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Ax =Db {AeC|Av=Av} CECC
Construct iteratively rp = b — AX;, with ||rg|[> small
X gets a freeride: rp =rp_1 —apAUL_1, X = Xp_1 + apUp_1

Richardson: a €C, r, =r,_1 — aAr._1 = (I — aA)Frg

Krylov subspace: K.(A,rg) span(rg, Arg, ..., A" 1ry)
{p(A)rg | p pol. degree < k}
Lag €C, rp =11 —apArg_1 = pp(A)rg

with pk()\) = (1 — Oél)\) e (1 — Oék)\)

Selection ay: - dynamic
® ) = Omoar: WIth p(A) = (1 —ag A)--- (1 —ay)), pjy=p’
and  maX.cg lp(¢)|] as small as possible.

e Chebyshev iteration: p, = T}, rpi1 = apry, — BpAry — Fp_1rp_1

e Local Minimal Residual: aj = argmin,||r,_1—aArg_q1||2

e Generalized Conjugate Residuals: R, = [rg,...,r_1]
rkzrk_l—AchYk_l with c‘ik_lEminarg&ecknrk_l—ARk&’

2
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e Krylov basis & Hessenberg matrices



Krylov subspace methods
AX = Db.

Find x;, € K (A, rg) such that
r,=b—Ax; =b—Ag,_1(A)b =p(A)b
iIs small in some sense.

KrL(A,rg) is a search subspace.

Idea.
o Compute orthonormal basis vq,...,Vv, of Kr.(A,rg).
o Assemble the v; in the matrix V, = [v1,...,Vg].

o Compute X, as V. vy with g a k-vector.

o Find g, such that AV, 4. ~ rg = ||roll2 V. e1



Orthonormal basis K (A, rg)

Construction: recursively

How to expand V., that is,
how to expand vq,...,Vy to a basis for Kp11(A,rg)7

Exercise. Suppose vq,...,V, is a Krylov basis, i.e.,
K;j(A,rg) =span(vy,...,v;) forall j=1,...k

= Ki41(A,rg) =span(vy,..., Vg, Avg).

w = AV, can be used for expanding the search subspace.
For stability reasons, w is modified first before expanding
the basis.



Orthonormal basis (A, rp)

Recall V. = [vq1,...,V].
Suppose Vviq,...,V; is an orthonormal Krylov basis K (A, rg).
Compute vy 1 by orthogonalising Av, against V;:

e EXxpand: w = Avy,

e Orthogonalize: v=w -V, H;{ with k! = Viw,

e Normalize: Vi1 = V/y, with v, = ||v||o.



Orthonormal basis (A, rp)

Recall V. = [vq1,...,V].
Suppose Vviq,...,V; is an orthonormal Krylov basis K (A, rg).
Compute vy 1 by orthogonalising Av, against V;:

e EXxpand: w = Avy,

e Orthogonalize: v=w -V, ﬁ;{ with k! = Viw,

e Normalize: Vi1 = V/y, with v, = ||v||o.

Note. With k. = (BT, )T, we have

B} i B}
Av, =W = V,h) + Vv = [V, V1] [V’;] = V.41hg



Orthonormal basis (A, rp)

Recall V. = [vq1,...,V].
Suppose Vviq,...,V; is an orthonormal Krylov basis K (A, rg).
Compute vy 1 by orthogonalising Av, against V;:

e EXxpand: w = Avy,

e Orthogonalize: v=w -V, ﬁ;{ with k! = Viw,

e Normalize: Vi1 = V/y, with v, = ||v||o.

Note. With k. = (BT, )T, we have
B} i .
Av, =W = Vphy + Vv, = [V, Vgl [V’;] = Vit1hg

H;._
Assemble A[V._1 v ] = [W ] k-1 ]




Orthonormal basis (A, rp)

Recall V. = [vq1,...,V].
Suppose Vviq,...,V; is an orthonormal Krylov basis K (A, rg).
Compute vy 1 by orthogonalising Av, against V;:

e EXxpand: w = Avy,

e Orthogonalize: v=w -V, ﬁ;{ with k! = Viw,

e Normalize: Vi1 = V/y, with v, = ||v||o.

