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Solving Ax = b, an overview
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Program Lecture 7

* Computing a basis for the Krylov subspace
* The Arnoldi basis
* | anczos method

* Solution methods for linear systems
* Conjugate gradients
* Minres, Conjugate Residuals
e SYMMLQ
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Projection methods

Last time you saw a general framework to solve Ax = b with a
projection method. The main steps are:

* Use recursion to compute a basis V;. for the search
subspace;

* Project the problem and compute it's representation w.r.t.
the basis (gives low dimensional problem);

* Solve projected problem (gives low dimensional solution
vector v.);
* Compute (high dimensional) solution x; = V. 1.

Today we will see how symmetry (Hermitian problems) can be
exploited to enhance efficiency.
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The Krylov subspace

The subspace span{rg, Arg, A’rg,..., A" 1rq} is called the
Krylov subspace of order k, generated by the matrix A and
initial vector ry and is denoted by

le(A, I‘()) = Span{ro, Ar, A? ro,... ,Ak_l I‘()}

Projection methods that search Krylov subspaces are called
Krylov subspace methods.

As we have seen in the previous lessons, a stable orthogonal
basis for Kr(A,rg) can be computed using Arnoldi’s method.
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Arnoldi’s method

Choose a starting vector v; with ||v][2 = 1.

For k=1,..., do % iteration
w = Avy % expansion
For i+ =1,...,k, do Y% orthogonalisation

_ b3
hig = Vviw

W =W — h; ,V;

end for

hi 1,k = [ W2

if A1 =0, stop % invariant subspace spanned

Vitl = W/ Rkt k % new basis vector
end for
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The Arnoldi relation

The Arnoldi method can be summarised in a compact way. With

hit ... ... hug
ha 1
Hy =
hkr—1 Pk
O Plet1k |
and Vi = [vy,va,..., V], we have the Arnoldi relation

AV, =V 1 Hy
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A is Hermitian

Let A be Hermitian.
According to the Arnoldi relation we have

VAV, =V Vi1 Hy = Hy,

where H;. is the k x k upper block of H ;..
Moreover, if A is Hermitian we have

Hf = V;A*V,, = VFAV}, = Hj.

So Hj, is Hermitian and upper Hessenberg.
This implies that H;, must be tridiagonal.
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A is Hermitian (2)

So ] ]
hi1 hia O
h
H, — 2.1
hk—1k
O Pek—1  hek

With A = hk:,k = m and Bk—l—l = hk;—l—l,k = hk;,k—|—1 the Arnoldi
method simplifies to the (Hermitian) Lanczos method.
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A is Hermitian (2)

So ] ]
ar o 0,
H, — B2
Bk
O Br onk |

With oy = hgx = hir and Bri1 = her1k = hr i1 the Arnoldi
method simplifies to the (Hermitian) Lanczos method. With the
Lanczos method it is possible to compute a new orthonormal
basis vector using only the two previous basis vectors.
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Lanczos’ method

Choose a starting vector v with |[vi|ls =1
61=0, vp=0 % Initialization
For k=1,... do % lteration

W =Av, —ap vy — B Vi1
% New direction orthogonal to the previous Vs
Brsr = wll2
Vii1 = W/0ka1 % Normalization
end for

Note that 5, > 0.
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Lanczos’ method

Let
o1 B 0
Bo 2
Ly =
Bk
0 Br ok
I 0 Brt1 |
and Vi = [vy,va,...,vi]. Then, the Lanczos relation reads

AV, =V 1 Ty
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Eigenvalue methods

Arnoldi’'s and Lanczos’ method were originally proposed as
iterative methods to compute the eigenvalues of a matrix A:

V. AV, = Hy,

IS ‘almost’ a similarity transformation.

The eigenvalues of H;, are called Ritz values (of A of order k).
H.Z7=07 < Au—60ulV, whereu=YV.~Z.

u is a Ritz vector, (0, u) is a Ritz pair.
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Optimal approximations

The Lanczos method provides a cheap way to compute an
orthogonal basis for the Krylov subspace K;(A, rg).
Our approximations can be written as

xi = X0 + Vi Yk,

where 7). is determined so that either the error

Ix = xlla = V/(x = xp)* Alx — xp)

IS minimised in A-norm (only meaningful if A is pos. def.) or that
Irell2 = [[A(x — xp)[l2 = \/Tyr,

IS minimised, i.e. the norm of the residual is minimised.
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Optimal approximations (2)
We first look at the minimisation of the error in the A-norm:
|x —x0 — Vi ¥klla

Is minimal iff e, =x —x9— Vi vy, La Vi, or,
equivalently, V. L Aep =ryg — AV, gk This YIeldS

V];k AVk gk = V]: Irp.

