
Utrecht, 26 oktober 2016

Basic Iterative Methods II

Gerard Sleijpen Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

Linear Problems

A is a given n× n matrix

Typically

• n is large (105 − 108)

• A has additional properties
that have to be identified and exploited.
Properties as
◦ real
◦ sparse (nearly sparse)
◦ banded structure
◦ Hermitian (near Hermitean)
◦ Normal, positive definite, . . .
◦ Tensor product
◦ . . .

Linear Problems

A is a given n× n matrix

Linear equations.

For a given n-vector b solve Ax = b for x.

Terminology and notation. The spectrum of A,

Λ(A) ≡ {λ ∈ C | Av = λv for some n-vector v 6= 0},
is the set of all eigenvalues of A.

If Av = λv, v 6= 0, then v is an eigenvector associated to λ.

Λ(A) = {λ1, λ2, . . . , λn} = {λj(A)}
Eigenvalues are counted according to multiplicity.

Linear Problems

A is a given n× n matrix

Linear equations.

For a given n-vector b solve Ax = b for x.

Eigenvalue problem. Solve Av = λv

for λ = λ0 = λj0 and associated v = v0 = vj0, where,

λ0 ∈ Λ(A), the “wanted” eigenvalue, has a property as

• λ0 = argmax{|λ| | λ ∈ Λ(A)} or argmin{|λ| | λ ∈ Λ(A)}
• λ0 = argmax{Re(λ) | λ ∈ Λ(A)}
• For some target value τ ∈ C,

λ0 = argmin{|λ− τ | | λ ∈ Λ(A)}
• For some target n-vector w,

v0 = argmin{∠(v,w) | Av = λv for some λ}
• . . .

Solving Linear problems

Ideas/techniques for solving linear equations can often be

translated to ideas/techniques for solving eigenvalue pro-

blems, and visa versa.

This observation may be explained by the following

Proposition. x solves

Ax = b

if and only if v ≡
[
1
x

]
with Ã ≡

[
0 0∗
−b A

]
solves

Ãv = 0v.

Proposition. Λ(Ã) = Λ(A) ∪ {0}.

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (A− σI)uk

Scale uk+1 = ũk/‖ũk‖2

Theorem.

The uk converge to (a multiple of) vj0 if

|λj0 − σ| > |λj − σ| all j 6= j0:

and u0 has a component in the direction of vj0

vj0 is the dominant eigenvector of A− σI,

and λj0 − σ is the dominant eigenvalue.

Eventual error reduction is ρ ≡ maxj 6=j0
|λj−σ|
|λj0
−σ|

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (A− σI)uk

Scale uk+1 = ũk/‖ũk‖2

Use the Rayleigh quotient to compute the eigenvalue

λ
(k)
1 = ρ(uk) ≡

u∗kAuk
u∗kuk

,

to compute the approximate eigenvalue

Exercise. If u 6= 0, then

‖Au− u∗Au

u∗u
u‖2 ≤ ‖Au− µu‖2 ∀µ ∈ C.

Given the approximate u = uk, the Rayleigh quotient gives

the smallest residual.

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (A− σI)uk

Scale uk+1 = ũk/‖ũk‖2

Alternative scalings: uk+1 = ũk/e∗1ũk,

fix the first coordinate to 1

Use the Rayleigh quotient or the quotient

λ
(k)
1 = λ

(k)
1 =

e∗1Auk
e∗1uk

to compute the approximate eigenvalue

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Different scaling (of A− σI or/and of ũk) does not affect

the convergence of the power method.

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Ax = b Richardson: xk+1 = xk + α(b−Axk)

Note that
[

1
xk+1

]
= (I− αÃ)

[
1
xk

]
, where Ã ≡

[
0 0∗
−b A

]

Observation.

Richardson for ‘Ax = b’ with relaxation parameter α

= the Shifted power method for ‘Ãv = λv for λ = 0’.

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Ax = b Richardson: xk+1 = xk + α(b−Axk)

x = x + α(b−Ax)

ek+1 = (I− αA)ek

Here, ek = x− xk.

Converges iff

|1− αλ| < 1 for all λ ∈ Λ(A)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Ax = b Richardson: xk+1 = xk + α(b−Axk)

x = x + α(b−Ax)

rk+1 = (I− αA)rk

Here, rk = Aek = A(x− xk) = b−Axk.

Converges iff

|1− αλ| < 1 for all λ ∈ Λ(A)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

Same eigenvectors, better eigenvalue distribution!

Find f such that |f(λj0)| is relatively large, i.e., ρ small,

where ρ ≡ maxj 6=j0
|f(λj)|
|f(λj0

)|
(ρ < 1 for convergence): ρ is the asymptotic error reduc-

tion (i.e., for k →∞) for the power method with f(A).