Note. With k. = (BT, )T, we have
B} i .
Av, =W = Vphy + Vv, = [V, Vgl [V’;] = Vit1hg

Hy_q ]

Assemble  A[V,_1 v ] = [V, Vi1 00




Orthonormal basis (A, rp)

Recall V. = [vq1,...,V].
Suppose Vviq,...,V; is an orthonormal Krylov basis K (A, rg).
Compute vy 1 by orthogonalising Av, against V;:

e EXxpand: w = Avy,

e Orthogonalize: v=w -V, ﬁ;{ with k! = Viw,

e Normalize: Vi1 = V/y, with v, = ||v||o.

Note. With k. = (BT, )T, we have
B} i .
Av, =W = Vphy + Vv, = [V, Vgl [V’;] = Vit1hg

Hy 4 hﬁc]

Assemble  A[Vy_1,Vg] = [Vg, V1]
0...0 Vi




Theorem.
Orthogonalising Av; against V; for j =1,...,k leads to

AV, = V1 Hp,

with V., orthonormal, spanning KCr.(A,v1),
H is (k+ 1) x k upper Hessenberqg.

Note. The matrix H;, comes for free
in the orthogonalisation process.

Application for solving AX =rqg. Try X = V. 4.

Find g such that AV, 4. =~ rg = pg Vi, e1 With pg = ||roll2
~ Find g such that V41 Hp g = po V411 if poVi =g
~ Find g} such that Hp 4. ~ pgeq if pogV1 = Ip

Details later.



Hessenberg and Krylov

Hessenberg matrices and Krylov subspaces are intimately
related.

Theorem. Consider the relation AV, = V1 Hy,
where Vk—l—l = [Vkavk—l—l] IS n X (k —+ 1),

and H, is (k+1) x k.

Then, wvq,...,v, form a Krylov basis for K (A,vq)
i.e., V; spans ICj(A,rO) forall j=1,...,k,
& Hp is Hessenberg.

In Arnoldi’s decomposition, V. is selected to be ortho-
normal (to ease computations and to enhance stability).

Arnoldi’s method:
orthonormalise Avy against V;, to obtain vy all k.



Orthogonalisation

Terminology.

If V is an n x kK orthonormal matrix and w is an n vector,
then, with orthonormalise w against V, we mean:
construct an n-vector v and a (k + 1)-vector h such that

VLIV, |v[o=1, w=I[V,V]h
Notation. [v,h] = 0rth(V,w)
Use a stable variant of Gram—-Schmidt.

Note that the last coordinate of h is 0 if w is in the span
of V: in such a case (and if k < n), we select v to be a
(random) normalized vector orthogonal to V (we insist on
expanding to avoid stagnation in subsequential steps).
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Arnoldi’s decomposition

AVj_1 =V H_1,
with V, n x k orthonormal, H;,_1 k x (k— 1) Hessenberg.

Expand the decomposition to AV, = V41 Hy.

Notation. [Vk—|—17 Hi] = ArnStep(A, V.., H._1)

w = Av,
Vi1, Byl = 0rth(Vy, w)

Vit1 = [Vg, Vi+1]

Hy 4 >
H, = [5* ] Hy, < [ Hy, hy]
k—1




e Linear systems and Arnoldi’'s decomposition



Linear systems and Arnoldi’s decomposition

Arnoldi's decomposition: AV, = V41 Hp g

The columns of V, form an orthonormal basis for K, (A, v1).
AX = b. Put pg = ||b||2
Take Xg =0 and v; = b, and form Arnoldi's decomp.

Hence, AVk gk = Vk—l—l Ek gk and
r, =b— AX, = Vg1 1(poe1 — Hi 4y) and
[rill2 = llpo e1 — Hy gill2

Observation. The norm of the residual r, can be compu-
ted in k-dimensional space without computing ry.
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Linear systems and Arnoldi’s decomposition

Arnoldi's decomposition: AV, = V41 Hp g

The columns of V, form an orthonormal basis for K, (A, v1).
AX = b. Put pg = ||b||2
Take Xg =0 and v; = b, and form Arnoldi's decomp.

Hence, AVk gk = Vk—l—l Ek gk and
r, =b— AX, = Vg1 1(poe1 — Hi 4y) and

Irill2 = llpoe1 — Hy Yll2

GMRES: solve H, 4. = ppe1 in the least square sense.