With T, = V; AV}, the k x k upper block of T',
and ro — HI‘()HQ Vi, We get

Ty Y = ||roll2 €1

with ey the first canonical basis vector.
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Optimal approximations (3)

In particular, we have that the residuals are orthogonal to the
basis vectors:

Iy, — Aek — Iy —Angk 1 Vk

Since the r;’s are orthogonal, each residual is just a multiple of
the corresponding basis vector vi1: ry and vi,, are collinear.
(Recall that ro = HI‘()HQ V1.)

This also means that the residuals form an orthogonal Krylov
basis for the Krylov subspace.
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Towards a practical algorithm

The main problem in the Lanczos algorithm is that all v; (or r;_1)
have to be stored to compute x;.. This problem can be overcome
by making an implicit LU -factorisation, T}, = L; U, of T}, and
updating x;,

xi = x0 + (Vi Uk_l) (lel(Hron e1)) ,
In every iteration.

Details can be found in the book of Van der Vorst.

With this technique we get the famous and very elegant
Conjugate Gradient method.
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The Conjugate Gradient method

ro=b—Axyp, u_1 =0, p_.1 =1 % Initialization
Fork=0,1,...,do

Pk = T3rk, Bk = pr/Pr—1

up =1+ B up_q % Update direction vector

Cr — Allk

Ok = W.Ck, O = Pk/0k

X1 = X + Qp Ug % Update iterate

rg11] = Iy — Q Ck % Update residual
end for

Note that, in our notation, the CG «; and 3; are not the same as
the Lanczos a; and g;.
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The Conjugate Gradient method

XxX=X), r=b—Ax,u=0, p=1 % Initialization
Fork =0,1,..., kmax dO

pl=p, p=r'r, B=0p/p

Stop if p < tol

u+<r+pgu % Update direction vector

c =Au

o=u'c, a=p/o

X< X+ au % Update iterate

r<r—aoac % Update residual
end for
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Properties of CG

CG has several favourable properties:

The method uses limited memory: only three vectors need
to be stored;

The method is optimal: the error is minimised in A-norm;

The method is finite: the (n + 1)st residual must be zero
since all the residuals are orthogonal;

The method is robust (if A is HPD): o, = ujAu; =0 and
pr, = rir; = 0 both imply that the true solution has been
found (that r; = 0).

uwAu;=0and rir; =0 for i # j
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Lanczos matrix and CG

Since CG and Lanczos are mathematically equivalent it should
be possible to recover the Lanczos matrix 1}, from the
CG-iteration parameters. This is indeed the case

1 VB1 0 1
ap a0
VB 1 B
0401 a1 _|_ 04_(1)
Ty, =
v/ Br—1
Qf—2
Br—1 1 Br—1
_ 0 Qf—2 ak—1-+-ak—2 .

Note that the CG [ is not in the matrix (3, is meaningless
anyway since u_; = 0).
- Novemberg, 2017 2t
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Conjugate Gradient Error Analysis

Since e, =x—xp =€y — Vi With Vi € Ki(A, 1),
and ro = Aey, we see that

er = eg — y1Aey — 2A%ey — - — 1A ey = pi(A)eg

So, e is a degree k polynomial p; in A times eg, with p(0) = 1.
CG minimises ||ex||la = |leo — Ve yk||la With Vi € Kr(A, o).
Consequently,

lexlla = llpr(A)eol[a < [|Pr(A)eol|a

for all degree k polynomials px with p(0) = 1. Here we used that
pr(A)eg is also an error, i.e., of the form pi(A)eg = eg — Vi 9k, -
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A convergence bound for CG

The iterates x;. obtained from the CG algorithm satisfy the
following inequality:

k
Ix = xklla _ (x/@— 1) < 2exp (_ﬁ) |
Ix = %ol VG +1 VCa

C, is the 2-condition number of A, which is for HPD-matrices

A
CQ — CQ(A) — méx
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Proof (sketch)

The error e = x — x5 can be written as pi(A)eg with pi a
polynomial such that p;(0) = 1. Hence, since CG is optimal,

lexlla = llpx(A)eolla < [Ipx(A)eolla ¥V pr with p(0) = 1.

Since, in this Hermitian case, there is an orthonormal basis of
eigenvectors of A, we have

|Pr(A)eolla < max[pr(Ai(A))] - [leolla

The convergence bound can now be proved by taking for p;. a
scaled Chebyshev polynomial that is transformed (shifted and
scaled) to the interval [Amin, Amax]-
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Superlinear convergence

The upperbound on the CG-error is in practice very pessimistic.
Typically the rate of convergence increases during the process.
This is called superlinear convergence.

residual norm

1 1 1 1 1
0 20 40 60 80 100 120
Iteration number
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Superlinear convergence (2)

Zeros of the CG polynomial p;. are Ritz values
(of A of order k, i.e., the eigenvalue of T}).