−1 0 1 2 3 4 5 6 7 8 9
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
the transformation of the spectrum by f(λ)=1−αλ

f
λ
f(λ)

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

|λ
2
(B)/λ

1
(B)|=0.538597

the spectrum of A

λ(A)

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

|λ
2
(B)/λ

1
(B)|=0.446595

the spectrum of B=A−σ I

λ(A−σ I)

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γ`À = (I− α1A) . . . (I− α`A)

Diminish unwanted components

−2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

and by the 14th Richardson polynomial

the transformation of the spectrum by the shifted and scaled 14th Chebyshev polynomial

Chebyshev
Richardson

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γ`À = (I− α1A) . . . (I− α`A)

f(A) = (A− σI)−1

Amplify wanted components

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

|λ
2
(B)/λ

1
(B)|=0.538597

the spectrum of A

λ(A)

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

|λ
2
(B)/λ

1
(B)|=0.48208

the spectrum of B=(A−σ I)−1

1/λ(A−σ I))

−1 0 1 2 3 4 5 6 7 8 9
−8

−6

−4

−2

0

2

4
the transformation of the spectrum by f(λ)=(λ−σ)−1

f
λ
f(λ)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γ`À = (I− α1A) . . . (I− α`A)

f(A) = (A− σI)−1

f(A) = exp(−αA), . . .

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γ`À = (I− α1A) . . . (I− α`A)

f(A) = (A− σI)−1

Combination. Cayley transform:

f(A) = (A− I)−1(I + A)

−3 −2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

the spectrum of B=A

λ(A)

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

|λ
2
(B)/λ

1
(B)|=0.15657

the spectrum of B=(A−σ I)−1(A+σ I)

(λ+σ)/(λ−σ)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γ`À = (I− α1A) . . . (I− α`A)

f(A) = (A− σI)−1

Combination. Cayley transform:

f(A) = (A− σI)−1(I− αA)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements. Apply power method with

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Equivalent interpretations.

1. Diminish unwanted components. Filtering.

2. Amplify wanted components

3. Improve distribution eigenvalues. Preconditioning.

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

Preconditioning

Purpose. To improve the distribution of the eigenvalues

in order to speed up convergence.

For eigenvalue computation:

make the wanted eigenvector (strongly) dominant.

Shift & Invert can be a feasible strategy

For linear systems: cluster the eigenvalues round 1.

Precondition with a matrix M for which

• Λ(M−1A) clusters ‘better’ round 1 than Λ(A)

• the system Mu = r can efficiently be solved for u.

For eigenvalue computation:
A and M−1A generally do not have the same eigenvectors.

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements. Apply power method with

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

How to implement the shifts strategy

in a solver for Ax = b?

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements. Apply power method with

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Ax = b Richardson: xk+1 = xk + α(b−Axk)

Polynomial version: Select αk per step.

Purpose: Diminish all components ‘equally’ well.

Richardson (with relax. par.)

Select x0, α, tol, kmax

Compute r0 = b−Ax0

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

uk = rk
ck = Auk

xk+1 = xk + αuk

rk+1 = rk − αck

end do

uk search direction (for the approximate)

Note. Update rk of the form Auk with uk update xk.

Richardson (with relax. par.)

Select x, α, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

x ← x + αu

r ← r− αc

end do

This is a ‘memory friendly’ version.

← : new value replaces old one.

Polynomial iteration

Select x, α1, . . . , α`, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

j = k mod `, α = αj+1

x ← x + αu

r ← r− αc

end do

Polynomial iteration

With α1, . . . , α` as in the polynomial iteration algorithm, let

f(A) ≡ (I− α1A) . . . (I− α`A).

Then

Proposition. rj` = f(A)j r0 for all j.

For k = j` large

‖rk+`‖2 ≈ ρ ‖rk‖2 with ρ ≡ max{|f(λ)| | λ ∈ Λ(A)}

General remarks for linear systems.

• The preconditioned system.

For ease of discussion assume no preconditioning:

if preconditioner replace A by M−1A and b by M−1b.

• Consistent updates.

We update r and x consistently:

update r by vectors −c of the form c = Au with u explicitly

avaliable and update x by u

xk+1 = xk + αkuk, ck = Auk, rk+1 = rk − αkck

• The shifted system.

Assume x0 = 0.

If x0 6= 0, solve Ax = r0 ≡ b−Ax0.

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

How to select the αj and σ?

Static.

Select parameter(s) before starting the iteration.