Linear systems and Arnoldi’s decomposition

Arnoldi's decomposition: AV, = V41 Hp g

The columns of V, form an orthonormal basis for K, (A, v1).
AX = b. Put pg = ||b||2
Take Xg =0 and v; = b, and form Arnoldi's decomp.

Hence, AVk gk = Vk—l—l Ek gk and
r, =b— AX, = Vg1 1(poe1 — Hi 4y) and

Irill2 = llpoe1 — Hy Yll2

FOM: solve Hp 4. = poeq;
H; is the k£ x k upper block of H,.



Generalized Minimal Residuals

Proposition. With X, =W.y,. and r,=b — AX;,
Y Ssolves Hp iy, = poei in least square sense

& ||re]| minimizes ||b — AX||> over all X € K (A, b).

Select kmax and tol
Set po = ||bll2, V1 = [b/po], Ho =[]
for k’ — 1,...,kmax do
Break if pjp < tol
Vi1, Hi] = ArnStep(A, Vi, H,_1)
Solve Hj 4y, = ppei1 in least square sense
pr = llpoe1 — Hy g ll2
end for
X = Vg ¥




Full Orthogonalisation Method

Proposition. With X, =W.y,. and r,=b — AX;,

gk solves Hj gk = poe1 & rp L Kk(A, b)

Select kmax and tol
Set po = ||b|l2, V1 = [b/po]l, Hp =[]
for k = 1,...,kmax do
Break if p; < tol
[Vk+1, Hi] = ArnStep(A, Vi, Hi,_1)
Solve Hpyp. = poe1 for yi
pr = llpo e1 — Hy yxll2
end for
X = Vg y.




Full Orthogonalisation Method

Proposition. With X, =W.y,. and r,=b — AX;,

Y solves Hpyp. = ppe1 < rkJ_le(A,b) & b-AVLy. L V.

Select kmax and tol
Set po = ||b|l2, V1 = [b/po]l, Hp =[]
for k = 1,...,kmax do
Break if p; < tol
[Vk+1, Hi] = ArnStep(A, Vi, Hi,_1)
Solve Hpyp. = poe1 for yi
pr = llpo e1 — Hy yxll2
end for
X = Vg y.




Generalized Minimal Residuals

Proposition. With X, =W.y,. and r,=b — AX;,
Y Ssolves Hp iy, = poei in least square sense

& ||re]| minimizes ||b — AX||> over all X € K (A, b).

< b-—AVLy. L AV,.



GMRES

Notes.

e “Solve Hpy, = ppoe1 in the least square sense”

are problems in k-space, where k < n. costs are ‘negligible’

e Thereis no need to compute the residuals ry:
computing residual-norm does not require computing rg

pr = |Irell2 = |lpoe1 — Hg Uk l|2

e Computation of the approximate solution
only if residual accuracy has been reached.



GMRES

Let Ypy1 = (1,72, sV Yk+1) ' = (32, 7k+1) ' such that
Vi41Hr, = OF,

Note that 7k+1 can be computed by recursive updating.

Proposition.

MRES)|, — PO

(Lg% -
Y4112

Note.
e Even the k-dimensional system has to be solved
only (once) at reaching residual accuracy.



GMRES

Select kmax and tol
Set pg = [|bll2, V1 =[b/po], Ho=1[], 1 = (1)
for k=1,...,kmax do

Break if p; < tol

V41, Hi] = ArnStep(A, Vi, Hy 1)

Update Y41 st Vii1(Hrex) =0

=)
ok = po/\/Pp 21 + [kt
end for
Solve Hpyp = poe1 for yi
X = Vk gk




GMRES versus GCR

Both methods are mathematically equivalent, that is, in
exact arithmetic, they have the same residuals (residual
norms) at step k and the same approximate solutions.

GMRES is the most efficient method that gives the ap-
proximate solution from K (A,b) with smallest residual
| - [[o-norm. GCR needs =~ twice as many AXPYs as GM-
RES.

GCR trivially extends to a flexible variant (injecting an
u, #* r;, does not hamper convergence). A flexible variant
of GMRES lacks the efficiency advantage.

