a power iteration and hence the error will ultimately point
in the direction of the dominant eigenvector of M~ 'R.
The rate of convergence is determined by
the spectral radius p(M~'R) of M 'R (=1-M1A):
p(M™1R) = max{|)\ | A eigenvalue M~'R}
= max{|1 — )\ | A eigenvalue M~1A}
For convergence we must have that
p(M™'R) < 1.
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Linear convergence

Ultimately, we have |le;.1|| =~ p(M™R) |les||, which means that
we have linear convergence.

s Convergence history
10"

10° }

107 :

Error

107}

10°° 2

10

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration number

The vertical axis displays the size ||eg||2 of the error on log-scale.
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Convergence (3)

The relation e, = M 'Re;, describes the error propagation:
M~ 'R is the so-called error propagation matrix

Since M~ !'A and M~ 'R commute (why?), this gives a
propagation relation for the residuals:

i1 = RM 'ry
RM™! is the residual propagation matrix
Note that the propagation matrices have the same eigenvalues.
Eventually,

H:‘[‘.k-l-ﬁn %p(RM_1> :p(M_1R>
'k

~ Octobers,2016 1
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Convergence (3)

Since x =M 'Rx+ M 'b and x,,; = M 'Rx;, + M 'b,
we have,

I-M'R)(x—x3)=M"'b-I-M'R)x; = xp41 — Xz

Therefore, eventually

pMM'R) 3 .
1—p(M_1R) HXk Xk_lH .

p(MR) ~ Al g ||x — x4 || ~

vk

the error can be esitimated without knowing the exact solution!

Since, x;41 — X = M™1R(x), — x;_1) the spectral radius can
also be esitimated from consecutive updates of the iterates.
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Classical Basic lterative Methods

We will now briefly discuss the three best known basic iterative
methods

® Jacobi’s method
* The method of Gauss-Seidel
® Successive overrelaxation
These methods can be seen as Richardson’s method applied to

the preconditioned system

M 'Ax=M"1b.
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Jacobl’s method

We first write A = L + D + U, with

L the strictly lower triangular part of A,
D the main diagonal, and
U the strictly upper triangular part.

Jacobi’'s method is defined by the choice
M=D = R=-L-U.
The process is given by
Dxj41 = (=L — U)x; + b,
or, equivalently, by

Xk4+1 = Xk + D_1<b — AXk)
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The Gauss-Seidel method

We write again A =L+ D + U.

The Gauss-Seidel method is defined by the choice
M=L+D = R=-UU.
The process is given by

(L -+ D)Xk—H = —Ux; + b,
or, equivalently, by
Xk+1 = Xg + (L -+ D)_1<b — AXk).
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Successive overrelaxation (SOR)
We write again A =L+ D + U.

The SOR method is defined by the choice

1 1
=-D+L = R=(—-1D-U.

w w
The parameter w is called the relaxation parameter .
The process is given by
(D +L)xp1 = ((; —1)D - U)x; +b

or as
Xk+1 — Xk + (%D -+ L)_l(b — AXk)

With w =1 we get the method of Gauss-Seidel back.
In general the optimal value of w is not known.
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Iterative refinement

Two weeks ago, we saw direct methods. For numerical stability it
IS necessary to perform partial pivoting. However, this goes at
the expense of the efficiency.

If the LU-factors are inaccurate, such that A = LU — A4, they
might still be usable as preconditioner for the process

Xk+1 = X T (LU)_l(b — AXk)

This is called iterative refinement and is used to improve the
accuracy of the direct solution.
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One-step projection methods

The convergence of Richardson’s method is not guaranteed and
If the method converges, convergence is often very slow.

We now introduce two methods that are guaranteed to converge
for wide classes of matrices. The two methods take special
linear combinations of the vectors r; and Ar; to construct a new
iterate x;, 1 that satisfies a local optimality property.
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Steepest descent

Let A be Hermitian positive definite. Define the function
f(xx) = lxe — x| = (. — x)" A(xg — x)

Let xr.1 = x; + arre. Thenthe choice
Ty

X —
r; Ary

minimizes f(xx11) (given x; and ry).

Theorem. Steepest decent converges
If A is Hermitian positive definite.

Convergence is still usually very slow.
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(Local) Minimal residual

Let A be general square. Define the function
g(xx) = |[b — Axy |3 = rjry
Let xr.1 = x; + arre. Thenthe choice
r; Ary,
r; A"Ar,

Al —
minimizes ¢g(xx11) (given x; and ry).

Theorem. The local minimal residual method converges
if Re(\) > 0 for all eigenvalues X of A.

Convergence is still usually very slow.
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Orthogonality properties

The optimality properties of the steepest descent method and
the minimal residual method are equivalent with the following
orthogonality properties:

For steepest descent
_ r Ty
r; Ary

Qe & Iy Lorg.

For the (local) minimal residual method
r;.Ary,

o r*A* Ark e rk_|_1 J_ Ark .
k

075
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Concluding remarks

During the next lessons, the steepest decent method and the
minimal residual method will be generalised.

This will ultimately give rise to a class of optimal iterative
methods.

Moreover, we will see that these methods are closely linked to
eigenvalue method (as the simple iterative methods are to the
Power method).
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