Base selection on pre-knowledge of the spectrum.

Dynamic.

Let the computational process determine the parameter(s).

Computation based on information that becomes available

during the iteration.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Single parameter

Examples. Av0 = λ0v0, λ0 ∈ Λ(A) wanted eigenvalue.

• If |λ0 − µ| > |λ− µ| for all other λ ∈ Λ(A):

f(A) = A− µI.

Shifted power method.

• If λ0 closest to some target value τ is wanted:

f(A) = (A− σI)−1 with σ = τ .

Inverse iteration or Wielandt iteration.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Single parameter

Examples. Ax = b.

• If all λj eigenvalues A in [λ−, λ+] = [µ−ρ, µ+ρ] ⊂ (0,∞):

µ = (λ+ + λ−)/2, ρ = (λ+ − λ−)/2.

f(A) = I− αopt A with αopt ≡ 1/µ,

max |f(λj)| ≤
λ+ − λ−
λ+ + λ−

=
1− 1

C
1 + 1

C
≤ e−

2
C , where C ≡ λ+

λ−

Therefore, for Richardson with α = αopt,

‖rRich
k+1‖ . exp

(
−2

C
)
‖rRich

k ‖ k large.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Dynamic. Single parameter

Examples. Av0 = λ0v0, λ0 ∈ Λ(A) wanted eigenvalue.

• f(A) = (A− σI)−1, with σ = σk = ρ(uk) ≡
u∗kAuk
u∗kuk

.

Rayleigh Quotient Iteration

The Rayleigh quotient ρ(uk) is the ‘best’ available approxi-

mate eigenvalue at step k.

If RQI converges, it converges quadratically eventually.
For Hermitian A, the asymptotic convergence is even cubic.

“If converges”: Example. A =

[
0 1
1 0

]
. v0 = e1.

RQI:

+ Fast convergence (if convergence).

+ Can detect eigenvalues in the interior of the spectrum.

No controle on what eigenvalue is going to be detected.

Remedy: First a few steps of Wielandt iteration.

The linear systems to be solved require

a new LU-decompostion in each step.

Wielandt Iteration:

Linear convergence.

+ Can detect eigenvalues in the interior of the spectrum.

+ Finds eigenvalue close to the shift.

+ The same LU-decomposition can used in each step.

Note. The fact that linear systems have to be solved may

make the methods not feasible for huge n.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Dynamic. Single parameter

Examples. Ax = b.

Select f(A) = I− αk A with αk to minimize:

• Minimal Residual: ‖rk+1‖2 = ‖rk − αk ck‖2 minimal

• If A is positive definite

Steepest descent: ‖x− xk+1‖A minimal

Convergence if Re(λj) > 0 for all eigenvalues λj of A.

Local Minimal Residuals

Select x, α, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

σ = c∗c, ρ = c∗r, α = ρ/σ

x ← x + αu

r ← r− αc

end do

Steepest Descent

Select x, α, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

σ = u∗c, ρ = u∗r, α = ρ/σ

x ← x + αu

r ← r− αc

end do

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− α`A), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− α`ζ)| | ζ ∈ E}
is as small as possible. If ν < 1 then one application of

f (i.e., one sweep of ` steps) gives an error (and residual)

reduction by at least a factor ν: for k = j`, large

‖x− xk+`‖2 . ν‖x− xk‖2, ‖rk+`‖2 . ν‖rk‖2

Note. max{|f(λ)| | λ ∈ Λ(A)} ≤ ν

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− α`A), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− α`ζ)| | ζ ∈ E}
is as small as possible.

Notation.
P` is the set of all polynomials of degree at most `.

P0
` ≡ {p ∈ P` | p(0) = 1}

Observation. p ∈ P`

p(0) = 1 ⇔ p(ζ) = (1− α1ζ) · . . . · (1− α`ζ).

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− α`A), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− α`ζ)| | ζ ∈ E}
is as small as possible.

Notation.
P` is the set of all polynomials of degree at most `.

P0
` ≡ {p ∈ P` | p(0) = 1}

Observation. p ∈ P`

p(0) = 1 ⇔ p(ζ) = 1− ζq(ζ) for some q ∈ P`−1.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− α`A), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− α`ζ)| | ζ ∈ E}
is as small as possible.

Observation. Consider a vector r for which

r = p(A)b for some p ∈ P`

r is a residual ⇔ p(0) = 1, i.e., p(ζ) = 1− ζq(ζ):

r = b−Ax̃ with x̃ = q(A)b.

Polynomials in P0
` are called residual polynomials.

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− α`A), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− α`ζ)| | ζ ∈ E}
is as small as possible.

