Utrecht, 15 november 2017

Fast iterative solvers

Gerard Sleijpen

Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a **general** square matrix \mathbf{A} .

Arnoldi decomposition: $\mathbf{AV}_k = \mathbf{V}_{k+1} \underline{H}_k$ with \mathbf{V}_k orthonormal, \underline{H}_k Hessenberg. $\underline{H}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

FOM

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad H_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = \mathbf{V}_k (U_k^{-1}(L_k^{-1}e_1))$$

GMRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{H}_k \vec{y}\|_2$$

 $\Rightarrow \mathbf{x}_k = \mathbf{V}_k (R_k^{-1}(\underline{Q}_k^* e_1))$

The columns of \mathbf{V}_k span $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0) \equiv \{p(\mathbf{A})\mathbf{r}_0 \mid p \in \mathcal{P}_{k-1}\}.$ $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0) = \operatorname{span}(\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{k-1}).$

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $AV_k = V_{k+1} \underline{T}_k$ with V_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

Note. Short recurrences (eff. comp.) because of

- ullet \underline{T}_k tri-diagonal, and
- $\mathbf{U}_k U_k = \mathbf{V}_k$ (CG) and $\mathbf{W}_k R_k = \mathbf{V}_k$ (MINRES)

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $\mathbf{AV}_k = \mathbf{V}_{k+1} \, \underline{T}_k$ with \mathbf{V}_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

Details. For **MINRES**, see Exercise 7.8

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $\mathbf{AV}_k = \mathbf{V}_{k+1} \, \underline{T}_k$ with \mathbf{V}_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

Note. Less stable because

- we rely on math. for orth. of V_k (CG & MINRES)
- $\mathbf{W}_k R_k = \mathbf{V}_k$ (MINRES) is a three term vector recurrence for the \mathbf{w}_k 's.

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $\mathbf{AV}_k = \mathbf{V}_{k+1} \, \underline{T}_k$ with \mathbf{V}_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

Note. If **A** is positive definite, then **CG** minimizes as well:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{x} - \mathbf{V}_k \vec{y}\|_A = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A} \mathbf{V}_k \vec{y}\|_{A^{-1}}$$

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $AV_k = V_{k+1} \underline{T}_k$ with V_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

SYMMLQ. Take $\mathbf{x}_k = \mathbf{AV}_k \vec{y}_k$ with

$$\vec{y}_k \equiv \operatorname{argmin}_{\vec{y}} \|\mathbf{x} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 \qquad \Leftrightarrow \qquad e_1 - \underline{T}_k^* \underline{T}_k \vec{y}_k = 0$$
$$\Rightarrow \mathbf{x}_k = \mathbf{V}_{k+1} \underline{T}_k (\underline{T}_k^* \underline{T}_k)^{-1} e_1 = (\mathbf{V}_{k+1} \underline{Q}_k) ((R_k^*)^{-1} e_1)$$

Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ for a Hermitian matrix \mathbf{A} , $\|\mathbf{b}\|_2 = 1$

Lanczos decomposition: $\mathbf{AV}_k = \mathbf{V}_{k+1} \, \underline{T}_k$ with \mathbf{V}_k orthonormal, \underline{T}_k tri-diagonal. $\underline{T}_k = \underline{L}_k U_k = \underline{Q}_k R_k$.

$$\mathbf{v}_1 = \mathbf{r}_0 = \mathbf{b}$$
, $\mathbf{x}_k = \mathbf{V}_k \, \vec{y}_k$, $\mathbf{r}_k = \mathbf{b} - \mathbf{A} \mathbf{x}_k$.

CG

$$\mathbf{r}_k \perp \mathbf{V}_k \quad \Leftrightarrow \quad T_k \vec{y}_k = e_1 \quad \Rightarrow \quad \mathbf{x}_k = (\mathbf{V}_k U_k^{-1})(L_k^{-1} e_1)$$

MINRES:

$$\vec{y}_k = \operatorname{argmin}_{\vec{y}} \|\mathbf{b} - \mathbf{A}\mathbf{V}_k \vec{y}\|_2 = \operatorname{argmin}_{\vec{y}} \|e_1 - \underline{T}_k y\|_2$$

$$\Rightarrow \mathbf{x}_k = (\mathbf{V}_k R_k^{-1})(\underline{Q}_k^* e_1)$$

Details. For SYMMLQ, see Exercise 7.9.

