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Solving Ax = b, an overview

A+A
∗ is strongly indefinite

A has large imaginary eigenvalues

a good precond itioner is available

the precond itioner is flex ible

⇓ yes

A > 0 ⇒
yes

CG

⇓ no

ill cond. ⇒
yes

SYMMLQ

⇓ no

MINRES

A
∗ = A ⇒

no Good precond. ⇒
yes flex. precond. yes

⇒ GCR

⇓ no

GMRES

⇓ no

⇓
⇓

str indef no
⇒ large im eig ⇒

no Bi-CGSTAB

⇓ yes

BiCGstab(ℓ)

⇓ yes

large im eig

⇓ yes

IDRstab

⇐
noIDR
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Program Lecture 7

• Computing a basis for the Krylov subspace

• The Arnoldi basis

• Lanczos method

• Solution methods for linear systems

• Conjugate gradients

• Minres, Conjugate Residuals

• SYMMLQ
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Projection methods
Last time you saw a general framework to solve Ax = b with a

projection method. The main steps are:

• Use recursion to compute a basis Vk for the search

subspace;

• Project the problem and compute it’s representation w.r.t.

the basis (gives low dimensional problem);

• Solve projected problem (gives low dimensional solution

vector ~yk);

• Compute (high dimensional) solution xk = Vk ~yk.

Today we will see how symmetry (Hermitian problems) can be

exploited to enhance efficiency.
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The Krylov subspace

The subspace span{r0,Ar0,A
2
r0, . . . ,A

k−1
r0} is called the

Krylov subspace of order k, generated by the matrix A and

initial vector r0 and is denoted by

Kk(A, r0) = span{r0,Ar0,A
2
r0, . . . ,A

k−1
r0}

Projection methods that search Krylov subspaces are called

Krylov subspace methods.

As we have seen in the previous lessons, a stable orthogonal

basis for Kk(A, r0) can be computed using Arnoldi’s method.
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Arnoldi’s method

Choose a starting vector v1 with ‖v1‖2 = 1.

For k = 1, . . . , do % iteration

w = Avk % expansion

For i = 1, . . . , k, do % orthogonalisation

hi,k = v
∗
iw

w = w − hi,kvi

end for

hk+1,k = ‖w‖2
if hk+1,k = 0, stop % invariant subspace spanned

vk+1 = w/hk+1,k % new basis vector

end for
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The Arnoldi relation
The Arnoldi method can be summarised in a compact way. With

H k ≡























h1,1 . . . . . . h1,k

h2,1
. . .

...

. . .
. . .

...

hk,k−1 hk,k

O hk+1,k























and Vk ≡ [v1,v2, . . . ,vk], we have the Arnoldi relation

AVk = Vk+1H k
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A is Hermitian
Let A be Hermitian.

According to the Arnoldi relation we have

V
∗
kAVk = V

∗
kVk+1H k = Hk,

where Hk is the k × k upper block of H k.

Moreover, if A is Hermitian we have

H∗
k = V

∗
kA

∗
Vk = V

∗
kAVk = Hk.

So Hk is Hermitian and upper Hessenberg.

This implies that Hk must be tridiagonal.
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A is Hermitian (2)

So

Hk =

















h1,1 h1,2 O

h2,1
. . .

. . .

. . .
. . . hk−1,k

O hk,k−1 hk,k

















.

With αk ≡ hk,k = hk,k and βk+1 ≡ hk+1,k = hk,k+1 the Arnoldi

method simplifies to the (Hermitian) Lanczos method.



November 8, 2017 10

National Master Course

A is Hermitian (2)

So

Hk =

















α1 β̄2 O

β2
. . .

. . .

. . .
. . . βk

O βk αk,k

















.

With αk ≡ hk,k = hk,k and βk+1 ≡ hk+1,k = hk,k+1 the Arnoldi

method simplifies to the (Hermitian) Lanczos method. With the

Lanczos method it is possible to compute a new orthonormal

basis vector using only the two previous basis vectors.
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Lanczos’ method

Choose a starting vector v1 with ‖v1‖2 = 1

β1 = 0, v0 = 0 % Initialization

For k = 1, . . . do % Iteration

αk = v
∗
kAvk

w = Avk − αk vk − βk vk−1

% New direction orthogonal to the previous vs

βk+1 = ‖w‖2
vk+1 = w/βk+1 % Normalization

end for

Note that βk > 0.