This is a problem from approximation theory:

Find a polynomial in P0
` that is as small as possible on E.

Solutions for E = [λ−, λ+] ⊂ (0,∞) (Chebyshev pols)

Approximate solutions for ellipses (Cheb.), polygons (Faber pols).

f(A) = (I− α1A) . . . (I− α`A) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Av = λv.

Suppose we have a set E ⊂ C that contains all λi,

except for the wanted eigenvalue λ0 ∈ Λ(A).

Select f(A) = (I− α1A) · . . . · (I− α`A) such that with

ν ≡ max
ζ∈E
|(1− α1ζ) · . . . · (1− α`ζ)|

ν/|f(λ0)| is as small as possible.

Chebyshev polynomials

T`(x) ≡
1

2
(ζ` + ζ−`), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2x Tk(x)− Tk−1(x) for k = 1,2,

Tk(x) = 2k−1xk + lower degree terms.

Tk is the kth Chebyshev polynomial

Tk(cos(φ)) = cos(kφ) (φ ∈ R))Regel With ζ = eiφ we

have that x = cos(φ) ∈ [−1,1].

Note that x =
1 + δ

1− δ
iff ζ =

1 +
√

δ

1−√δ
(δ > 0).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
The 4th Chebyshev polynomial

fstr

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
The 8th Chebyshev polynomial

fstr

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
The 12th Chebyshev polynomial

fstr

Chebyshev polynomials

T`(x) ≡
1

2
(ζ` + ζ−`), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2x Tk(x)− Tk−1(x) for k = 1,2,

Properties. At the interval [−1,+1],

• the kth Chebyshev polynomial takes its extremal values

at k + 1 points,

• these extremal values have alternating signs with values

equal to +1 and −1.

Chebyshev polynomials

T`(x) ≡
1

2
(ζ` + ζ−`), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2x Tk(x)− Tk−1(x) for k = 1,2,

Assume [λ−, λ+] = [µ− ρ, µ + ρ] ⊂ (0,∞).

Theorem. With x ≡ (µ− λ)/ρ

x runs between −1 and +1 iff λ runs between λ+ and λ−.

x depends linearly on λ λ Ã x preserves degree pol.

At λ = 0, x equals
λ+ + λ−
λ+ − λ−

=
1 + 1/C
1− 1/C , where C ≡ λ+

λ−

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

7

 Chebyshev polynomial of degree 6

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

p=T
6
((µ−λ)/ρ)/T

6
(µ/ρ) with µ = (λ

−
+λ

+
)/2

Shifted and scaled Chebyshev polynomial p of degree 6

λ
−

λ
+

p

Chebyshev polynomials

T`(x) ≡
1

2
(ζ` + ζ−`), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2x Tk(x)− Tk−1(x) for k = 1,2,

Assume [λ−, λ+] = [µ− ρ, µ + ρ] ⊂ (0,∞).

Theorem. With x ≡ (µ− λ)/ρ and pCheb(λ) ≡ T`(x)

T`(µ/ρ)
,

we have that pCheb ∈ P0
` and for any q ∈ P0

` ,

max |pCheb(λ)| ≤ max |q(λ)|,
where the maxima are taken over all λ ∈ [λ−, λ+].

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

p=T
6
((µ−λ)/ρ)/T

6
(µ/ρ) with µ = (λ

−
+λ

+
)/2

Shifted and scaled Chebyshev polynomial p of degree 6

λ
−

λ
+

p
q

Chebyshev polynomials

T`(x) ≡
1

2
(ζ` + ζ−`), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2x Tk(x)− Tk−1(x) for k = 1,2,

Assume [λ−, λ+] = [µ− ρ, µ + ρ] ⊂ (0,∞).

Theorem. With x ≡ (µ− λ)/ρ and pCheb(λ) ≡ T`(x)

T`(µ/ρ)
,

we have that pCheb ∈ P0
` and

max |pCheb(λ)| = 1

|T`(µ/ρ)| ≤ 2exp

(
− 2`√C

)
,

where the max. is taken over all λ ∈ [λ−, λ+] and C ≡ λ+
λ− .

−2 0 2 4 6 8 10
−0.5

0

0.5

1

and by the 6th Richardson polynomial

the transformation of the spectrum by the shifted and scaled 6th Chebyshev polynomial

Chebyshev
Richardson

−2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

and by the 10th Richardson polynomial

the transformation of the spectrum by the shifted and scaled 10th Chebyshev polynomial

Chebyshev
Richardson

−2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

and by the 14th Richardson polynomial

the transformation of the spectrum by the shifted and scaled 14th Chebyshev polynomial

Chebyshev
Richardson

Chebyshev versus Richardson

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ` Chebychev.