Both methods suffer from growing computational costs
per step and growing memory requirements with in-
creasing step numbers.



GMRES versus GCR

GMRES relies on
an orthonormal Krylov basis vq,...,Vvy for Ki.(A,rg).

GCR relies on

an A*A-orthogonal Krylov basis uq,...,u; for K.(A,rg).
u, 1L Axq Uy = 0= U;FA*AUJ' = C;JFC]'.
GMRES uses the same basis vq,...,Vv, for expansion
as for extraction.
GCR expands with rqg,...,r;, and
extracts with ug,...,u

(after A*A-orthogonalisation).

GMRES is a Krylov subspace method,
Flexible GCR is a subspace method.



GMRES versus GCR

In contrast to GCR,
GMRES exploits the Krylov—Hessenberg structure.

Advantage. More efficiency.

Disadvantage. Sensitive to perturbations that affect the
Krylov structure.

Example. If at step k£ in GCR "u, = r."” is replaced by
“Select a random u."”, then convergence is delayed by 1
step. If at step £ in GMRES Av,, is replaced by a random
vector then GMRES stagnates forever.

Pertubations may come from inexact MVs, variable pre-
conditioners, etc.
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Convergence

With the same initial residual rq:

I =l = [Irg Rl < el

Among all Krlylov subspace methods, GMRES (and) GCR
find the approximate solution in the Krylov subspaces, with
smallest residual 2-norm, i.e., using £k MVs, GMRES (and
GCR) find the solution with smallest residual 2-norm.

Krylov subspace methods are attractive if A1 can be well
approximated by matrix polynomials ¢(A) with ¢ a polyno-
mial of low degree.

General convergence statements for general situations are
hard to interpret.

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.



Convergence

With the same rq:  [[FgMR®S||o = [[FRl2 < [[rp%]]2

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

Proposition. If eigs A in [A_, 4] C (0,00), then

2k
GMRES Cheb
r < |r < (2Cg||r exp | ——=|,
™l < g™ ll2 < (2CE ([Foll2) ( fc)
where C = i‘\—J_F and Cg is the condition number of the ei-

genvectors (i.e, Cp=||V|2||[V~1|o if AV = VA).

Note. It is easy to construct sophisticated examples with
Cp extremely large (as 10199). Actually, even for small i—J_F
convergence can be arbitrarily slow.



Convergence

With the same rq:  [[FgMR®S||o = [[FRl2 < [[rp%]]2

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

In the following two examples
Ax=b=e;, Ky (A,b)=span(eq,...,€), and,
if k<n, then |x—Xi|lp>1 forany X, e K.(A,b).

Example 1. Let A be the ‘circular matrix’:
Ae, = €p4q for k <n and Ae, = €. In particular, X = e,

Note that, in this example: Cr = 1 (A is unitary),
but the eigenvalues cluster around O.



Convergence

With the same rq:  [[FgMR®S||o = [[FRl2 < [[rp%]]2

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

In the following two examples
Ax=b=e;, Ky (A,b)=span(eq,...,€), and,
if k<n, then |x—Xi|lp>1 forany X, e K.(A,b).

Example 2. With Se, =e,4, for k <n and Se, =0, let
A=1I-S. Thenx=1.

Note that the eigenvalues cluster away from 0O: 1 is the
only eigenvalue (and has algebraic multiplicity n, geometric
mult. 1), while Cp = oo (A has one huge Jordan block).



Convergence

With the same rq:  [[FgMR®S||o = [[FRl2 < [[rp%]]2

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

A modification of the above examples shows that any mo-
notonic convergence curve is possible with unitary matrices
and also with any eigenvalue distribution:

Proposition. For pg>p1 2 ... 2 pp_1 > pn =0,
with Xg = 0 and A is n X n, consider the statement

(+) for a b and Ax = b, we have ||[rgMR&3||; = p;, all k.
Then a) (%) holds for some unitary matrix A, and

b) given Aq1,...,An in C, (%) holds
for some matrix A with eigenvalues \q,..., An.



Convergence

With the same rq:  [[FgMR®S||o = [[FRl2 < [[rp%]]2

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

These conditions are not necessary for good convergence.

Example 3. If A is an n x n block diagonal matrix with
diagonal blocks of size k x k all equal to some D, then GM-
RES finds the exact solution in k£ steps: GMRES converges
quickly if k < n.