November 8, 2017 12

National Master Course

Lanczos’ method

Let

T k ≡





























α1 β2 0

β2 α2
. . .

. . .
. . .

. . .

. . .
. . . βk

0 βk αk

0 βk+1





























.

and Vk = [v1,v2, . . . ,vk]. Then, the Lanczos relation reads

AVk = Vk+1T k.
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Eigenvalue methods

Arnoldi’s and Lanczos’ method were originally proposed as

iterative methods to compute the eigenvalues of a matrix A:

V
∗
kAVk = Hk

is ‘almost’ a similarity transformation.

The eigenvalues of Hk are called Ritz values (of A of order k).

Hk ~z = θ ~z ⇔ Au− θ u ⊥ Vk where u ≡ Vk ~z.

u is a Ritz vector, (θ,u) is a Ritz pair.
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Optimal approximations
The Lanczos method provides a cheap way to compute an

orthogonal basis for the Krylov subspace Kk(A, r0).

Our approximations can be written as

xk = x0 +Vk ~yk,

where ~yk is determined so that either the error

‖x− xk‖A =
√

(x− xk)∗A(x− xk)

is minimised in A-norm (only meaningful if A is pos. def.) or that

‖rk‖2 = ‖A(x− xk)‖2 =
√

r∗krk,

is minimised, i.e. the norm of the residual is minimised.
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Optimal approximations (2)
We first look at the minimisation of the error in the A-norm:

‖x− x0 −Vk ~yk‖A

is minimal iff ek ≡ x− x0 −Vk ~yk ⊥A Vk , or,

equivalently, Vk ⊥ Aek = r0 −AVk ~yk. This yields

V
∗
kAVk ~yk = V

∗
k r0.

With Tk ≡ V
∗
kAVk , the k × k upper block of T k,

and r0 = ‖r0‖2 v1, we get

Tk ~yk = ‖r0‖2 e1

with e1 the first canonical basis vector.
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Optimal approximations (3)

In particular, we have that the residuals are orthogonal to the

basis vectors:

rk = Aek = r0 −AVk ~yk ⊥ Vk

Since the rk ’s are orthogonal, each residual is just a multiple of

the corresponding basis vector vk+1: rk and vk+1 are collinear.

(Recall that r0 = ‖r0‖2 v1.)

This also means that the residuals form an orthogonal Krylov

basis for the Krylov subspace.
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Towards a practical algorithm

The main problem in the Lanczos algorithm is that all vi (or ri−1)

have to be stored to compute xk. This problem can be overcome

by making an implicit LU -factorisation, Tk = Lk Uk of Tk, and

updating xk,

xk = x0 +
(

VkU
−1
k

) (

L−1
k (‖r0‖2 e1)

)

,

in every iteration.

Details can be found in the book of Van der Vorst.

With this technique we get the famous and very elegant

Conjugate Gradient method.
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The Conjugate Gradient method

r0 = b−Ax0, u−1 = 0, ρ−1 = 1 % Initialization

For k = 0, 1, . . . , do

ρk = r
∗
krk, βk = ρk/ρk−1

uk = rk + βk uk−1 % Update direction vector

ck = Auk

σk = u
∗
kck, αk = ρk/σk

xk+1 = xk + αk uk % Update iterate

rk+1 = rk − αk ck % Update residual

end for

Note that, in our notation, the CG αj and βj are not the same as

the Lanczos αj and βj .
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The Conjugate Gradient method

x = x0, r = b−Ax, u = 0, ρ = 1 % Initialization

For k = 0, 1, . . . , kmax do

ρ′ = ρ, ρ = r
∗
r, β = ρ/ρ′

Stop if ρ ≤ tol

u← r+ β u % Update direction vector

c = Au

σ = u
∗
c, α = ρ/σ

x← x+ αu % Update iterate

r← r− α c % Update residual

end for
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Properties of CG

CG has several favourable properties:

• The method uses limited memory: only three vectors need

to be stored;

• The method is optimal: the error is minimised in A-norm;

• The method is finite: the (n+ 1)st residual must be zero

since all the residuals are orthogonal;

• The method is robust (if A is HPD): σk ≡ u
∗
kAuk = 0 and

ρk ≡ r
∗
krk = 0 both imply that the true solution has been

found (that rk = 0).