‖rCheb(`)
k+` ‖2 . 2exp

(
− 2`√C

)
‖rCheb(`)

k ‖2 k large

• Richardson with optimal α.

‖rRich
k+`‖2 . exp

(
−2`

C
)
‖rRich

k ‖2 k large

Remark. We actually have

‖rCheb(`)
k+` ‖2 . 1

cosh(2`/
√C) ‖r

Cheb(`)
k ‖2 k large.

Since cosh(x) > 1 if x > 1, this estimate is better than the above one
in case exp(2`/

√C) < 2. They are ≈ the same if exp(2`/
√C)À 2.

Chebyshev versus Richardson

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ` Chebychev.

‖rCheb(`)
k+` ‖2 . 2exp

(
− 2`√C

)
‖rCheb(`)

k ‖2 k large

• Richardson with optimal α.

‖rRich
k+`‖2 . exp

(
−2`

C
)
‖rRich

k ‖2 k large

Note. Chebyshev iteration is designed for spectra in in-

tervals, but works well also for (narrow) ellipses around an

interval.

Chebyshev

The zeros of the shifted Chebyshev polynomial determine

the parameters in the iteration.

For fixed ` and increasing j, take k = j`.

The polynomial

pk(λ) ≡
Tj`(

µ−λ
ρ)

Tj`(
µ
ρ)

is better than the polynomial

qk(λ) ≡



T`(
µ−λ

ρ)

T`(
µ
ρ)




j

Can we repeatedly increase the degree without restarting?

−2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

12th Chebyshev
3 times (4th Chebyshev)

Chebyshev

With µ ≡ λ++λ−
2 and ρ ≡ λ+−λ−

2 we have that

rk =
r̃k
γk

with r̃k ≡ Tk(
1
ρ(µI−A))r0, γk ≡ Tk(

µ
ρ)

Tk+1(x) = 2xTk(x)− Tk−1(x) implies that

γk+1 = 2µ
ργk − γk−1 and r̃k+1 = 2µ

ρ r̃k − 2
ρAr̃k − r̃k−1.

Hence,

rk+1 = 2µγk
ργk+1

rk − 2γk
ρ γk+1

Ark − γk−1
γk+1

rk−1

xk+1 = 2µγk
νγk+1

xk + 2γk
ργk+1

rk − γk−1
γk+1

xk−1

Chebyshev

With µ ≡ λ++λ−
2 and ρ ≡ λ+−λ−

2 we have that

rk =
r̃k
γk

with r̃k ≡ Tk(
1
ρ(µI−A))r0, γk ≡ Tk(

µ
ρ)

Tk+1(x) = 2xTk(x)− Tk−1(x) implies that

γk+1 = 2µ
ργk − γk−1 and r̃k+1 = 2µ

ρ r̃k − 2
ρAr̃k − r̃k−1.

Hence,

rk+1 = 2µγk
ργk+1

rk − 2γk
ρ γk+1

Ark − γk−1
γk+1

rk−1

xk+1 = 2µγk
νγk+1

xk + 2γk
ργk+1

rk − γk−1
γk+1

xk−1

Note that the update of the residual also uses an additional

‘older’ residual.

Chebyshev

Select x0, tol, kmax, µ, ρ

Compute r0 = b−Ax0

Set ν0 = µ, r1 = r0 − 1
µAr0, x1 = x0 + 1

µr0

for k = 1, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

νk = 2µ− ρ2/νk−1

αk = 2µ
νk
, βk = 2

νk
, γk = ρ2

νk−1νk
,

rk+1 = αk rk − βk Ark − γk rk−1

xk+1 = αk xk + βk rk − γk xk−1

end for

With µ, ρ ∈ R, ρ > 0 such that

Λ(A) ⊂ [µ− ρ, µ + ρ] ⊂ (0,∞).

Chebyshev

Select x0, tol, kmax, µ, ρ

Compute r0 = b−Ax0

Set ν = µ, r = r0 − 1
µAr0, x = x0 + 1

µr0

for k = 1, . . . , kmax do

Break if ‖r‖2 < tol

γ = ρ2/ν, ν = 2µ− γ

α = 2µ
ν , β = 2

ν, γ ← γ
ν,

r2 = α r− β Ar− γ r0, r0 = r, r = r2

x2 = αx + β r0 − γ x0, x0 = x, x = x2

end for

With µ, ρ ∈ R, ρ > 0 such that

Λ(A) ⊂ [µ− ρ, µ + ρ] ⊂ (0,∞).

Degree ` Chebyshev versus Chebyshev

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ` Chebychev.