The eigensystem of D determines the eigensystem of A.
If D is block diagonal, with one diagonal block equal to
the matrix from example 1 (with n = k/2) and the other
equal to the matrix from example 2, then Cp = oo and the
eigenvalues cluster around O.



e Eigenvalues and Arnoldi's decomposition



Eigenvalues and Arnoldi’s decomposition

AX = )X.
Find a normalized x;, € K, (A,rp) such that
r, = AF)x, — Ax,  with A% = xtAx,
is small in some sense and A(*) ‘almost’ has the desired

properties
Arnoldi’'s decomposition: AV, = V. 1 Hy.
r = Vi1 AP g, — H 7). AR = grmy g

Note
Irelle = (INF) G, — Hy, 7)o
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Approximate eigenpairs

e RIitz values.
Hygp =99 & =l — A5 L Vg

k solution pairs (19]21),@']21)),(19]22),@’]22),...,(ﬁlgk),y_’]gk)).

Y. i1s a Ritz value,
U 1S pre-Ritz vector,
X = V. 4. is a Ritz vector.

Hi i, = O U, X = Vg Y.
[rello = |9k Xk — AXgll2 = |hg41.k €Lk

The residual norm comes at no additional costs!
No need to compute X; first!



Arnoldi’s method

Proposition. With X, =W,y and rp = 9.X. — AXg,
U solves Hpyp = Y1y < rp L Kip(A,Db)

Select Kkmax and tol

Set po =1, Vi = [b/|bll2], Ho =[]

for k=1,...,kmax do
Break if pjp < tol
[Vi+1, Hi] = ArnStep(A, Vi, Hy 1)
Solve Hj 4 = V. 9), for k eigenpairs (19() _’(Z)).
Select a pair, say, (U, Uk)s Uk < Uk/ll¥kll2
Pk = P41kl ler gkl

end for

X=V.yrL, A=1.




Approximate eigenpairs

e RIitz values.
Hygp =%y & rr=A-9.DVy LV

e Harmonic Ritz values.

HA(Hy g, — 90, =0 o rp,=(A-9,DV, 7, L AV,

k solution pairs (94, y%).

Y. IS a Ritz value,
Y. IS pre- Ritz vector,
U, = V. 9. is a Ritz vector.

e Refined Ritz vectors.
When an approximate eigenvalue is selected r € C,
minimise ||Hy ¥ — 79y:|l2 < minimise ||(A — 7DV, 4|2



(Harmonic) Ritz values and
(GMRES) FOM residuals

Consider the linear system AX =r. Take vi = rg/||rol|2-

On the next transparencies a one-one relation is given bet-
ween Ritz values and FOM residuals and between harmo-
nic Ritz values and GMRES residuals. This relation provi-
des theoretical insight: it allows to relate convergence of
(harmonic) Ritz values towards eigenvalues to convergence
of FOM (GMRES). More details on consequences for the
convergence will be discussed next lecture.



Ritz values and FOM residuals
Consider the linear system AX =r. Take vi = rg/||rgl2-

If rp. is the FOM residual,
then r, = p.(A)rg for some polynomial p, of degree k:
pr. IS the so-called kth residual FOM polynomial.

Theorem. For a 4 € C we have that
V¥ is a Ritz value <  p(¥) =0.

Proof. If pi(¥) =0,
then pr(A\) = (A —9)g(\) for some polynomial ¢ of degree < k.

Fp = (A — ﬂl)q(A)ro = (A — ﬂl)uk 1 W
where u, = q(A)rg € span(V,). Hence, (¥,u) is a Ritz pair.

A counting argument completes the proof (there are k£ Ritz values and
pr. has k zeros).



Harmonic Ritz values and GMRES residuals
Consider the linear system AX =r. Take vi = rg/||rgl2-

If rp. is the GMRES residual,
then rp, = pr.(A)rg for some polynomial p, of degree k
pr. IS the so-called kth residual GMRES polynomial.

Theorem. For a 4 € C we have that
Y is a harmonic Ritz value < p.(¥) = 0.

Proof. If pi(¥) =0,
then pr(A\) = (A —9)g(\) for some polynomial ¢ of degree < k.