• u
∗
iAuj = 0 and r

∗
i rj = 0 for i 6= j
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Lanczos matrix and CG
Since CG and Lanczos are mathematically equivalent it should

be possible to recover the Lanczos matrix Tk from the

CG-iteration parameters. This is indeed the case

Tk =























1
α0

√
β1

α0
0

√
β1

α0

1
α1

+ β1

α0

. . .

. . .
. . .

. . .

. . .
. . .

√
βk−1

αk−2

0

√
βk−1

αk−2

1
αk−1

+
βk−1

αk−2























.

Note that the CG β0 is not in the matrix (β0 is meaningless

anyway since u−1 = 0).
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Conjugate Gradient Error Analysis

Since ek ≡ x− xk = e0 −Vk ~yk with Vk ~yk ∈ Kk(A, r0),

and r0 = Ae0, we see that

ek = e0 − γ1Ae0 − γ2A
2
e0 − · · · − γkA

k
e0 = pk(A)e0

So, ek is a degree k polynomial pk in A times e0, with pk(0) = 1.

CG minimises ‖ek‖A = ‖e0 −Vk ~yk‖A with Vk ~yk ∈ Kk(A, r0).

Consequently,

‖ek‖A = ‖pk(A)e0‖A ≤ ‖p̃k(A)e0‖A

for all degree k polynomials p̃k with p̃k(0) = 1. Here we used that

p̃k(A)e0 is also an error, i.e., of the form p̃k(A)e0 = e0 −Vk ỹk .
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A convergence bound for CG

The iterates xk obtained from the CG algorithm satisfy the

following inequality:

‖x− xk‖A
‖x− x0‖A

≤ 2

(√C2 − 1√
C2 + 1

)k

≤ 2 exp

(

− 2k√
C2

)

.

C2 is the 2-condition number of A, which is for HPD-matrices

C2 ≡ C2(A) =
λmax

λmin
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Proof (sketch)

The error ek = x− xk can be written as pk(A)e0 with pk a

polynomial such that pk(0) = 1. Hence, since CG is optimal,

‖ek‖A = ‖pk(A)e0‖A ≤ ‖p̃k(A)e0‖A ∀ p̃k with p̃k(0) = 1.

Since, in this Hermitian case, there is an orthonormal basis of

eigenvectors of A, we have

‖p̃k(A)e0‖A ≤ max
i
|p̃k(λi(A))| · ‖e0‖A

The convergence bound can now be proved by taking for p̃k a

scaled Chebyshev polynomial that is transformed (shifted and

scaled) to the interval [λmin, λmax].
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Superlinear convergence
The upperbound on the CG-error is in practice very pessimistic.

Typically the rate of convergence increases during the process.

This is called superlinear convergence.
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Superlinear convergence (2)
Zeros of the CG polynomial pk are Ritz values

(of A of order k, i.e., the eigenvalue of Tk).

Proof. If pk(θ) = 0, then

pk(λ) = (θ − λ) q(λ) for some k − 1 degree polynimial q.

Hence,

ek = (θ I−A) q(A)e0 ⇒ rk = (θ I−A) q(A)r0. (∗)

Since u ≡ q(A)r0 = Vk ~zk for some k-vector ~zk, we have that

(θ I−A)u = Aek = rk ⊥ Vk and u ∈ span(Vk) = Kk(A, r0),

whence (θ,u) is a Ritz pair.

A counting argument now shows that Ritz values are zeros of the CG polynomial.
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Superlinear convergence (3)
Superlinear convergence occurs when Ritz values converge to

extreme eigenvalues. Then the component in the direction of

that eigenvector is found.

Explanation. If, in addition, θ ≈ λj , then (∗) shows that,

the eigenvector wj of A associated with λj , i.e., Awj = λjwj ,

is (≈) ‘deflated’ from ek and from rk = Aek.

That is, both the error and the residual have component (≈) zero in the direction of that

eigenvector (wj ).

Note. Assume, 0 < λ1 < λ2 < . . . < λn. When is θ sufficiently close to λ1? It can be

shown that superlinear convergence is noticeable already if θ < λ2.
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Superlinear convergence (3)
Superlinear convergence occurs when Ritz values converge to

extreme eigenvalues. Then the component in the direction of

that eigenvector is found.