‖rCheb(`)
j` ‖2 ≤ CE 2j exp

(
−2j`√C

)
‖r0‖2 k large

• Chebyshev

‖rCheb
j` ‖2 ≤ CE 2exp

(
−2j`√C

)
‖r0‖2 k large

Here, CE some constant like CE = ‖V‖2‖V−1|‖2,
the conditioning of the basis of eigenvectors.

Degree ` Chebyshev versus Chebyshev

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ` Chebychev.

‖rCheb(`)
j` ‖2 ≤ CE 2j exp

(
−2j`√C

)
‖r0‖2 k large

• Chebyshev

‖rCheb
j` ‖2 ≤ CE 2exp

(
−2j`√C

)
‖r0‖2 k large

Remark. The PM argument that for large k

‖rCheb(`)
k+` ‖2 . 2exp

(
−2`/

√
C
)
‖rCheb(`)

k ‖2
is not applicable for Chebyshev, since we do not iterate with a fixed
polynomial.

Ax = b

Summary.

• rk is of the form pk(A)r0 with pk ∈ P0
k .

Examples. pk(x) = (1− αx)k Richardson,
pm`(x) = (

∏`
j=1(1− αjx))

m Polynomial,

pk(x) = Tk(
µ−x

ρ)/Tk(
µ
ρ) Chebyshev,. . .

• Since pk(0) = 1 we have that pk(x) = 1 − xqk−1(x) for

some polynomial qk−1 of degree k − 1 and

rk = r0 −Aqk−1(A)r0, xk = x0 + qk−1(A)r0.

• Consistent update of rk and xk,

xk+1 = xk + αkuk, ck = Auk, rk+1 = rk − αkck

i.e., no need to gather explicit information on qk−1.

Ax = b

Summary.

Let Kk(A, r0) be the Krylov subspace of order k

generated by A and r0:

Kk(A, r0) ≡ span(r0,Ar0, . . . ,Ak−1r0)

= {q(A)r0 | q ∈ Pk−1}.
.

Then

rk ∈ r0 + AKk(A, r0) ⊂ Kk+1(A, r0),

xk ∈ Kk(A, r0).

Dynamic. Multiple parameter

Find the residual in the Krylov subspace Kk+1(A, r0) with

‘smallest’ norm. Use also ’older’ residuals in the update

process.

Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

Generalized Conjugate Residuals

Recall (local minimal residuals)

ck = Ark, rk+1 = rk − αkck with αk st rk+1 ⊥ ck.

Idea. rk+1 = rk − (αkck + αk−1ck−1 + . . . + α0c0)

with αj st ‖rk+1‖2 smallest (⇔ rk+1 ⊥ cj all j ≤ k).

How to compute the αj efficiently?

Generalized Conjugate Residuals

Recall (local minimal residuals)

ck = Ark, rk+1 = rk − αkck with αk st rk+1 ⊥ ck.

Idea. rk+1 = rk − (αkck + αk−1ck−1 + . . . + α0c0)

with αj st ‖rk+1‖2 smallest (⇔ rk+1 ⊥ cj all j ≤ k).

• Solve Ck+1~αk+1 ≡ [c0,c1, . . . ,ck](α0, . . . , αk)
T = rk

in least square sense

• ‘Orthogonalise’ c0, . . . ,ck first.

Exercise. Suppose c0, . . . ,ck−1 orthogonal

rk ⊥ c0, . . . ,ck−1

rk+1 = rk − αkck ⊥ ck

}
⇒ rk+1 ⊥ c0, . . . ,ck

Local Minimal Residuals

Select x, α, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

σ = c∗c, ρ = c∗r, α = ρ/σ

x ← x + αu

r ← r− αc

end do

Generalized Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

for j = 0, . . . , k − 1 do

βj = c∗jck/σj

uk ← uk − βjuj

ck ← ck − βjcj

end for

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

Generalized Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

for j = 0, . . . , k − 1 do

βj = c∗jck/σj

uk ← uk − βjuj

ck ← ck − βjcj

end for

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

Generalized Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

for j = 0, . . . , k − 1 do

βj = c∗jck/σj

uk ← uk − βjuj

ck ← ck − βjcj

end for

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

Generalized Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

for j = 0, . . . , k − 1 do

βj = c∗jck/σj

uk ← uk − βjuj

ck ← ck − βjcj

end for

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

Generalized Conjugate Residuals

Select x, kmax, tol

Compute r = b−Ax

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

uk = r, ck = Auk

for j = 0, . . . , k − 1 do

β = c∗jck/σj

uk ← uk − β uj

ck ← ck − β cj

end for

σk = c∗kck, α = c∗kr/σk

x ← x + αuk

r ← r− αck

end for

Generalized Conjugate Residuals

Exercise. Before the orthogonalisation loop we have

c̃k = Aũk by definition.