Fp = (A — ﬁl)q(A)ro = (A — ﬁl)uk 1 AV
where u;, = g(A)rg € span(V,;,). Hence, (¥,u) is an harmonic Ritz pair.

A counting argument completes the proof (there are k£ harmonic Ritz
values and p; has k zeros).
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Convergence

The space K (A,b) = span(V,) contains all vectors that
can be computed with k — 1 steps of (shifted) power me-
thod, and also the vectors computed with a k — 1-degree
polynomial filter.

= faster convergence than any polynomial filter method.

A shifted power method, with appropriate shift, is effective
in computing eigenpairs with ‘extremal’, ‘isolated’ eigen-
values. Arnoldi (without shift) is even more successful in
detecting such eigenpairs.

Achieving better convergence also depends on how the ap-
proximate eigenpairs are extracted from the search sub-
spaces span(V.).



Convergence

The space K (A,b) = span(V,) contains all vectors that
can be computed with k — 1 steps of (shifted) power me-
thod, and also the vectors computed with a k — 1-degree
polynomial filter.

= faster convergence than any polynomial filter method.

A shifted power method, with appropriate shift, is effective
in computing eigenpairs with ‘extremal’, ‘isolated’ eigen-
values. Arnoldi (without shift) is even more successful in
detecting such eigenpairs.

Achieving better convergence also depends on how the ap-
proximate eigenpairs are extracted from the search sub-
spaces span(V.).



Using Ritz-Galerkin, for extremal eigenvalues
(selecting extremal Ritz values)

Arnoldi:shifted power ~ GMRES:Richardson



e Stability issues in Arnoldi's decomposition



Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)

Classical Gram—Schmidt

V*w, v=w — Vh
V]2, B+ (RT,0)T, Vv + Vv/v

h
v

Loss of stability.

e Sensitive to perturbations on V.
e DOTs and AXPYs introduce roundig errors.
e Scaling by v amplifies rounding errors if

tan(Z(span(V),w) = v/||h|l» < 1.

Note. Costs of computing ||k||> are negligible
(wrt costs computing |[v|2).



Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)

Classical Gram—Schmidt

V=W
for y=1,...,k do
.  C— * —_ . .
h]_vjw, V <— V v]h]
end for

v=1|V|2, h=(hi,ho,...,hp, )T, V< V/v




Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)
Modified Gram—Schmidt

V=W
for y=1,...,k do
hj:v;v, V< V—V,h;
end for
v=1|V|2, h=(hi,ho,...,hg,v)T, V < V/v

Loss of stability.

e Sensitive to perturbations on V
e Smaller rounding errors from AXPYSs.

e Scaling by v amplifies rounding errors if v/||h|2 < 1

-+ More stable. — Harder to parallelise.



Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)
Repeated Gram—Schmidt with DGKS criterion

H:V*w, Vv=w— Vh
v=|vl2, u=]h]2
while v < Tu
g=V*Vv, Vv <+ v—-Vg
v=|Vll2, w=1gll, h+ h+g
end while
h«— (RT,0)T, v « V/v

Repeat if % (=tanz(w,W)) is too small (< preselected 7.)
2

Property. Twice is enough (3 proof if V = [vq]).

Daniel Grag Kaufmann Stewart



Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)
Repeated Gram—Schmidt with DGKS criterion

H:V*w, Vv=w— Vh
v=|v|l2, p=1h]?2
while v < Tu
g=V*Vv, Vv <+ v—-Vg
v=|V|2, pu=I|gllas h < h+g
end while
h«— (RT,0)T, v « V/v

Loss of stability.

e NoOt sensitive to perturbations on V
e Smaller rounding errors from AXPYSs.

e Scaling by v amplifies rounding errors if v/||h|2 < 1



Gram—Schmidt orthogonalisation

[v, h] = Orth(V,w)
Repeated Gram—Schmidt with DGKS criterion

H:V*w, Vv=w— Vh
v=|vl2, u=]h]2
while v < Tu
g=V*Vv, Vv <+ v—-Vg
v=|Vll2, w=1gll, h+ h+g
end while
h«— (RT,0)T, v « V/v

+ Stable (depends on k, typical value kK = 0.5).
-+ Easy to parallelize.
— More costly (# flops = 1 a 2 x larger)