Proof. If pi(6) = 0, then
pr(A) = (0 —X)q(N\) forsome k — 1 degree polynimial g.

Hence,
e, =(0I—A)g(A)eg = rp=(0I—-A)q(A)ro. (%)

Since u=¢q(A)ro =VyZz; forsome k-vector 2}, we have that
(QI—A)u:Aek =r, 1LV, and uespan(Vk) IICk(A,ro),

whence (6, u) is a Ritz pair.

A counting argument now shows that Ritz values are zeros of the CG polynomial.
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Superlinear convergence (3)

Superlinear convergence occurs when Ritz values converge to
extreme eigenvalues. Then the component in the direction of

that eigenvector is found.
Explanation. If, in addition, 6 ~ X\;, then (x) shows that,

the eigenvector w; of A associated with \;, i.e., Aw; = \;w;,
Is (=) ‘deflated’ from e, and from r; = Aey.
That is, both the error and the residual have component (=) zero in the direction of that

eigenvector (w ).

Note. Assume, 0 < A1 < A2 < ... < An. When is 0 sufficiently close to A1 ? It can be

shown that superlinear convergence is noticeable already if 6 < 2.
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Superlinear convergence (3)

Superlinear convergence occurs when Ritz values converge to
extreme eigenvalues. Then the component in the direction of

that eigenvector is found.
Explanation. If, in addition, 6 ~ X\;, then (x) shows that,

the eigenvector w; of A associated with \;, i.e., Aw; = \;w;,
Is (=) ‘deflated’ from e, and from r; = Aey.

Convergence of CG from then on is determined by the reduced

spectrum from which converged eigenvalues have been removed.

Explanation. Iphre(Adeolla < IBe(A)erlla = lI5e(A)ek]l 5.
With the deflated matrix A = (1 — VV?*VVY; )A, we used that Ae;, = Aey,.

7 J
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Superlinear convergence (4)

Convergence towards extreme eigenvalues goes faster if they
are isolated (and the other eigenvalues are clustered).

Explanation (Heuristics). Again, consider the case where 0 < A1 < A2 < ... < Ap.

The shifted power method, with A — o I converges faster towards the eigenvector with
eigenvalue \; if the spectral gap A2 Al is larger. Because, then, with

o = (A1 + An)/2, the reduction factor ;2 ~ of the shifted power method is smaller.

n—

Since K (A,rp) = K (A — o1, ro), the Lanczos method will do better than the shifted
power method: 6; will converge faster towards )\ if the gap between A\; and the other

eigenvalues is larger.

%
National Master Course TUDelft



CG convergence: Sparse Spectrum

1 I
0.5
O W XX X X
0.5}
10 1 2 3 4

%
National Master Course TUDelft



CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: small eigenvalues

Note that the speed of convergence towards an extreme
eigenvalue also depends on the size of the component of the
associated eigenvector in the initial rg.

In the example, b was obtained as b = Ax withx=1and A
diagonal. In practice, x often has moderate components also in
the direction of eigenvectors with small eigenvalues. The small
eigenvalues lead to small components of ryo = b (we took

xo = 0) In the direction of the associated eigenvectors. This
explains the relative (as compared to the largest eigenvalue)
slow convergence (in this example) towards the small eigenvalue
(and is in line with the steepness of the polynomial near zero).
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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Superlinear convergence (4)

Similar observations hold (with similar arguments) for optimal
Krylov methods, as GMRES, FOM and GCR, for general
matrices (though, for general matrices, the situation can be
obscured by very skew eigenvectors, i.e., an ill-conditioned basis
of eigenvectors).
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Minimising the residuals

CG minimises the A-norm of the error. As we have seen before,
another way to construct optimal approximations x;, is to
minimise the residual, i.e. minimise

[A(x = xp)[l2 = /T}rk
over all x; € xo + Kr(A,rg).

Before we solve this minimisation problem we recall the Lanczos
relation.
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The Lanczos relation
Recall that, with

ay B2 0
Ba o
Ly = 7
Bk
0 Br g
] Br+1 |

the Lanczos relation can be written as

AV, =V 1Ty
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MINimal RESiduals

The problem is:
find xi = xg + Vi 4 such that ||rg||2 is minimal.

r, — b — AXk — Ty — AVk?jk — HI‘()HQ Vi — Angk
Hence, minimise (as in GMRES)
lrellz = lllrollz vi — AV i

= ||llroll2 Vkx1€1 — Va1 T & Ui ||

= ||Via1 (||lroll2er — Lk U) ||

= |[lrolloe1 — L & yx||
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MINRES (2)