Prove that after the orthogonalisation loop we still have

ck = Auk.

Exercise. span(r0, r1, . . . , rk) = Kk+1(A, r0),

span(c0,c1, . . . ,ck−1) = AKk(A, r0),

rk ∈ span(r0)⊕AKk(A, r0) = Kk+1(A, r0).

Generalized Conjugate Residuals

GCR is an optimal Krylov subspace solver:

Theorem. Assume x0 = 0: r0 = b.

The GCR approximate solution xk at step k is the vector

in Kk(A, r0) with smallest residual norm:

‖rk‖2 = ‖r0 −Axk‖2 ≤ ‖r0 −Ax̃‖2 (x̃ ∈ Kk(A, r0)).

In particular, ‖rGCR
k ‖2 ≤ ‖rCheb

k ‖2.

Hence, if Λ(A) ⊂ [λ−, λ+] ⊂ (0,∞), then, with C ≡ λ+
λ− ,

‖rGCR
k ‖2 ≤ CE 2 exp

(
− 2k√C

)
‖r0‖2.

Here, CE some constant like CE = ‖V‖2‖V−1|‖2,
the conditioning of the basis of eigenvectors.

Chebyshev versus GCR

Chebyshev.
+ No inner products
+ Short recurrences (three term recurrences)

Not the smallest residuals with appr. sol. from Kk(A, r0).
Sensitive to the estimate of the hull of the spectrum.
Only effective if spectrum in

a narrow ellipse in a half plane as C+.

GCR.
+ Smallest residual with appr. sol. from Kk(A, r0).
+ Flexible (any information can be used for uk)
+ Stable

Growing recurrences with increasing
step number k: increasing computational costs,
increasing storage demands.

Flexible GCR

In the preceding transparancies, GCR has been constructed

as an optimal Krylov subspace solver.

However, GCR can be turned into a supspace solver!:

If

uk = rk

is replaced by

Solve approximately Auk = rk for uk

then we search for an approximate solution in the search

subspace span(u0, . . . ,uk−1) and GCR finds the one with

smallest residual.

Exercise. Exact solve of Auk = rk leads to xk+1 = x.

Flexible GCR

Select x, kmax, tol

Compute r = b−Ax

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

uk = r

ck = Auk

for j = 0, . . . , k − 1 do

β = c∗jck/σj

uk ← uk − β uj

ck ← ck − β cj

end for

σk = c∗kck, α = c∗kr/σk

x ← x + αuk

r ← r− αck

end for

Flexible GCR

Select x, kmax, tol

Compute r = b−Ax

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

Approximately solve Auk = r for uk

ck = Auk

for j = 0, . . . , k − 1 do

β = c∗jck/σj

uk ← uk − β uj

ck ← ck − β cj

end for

σk = c∗kck, α = c∗kr/σk

x ← x + αuk

r ← r− αck

end for

Flexible GCR

Solve approximately Auk = rk for uk

Examples.

• uk = rk: standard GCR searches Kk(A, r0)

• Solve Muk = rk for uk: preconditioned GCR

searches the Krylov subspace M−1Kk(AM−1, r0).

• Use ` steps of GCR to solve Auk = rk : nested GCR

solution in K`k(A, r0)

• Use GCR to solve Auk = rk to rel. res. acc. 0.1

• At step k = 0,1, . . . , ` use information on the solution

(as uk representing singularities, etc.)

• At step k = 0, . . . , ` use a ‘uj’ from GCR run for Ax = b̃.
...

GCR and Krylov subspace solvers

GCR is a subspace solver

Pros
• Flexible (any information can be exploited)

Cons
• Higher computational costs per step

Krylov subspace solvers

Pros
• Krylov subspace structure can be exploited to save com-
putational costs per step [to be implemented ∗)].
• Polynomial approximation theory provides insight in con-
vergence behaviour

Cons
• Sensitive to rounding errors [if ∗)].
• Not flexible (only fixed preconditioners are allowed).

Exploiting the Krylov subspace structure

to save computational costs.

Exercise. For GCR prove that:

span(r0, . . . , rk−1) = Kk(A, r0),

span(c0, . . . ,ck−1) = AKk(A, r0),

rk ⊥ span(c0, . . . ,ck−1),

rk ⊥ Arj ∀j = 0,1, . . . , k − 1: Conjugate residuals.

A∗ = A Conjugate Residuals

Now, suppose A∗ = A.