Explanation. If, in addition, θ ≈ λj , then (∗) shows that,

the eigenvector wj of A associated with λj , i.e., Awj = λjwj ,

is (≈) ‘deflated’ from ek and from rk = Aek.

Convergence of CG from then on is determined by the reduced

spectrum from which converged eigenvalues have been removed.

Explanation. ‖pk+ℓ(A)e0‖A ≤ ‖p̃ℓ(A)ek‖A = ‖p̃ℓ(Ã)ek‖Ã.

With the deflated matrix Ã ≡ (1− wj w
∗

j

w∗

j
wj

)A, we used that Aek = Ãek.
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Superlinear convergence (4)
Convergence towards extreme eigenvalues goes faster if they

are isolated (and the other eigenvalues are clustered).

Explanation (Heuristics). Again, consider the case where 0 < λ1 < λ2 < . . . < λn.

The shifted power method, with A− σ I converges faster towards the eigenvector with

eigenvalue λ1 if the spectral gap λ2−λ1

λn−λ1

is larger. Because, then, with

σ ≡ (λ1 + λn)/2, the reduction factor λ2−σ
λn−σ

of the shifted power method is smaller.

Since Kk(A, r0) = Kk(A− σ I, r0), the Lanczos method will do better than the shifted

power method: θ1 will converge faster towards λ1 if the gap between λ1 and the other

eigenvalues is larger.
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: small eigenvalues
Note that the speed of convergence towards an extreme

eigenvalue also depends on the size of the component of the

associated eigenvector in the initial r0.

In the example, b was obtained as b = Ax with x = 1 and A

diagonal. In practice, x often has moderate components also in

the direction of eigenvectors with small eigenvalues. The small

eigenvalues lead to small components of r0 = b (we took

x0 = 0) in the direction of the associated eigenvectors. This

explains the relative (as compared to the largest eigenvalue)

slow convergence (in this example) towards the small eigenvalue

(and is in line with the steepness of the polynomial near zero).
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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Superlinear convergence (4)

Similar observations hold (with similar arguments) for optimal

Krylov methods, as GMRES, FOM and GCR, for general

matrices (though, for general matrices, the situation can be

obscured by very skew eigenvectors, i.e., an ill-conditioned basis

of eigenvectors).
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Minimising the residuals

CG minimises the A-norm of the error. As we have seen before,

another way to construct optimal approximations xk is to

minimise the residual, i.e. minimise

‖A(x− xk)‖2 =
√

r∗krk

over all xk ∈ x0 +Kk(A, r0).

Before we solve this minimisation problem we recall the Lanczos

relation.
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The Lanczos relation
Recall that, with

T k =





























α1 β2 0

β2 α2
. . .

. . .
. . .

. . .

. . .
. . . βk

0 βk αk

βk+1





























,

the Lanczos relation can be written as

AVk = Vk+1T k
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MINimal RESiduals
The problem is:

find xk = x0 +Vk ~yk such that ‖rk‖2 is minimal.

rk = b−Axk = r0 −AVk ~yk = ‖r0‖2 v1 −AVk ~yk.

Hence, minimise (as in GMRES)

‖rk‖2 = ‖‖r0‖2 v1 −AVk ~yk‖
= ‖‖r0‖2 Vk+1 e1 −Vk+1 T k ~yk‖
= ‖Vk+1 (‖r0‖2 e1 − T k ~yk) ‖
= ‖‖r0‖2 e1 − T k ~yk‖



November 8, 2017 38

National Master Course

MINRES (2)
Solving the small overdetermined system

T k ~yk = ‖r0‖2 e1

provides iterates

xk = x0 +Vk ~yk

that minimise the residual. The algorithm that results from

solving the small system in least square sense using the

QR-factorization T k = Q k Rk of T k is called MINRES:

xk = x0 +
(

VkR
−1
k

) (

Q ∗
k(‖r0‖2 e1)

)

.

The placing of the brackets, allows short recurrences.
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MINRES and GMRES
CG can be viewed as the Hermitian variant of FOM, while

MINRES is the Hermitian variant of GMRES. For symmetric

(HPD) matrices, CG is mathematically equivalent to FOM (i.e., in

exact arithmetic, they have the same residuals in the same

steps), MINRES is mathematically equivalent to GMRES.

Advantage. Fast convergence (smallest residuals).