Solving the small overdetermined system

T Uk = |[roll2 €1

provides iterates

Xk = X0 + Vi Uk

that minimise the residual. The algorithm that results from
solving the small system in least square sense using the
QR-factorization ', = Q , Ry, of T';, is called MINRES:

X = Xo + (Vk Rlzl) (QZ(HI‘()Hz 61)) .
The placing of the brackets, allows short recurrences.
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MINRES and GMRES

CG can be viewed as the Hermitian variant of FOM, while
MINRES is the Hermitian variant of GMRES. For symmetric
(HPD) matrices, CG is mathematically equivalent to FOM (i.e., in
exact arithmetic, they have the same residuals in the same
steps), MINRES is mathematically equivalent to GMRES.

Advantage. Fast convergence (smallest residuals).

Exploiting symmetry allows implementations with short
recurrences: Lanczos combined with (VU ')(L; 'e;) rather
then with Vi, (U, (L "e1)).

Advantage. Highly efficient steps, low (fixed) on memory.

Disadvantage. More sensitive to perturbations.
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C onjugate R esiduals

CG has been designed for Hermitian positive definite matrices.

In a previous lecture we saw GCR for general matrices.

The Hermitian variant is CR and leads to minimal residuals also
if A is Hermitian indefinite.

As GCR is mathematically equivalent to GMRES,

CR is mathematically equivalent to MINRES.

(G)CR can breakdown in the indefinite case, while MINRES is
robust. MINRES is more (slightly?) expensive per step (six
vector updates versus four for CR) and needs more memory.
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Conjugate Residuals (2)

ro = b — Axg
u1=0,c.1=0,p_1=1 % Initialization
fork=0,1,...,do

u; = rg, ¢ = Aug,

Pk = Wi Ck, Br = pr/pPr—1

u, < u; + Gpup_q % Update direction vector

Cr < i + BrCcr_1 % to avoid extra MVs

Ok = CLCk, O = Pk/0k

Xpa1 = X + Qp Uy % Update iterate

rgi| = rp — Qp Cg % Update residual
end for
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Conjugate Residuals (3)

Like CG, CR has many favourable properties:

* The method uses limited memory: only four vectors need to
be stored,;

* The method is optimal: the residual is minimised;

* The method is finite: the nth residual must be zero since it is
optimal over the whole space;

* The method is robust if A is HPD, else p;, = r; Ar;, may be
zero for some nonzero ry,.

CR is less popular than CG since minimising the A-norm of the
error is often more natural. CG is also slightly cheaper.
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SYMM etric LQ

It is natural to try to minimise the frue error e, = x — x;..
In the method SYMMLAQ this is achieved by computing
approximate solutions of the form

X = X0 + AV yr = X0 + Vi1 Lk Uk
(AVy, v, rather than V¢, as before) and minimising
|x — xk[l2 = [[x — x0 — AV Gk ||2
with repect to 43, or, equivalently, solving
(AVi)*(eg—AVi k) =0 < (AVE)"AVi gy = Vi Aeg = ||rgl[2 €1-
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SYMMLQ (2)

Using the Lanczos relation we get

(AVE)*AVy g = (Vi1 L k)" (Vi1 T 1)y = ||roll2 e
or T3 (Lryk) = ||roll2 €1

This problem is solved with the QR-factorisation of T, yielding

Xt = X0+ Ver1 Lk Gk = %0 + (Vi+1 Q1) (Rz_l(HTOHWI)) :

SYMMLQ is a stable method for solving symmetric indefinite
linear systems.
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SYMMLQ (3): the naming

If 4, solves T'7 (L yk) = ||roll2e1, then Zp1 =Ty, solves
T3 Zki1 = ||roll2e1  in the least norm sense,

l.e., among all solutions, 1" ;. . Is the one with smallest 2-norm.
This problem is solved with the LQ-factorization of 1"}
(which is obtained by -* the QR-factorisation of T'}.):

Xy = X0 + Vi1 Zer1 With Zi1 = Q (R (Iroll2 e1))-

This explains the naming for this method.

In MINRES g, is the least square solution of T 4 = ||ro|2 e1:

X, = Xo + Vi vy, Wwith gk:Rk_l(QZ(’|r0’|261)).
- Novembers, 2017 4
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Concluding remarks

Today, we discussed Krylov methods for symmetric systems.
These methods combine an optimal error reduction with short
recurrences, and hence limited memory requirements.

Last week we discussed GMRES, which solves nonsymmetric
problems while minimising the norm of the residual over the
Krylov subspace. For this you need to store all the basis vectors.

In the next lessons we will investigate methods for nonsymmetric
systems that only require a limited number of vectors, similar to
the methods we discussed today. However, as we will see, these
method do not minimise an error norm.
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