Ark ⊥ Kk(A, r0) ⊃ AKk−1(A, r0).

Let βk−1 be such that c̃k ≡ Ark − βk−1ck−1 ⊥ ck−1.

⇒ c̃k ⊥ span(c0, . . . ,ck−1) ⇒ ck = c̃k.

A∗ = A Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

βk−1 = c∗k−1ck/σk−1

uk ← uk − βk−1uk−1

ck ← ck − βk−1ck−1

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

A∗ = A Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

βk−1 = c∗k−1ck/σk−1

uk ← uk − βk−1uk−1

ck ← ck − βk−1ck−1

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for

A∗ = A Conjugate Residuals

3 DOTs:

βk−1 =
c∗k−1Ark

σk−1
, σk = c∗kck, ρk ≡ c∗krk, αk = ρk

σk

A∗ = A Conjugate Residuals

3 DOTs:

βk−1 =
c∗k−1Ark

σk−1
, σk = c∗kck, ρk ≡ c∗krk, αk = ρk

σk

Save 1 DOT:

βk−1 =
c∗k−1Ark

c∗k−1ck−1
=

[rk − rk−1]
∗Ark

[rk − rk−1]∗ck−1
= − r∗kArk

r∗k−1ck−1
= − ρk

ρk−1

Here we used that αk−1ck−1 = rk − rk−1

rk ⊥ ck−1, rk ⊥ Ark−1

ck = Ark − βk−1ck−1

ck ⊥ ck−1

Exercise. σk = c∗kArk, ρk = r∗kArk ∈ R.

A∗ = A Conjugate Residuals

Select x, kmax, tol

Compute r = b−Ax

Set u = 0, c = 0, ρ = 1

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

u1 = r, c1 = Au1

σ = −ρ, ρ = r∗c1, β = ρ/σ

u ← u1 − β u

c ← c1 − β c

σ = c∗c, α = ρ/σ

x ← x + αu

r ← r− αc

end for

A∗ = A Conjugate Residuals

Select x, kmax, tol

Compute r = b−Ax

Set u = 0, c = 0, ρ = 1

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

c1 = Ar

σ = −ρ, ρ = r∗c1, β = ρ/σ

u ← r− β u

c ← c1 − β c

σ = c∗c, α = ρ/σ

x ← x + αu

r ← r− αc

end for

A∗ = A > 0 Conjugate Gradient

Suppose A is positive definite, i.e., A∗ = A > 0.

Property. (x,y) ≡ y∗A−1x is an inner product:

the A−1 inner product.

Replace standard inner product by the A−1 inner product.

r∗c1 Ã r∗A−1c1 = r∗r = ‖r‖22 Norm r comes for free!

c∗c Ã c∗A−1c = c∗u No A−1 needed!

rk ⊥ Arj Ã rk ⊥A−1 Arj ⇔ rk ⊥ rj: orthogonal residuals.

A∗ = A > 0 Conjugate Gradient

Suppose A is positive definite, i.e., A∗ = A > 0.

Property. (x,y) ≡ y∗A−1x is an inner product:

the A−1 inner product.

Replace standard inner product by the A−1 inner product.

r∗c1 Ã r∗A−1c1 = r∗r = ‖r‖22 Norm r comes for free!

c∗c Ã c∗A−1c = c∗u No A−1 needed!

rk ⊥ Arj Ã rk ⊥A−1 Arj ⇔ rk ⊥ rj: orthogonal residuals.

Additional saving of

1 DOT (norm r for free) and 1 AXPY Ã CG

A∗ = A > 0

Select x, kmax, tol

Compute r = b−Ax

Set u = 0, c = 0, ρ = 1

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

c1 = Ar

σ = −ρ, ρ = r∗r, β = ρ/σ

u ← r− β u

c ← c1 − β c= Au

σ = c∗u, α = ρ/σ

x ← x + αu

r ← r− αc

end for

A∗ = A > 0

Select x, kmax, tol

Compute r = b−Ax

Set u = 0, c = 0, ρ = 1

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

σ = −ρ, ρ = r∗r, β = ρ/σ

u ← r− β u

c = Au

σ = c∗u, α = ρ/σ

x ← x + αu

r ← r− αc

end for

[Hestenes Stieffel 52]

A∗ = A > 0 Conjugate Gradient

Select x, kmax, tol

Compute r = b−Ax

Set u = 0, ρ = 1

for k = 0,1, . . . , kmax do

break if ‖r‖2 ≤ tol

σ = −ρ, ρ = r∗r, β = ρ/σ

u ← r− β u

c = Au

σ = c∗u, α = ρ/σ

x ← x + αu

r ← r− αc

end for