Exploiting symmetry allows implementations with short

recurrences: Lanczos combined with (VkU
−1
k )(L−1

k e1) rather

then with Vk(U
−1
k (L−1

k e1)).

Advantage. Highly efficient steps, low (fixed) on memory.

Disadvantage. More sensitive to perturbations.
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C onjugate R esiduals

CG has been designed for Hermitian positive definite matrices.

In a previous lecture we saw GCR for general matrices.

The Hermitian variant is CR and leads to minimal residuals also

if A is Hermitian indefinite.

As GCR is mathematically equivalent to GMRES,

CR is mathematically equivalent to MINRES.

(G)CR can breakdown in the indefinite case, while MINRES is

robust. MINRES is more (slightly?) expensive per step (six

vector updates versus four for CR) and needs more memory.
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Conjugate Residuals (2)

r0 = b−Ax0

u−1 = 0, c−1 = 0, ρ−1 = 1 % Initialization

for k = 0, 1, . . . , do

uk = rk, ck = Auk,

ρk = u
∗
kck, βk = ρk/ρk−1

uk ← uk + βk uk−1 % Update direction vector

ck ← ck + βk ck−1 % to avoid extra MVs

σk = c
∗
kck, αk = ρk/σk

xk+1 = xk + αk uk % Update iterate

rk+1 = rk − αk ck % Update residual

end for
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Conjugate Residuals (3)

Like CG, CR has many favourable properties:

• The method uses limited memory: only four vectors need to

be stored;

• The method is optimal: the residual is minimised;

• The method is finite: the nth residual must be zero since it is

optimal over the whole space;

• The method is robust if A is HPD, else ρk = r
∗
kArk may be

zero for some nonzero rk.

CR is less popular than CG since minimising the A-norm of the

error is often more natural. CG is also slightly cheaper.
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SYMM etric LQ
It is natural to try to minimise the true error ek ≡ x− xk.

In the method SYMMLQ this is achieved by computing

approximate solutions of the form

xk = x0 +AVk ~yk = x0 +Vk+1 T k ~yk

(AVk ~yk rather than Vk ~yk as before) and minimising

‖x− xk‖2 = ‖x− x0 −AVk ~yk‖2

with repect to ~yk, or, equivalently, solving

(AVk)
∗(e0−AVk ~yk) = 0 ⇔ (AVk)

∗
AVk ~yk = V

∗
kAe0 = ‖r0‖2 e1.
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SYMMLQ (2)
Using the Lanczos relation we get

(AVk)
∗
AVk ~yk = (Vk+1T k)

∗(Vk+1T k)~yk = ‖r0‖2 e1
or T ∗

k (T k ~yk) = ‖r0‖2 e1.

This problem is solved with the QR-factorisation of T k, yielding

xk = x0 +Vk+1T k ~yk = x0 +
(

Vk+1Q k

)

(

R∗
k
−1(‖r0‖2 e1)

)

.

SYMMLQ is a stable method for solving symmetric indefinite

linear systems.
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SYMMLQ (3): the naming

If ~yk solves T ∗
k (T k ~yk) = ‖r0‖2 e1, then ~zk+1 ≡ T k ~yk solves

T ∗
k ~zk+1 = ‖r0‖2 e1 in the least norm sense,

i.e., among all solutions, T k ~yk is the one with smallest 2-norm.

This problem is solved with the LQ-factorization of T ∗
k

(which is obtained by ·∗ the QR-factorisation of T k):

xk = x0 +Vk+1 ~zk+1 with ~zk+1 = Q k(R
∗
k
−1(‖r0‖2 e1)).

This explains the naming for this method.

In MINRES ~yk is the least square solution of T k ~yk = ‖r0‖2 e1:
xk = x0 +Vk ~yk with ~yk = Rk

−1(Q ∗
k(‖r0‖2 e1)).
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Concluding remarks

Today, we discussed Krylov methods for symmetric systems.

These methods combine an optimal error reduction with short

recurrences, and hence limited memory requirements.

Last week we discussed GMRES, which solves nonsymmetric

problems while minimising the norm of the residual over the

Krylov subspace. For this you need to store all the basis vectors.

In the next lessons we will investigate methods for nonsymmetric

systems that only require a limited number of vectors, similar to

the methods we discussed today. However, as we will see, these

method do not minimise an error norm.
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