Stability of the Gram—Schmidt variants

Orthogonalisation recursively applied to the columns of an
n X k matrix W leads to computed V and R such that

W+A=VR
for some n x k perturbation matrix A with
e R is k x k upper triangular,
o |AllF <4k%ul|W|p,
e Loss of orthogonality: [V V—1I|» < ku(Co(W))?
with
u (=1.1e-16) the relative machine precision,

C>(W) the condition number of W: (z € C*\{0})

wW wW
= Azl ©oF =2




Stability of the Gram—Schmidt variants

Orthogonalisation recursively applied to the columns of an
n X k matrix W leads to computed V and R such that

W+A=VR
for some n x k perturbation matrix A with
e R is k x k upper triangular,
o |AllF <4k%ul|W|p,
e Loss of orthogonality: ||V*V—Ik||2 < ku(Co(W))F

with k, ¢ depend on orth. method:

ClassGS: k of order vkn, ¢ =2 (conjecture).
ModGS: k of order vkn, (¢ =1.

RepGS: « may depend on Tik (rarely), ¢=0.
Householder QR: « = O(Vkn), ¢=0.



Gram—-—Schmidt and Arnoldi

Theorem. Modified Gram—-Schmidt is suffciently stable
for solving linear systems.

Proof. In Arnoldi, the n x (k+ 1) matrix W is

W = [v1,Avq,...,Av,] and R:[é ﬂk].

Hence, when solving AX = rg with X, = V.4, we have

[Wz|l2 _ rgll2 y
min < (take z = (—||roll2, %) ).

Izl llroll2
Therefore, we have the (sharp) estimate

Foll2
Co(W) 2 A, IFoll2
I7gl2

Prop. Eigenvalue computations requires more stability.



Program Lecture 6

Krylov basis & Hessenberg matrices
Arnoldi’'s decomposition

Linear systems and Arnoldi's decomposition
GMRES and FOM

Convergence

Eigenvalues and Arnoldi’'s decomposition
Arnoldi’'s method

Convergence

Stability issues in Arnoldi's decomposition

Summary



Arnoldi’s decomposition based methods

1) Expansion. Use recursive expansion for building a
Krylov basis VW, (involves high dimensional operations)

2) Extraction.

consider a projected problem as:
b-AVWV.y. 1V, b-AVWV.y. 1 AV,
ﬁvkgk—AngkLVk, or ﬂvkgk—AngkLAVk

2.a) Form a projected matrix, as Hy = VAV;. (high dim)

2.b) Use the projected matrix to solve the projected pro-
blem for 4. in k-space (only k-dimensional operations)

2.C) Assemble X, = V. ¥}. (high dim)
Note. When recursively using Gram-Schmidt to compute

the component of Av, that is orthonormal to V., the pro-
jected matrix H; comes for free.



Krylov subspace methods

Krylov subspace methods search for approximate soluti-
ons in a krylov subspace: the search subspace is a Krylov
subspace.

Stages.

e EXpansion.
Expand a Krylov basis vq,...,V, recursively

e EXxtraction.
Extract an approximate solution from span(V;)



Subspace methods or Projection methods

1) Expansion. Use recursive expansion for building a
basis V. (involves high dimensional operations)

2) Extraction.
consider a projected problem as:

b—AV,7. LW, b— AV, LAV,
ﬁvkgk—AngkLVk, or ﬂvkgjk—Angij_AVk

2.a) Form a projected matrix, as Hy = VAV;. (high dim)

2.b) Use the projected matrix to solve the projected pro-
blem for 4. in k-space (only k-dimensional operations)

2.C) Assemble X, = V. ¥}. (high dim)



Krylov subspace methods
Why searching for approximations in Krylov subspaces?

1) Convergence based on polynomial approximation theory
(better than Richardson, Power method, etc.)

2) Krylov structure can be exploited to enhance efficiency.

For instance,

e With Arnoldi’'s method, the Hessenberg matrix
(projected matrix) comes for free.

o if A is Hermitian then expansion vectors can
efficiently be computed (as in CR, CG, ...)



Subspace methods
Why searching for approximations in general subspaces?

To allow detection of more effective expansion vectors (as
in Flexible GCR, ).