FOM residual polynomials and Ritz values

Property.
$$\mathbf{r}_k^{\text{CG}} = \mathbf{r}_k^{\text{FOM}} = p_k(\mathbf{A})\mathbf{r}_0 \perp \mathbf{V}_k$$

for some residual polynomial p_k of degree k, i.e., $p_k(0) = 1$. $p_k^{\mathsf{FOM}} = p_k$ is the kth (CG or) **FOM residual polynomial**.

Theorem. $p^{\text{FOM}}(\vartheta) = 0 \Leftrightarrow H_k \vec{y} = \vartheta \vec{y}$ for some $\vec{y} \neq \vec{0}$: the zeros of p_k^{FOM} are precisely the kth order Ritz values.

In particular,
$$p_k^{\mathsf{FOM}}(\lambda) = \prod_{j=1}^k \left(1 - \frac{\lambda}{\vartheta_j}\right) \qquad (\lambda \in \mathbb{C}).$$

Moreover, for a polynomial p of degree at most k with p(0) = 1, we have that that

$$p = p_k^{\mathsf{FOM}} \quad \Leftrightarrow \quad p(H_k) = 0.$$

Proof. Exercise 6.6.

FOM residual polynomials and Ritz values

Property.
$$\mathbf{r}_k^{\text{CG}} = \mathbf{r}_k^{\text{FOM}} = p_k(\mathbf{A})\mathbf{r}_0 \perp \mathbf{V}_k$$

for some residual polynomial p_k of degree k, i.e., $p_k(0) = 1$. $p_k^{\mathsf{FOM}} = p_k \text{ is the } k \mathsf{th (CG or)} \ \mathbf{FOM residual polynomial}.$

Theorem. $p^{\text{FOM}}(\vartheta) = 0 \Leftrightarrow H_k \vec{y} = \vartheta \vec{y}$ for some $\vec{y} \neq \vec{0}$: the zeros of p_k^{FOM} are precisely the kth order Ritz values.

In particular,
$$p_k^{\mathsf{FOM}}(\lambda) = \prod_{j=1}^k \left(1 - \frac{\lambda}{\vartheta_j}\right) \qquad (\lambda \in \mathbb{C}).$$

Moreover, for a polynomial p of degree at most k with p(0) = 1, we have that that

$$p = p_k^{\text{FOM}} \Leftrightarrow p(H_k) = 0.$$

Theorem. Similarly relate zeros of $p_k^{\rm GMRES}$ to harmonic Ritz values of \underline{H}_k .

a good preconditioner is available the preconditioner is flexible

 $\mathbf{A} + \mathbf{A}^*$ is strongly indefinite

A has large imaginary eigenvalues

a good preconditioner is available the preconditioner is flexible

 $\mathbf{A} + \mathbf{A}^*$ is strongly indefinite

A has large imaginary eigenvalues

a good preconditioner is available
 the preconditioner is flexible
 A + A* is strongly indefinite
 A has large imaginary eigenvalues

a good preconditioner is available
 the preconditioner is flexible
 A + A* is strongly indefinite
 A has large imaginary eigenvalues

a good preconditioner is available the preconditioner is flexible

 $\mathbf{A} + \mathbf{A}^*$ is strongly indefinite

A has large imaginary eigenvalues

$\mathbf{A}\mathbf{x} = \mathbf{b}$

with $\mathbf{A} \ n \times n$ non-singular.

Today's topic. Iterative methods for general systems using short recurrences

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

$A^* = A > 0$, Conjugate Gradient

$$\begin{aligned} \mathbf{x} &= \mathbf{0}, \ \mathbf{r} = \mathbf{b}, \ \mathbf{u} = \mathbf{0}, \ \rho = 1 \\ \text{While } &\| \mathbf{r} \| > tol \ \text{do} \\ &\sigma = -\rho, \ \rho = \mathbf{r}^*\mathbf{r}, \ \beta = \rho/\sigma \\ &\mathbf{u} \leftarrow \mathbf{r} - \beta \mathbf{u}, \ \mathbf{c} = \mathbf{A}\mathbf{u} \\ &\sigma = \mathbf{u}^*\mathbf{c}, \ \alpha = \rho/\sigma \\ &\mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{c} \\ &\mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{u} \\ &\text{end while} \end{aligned}$$

Construction CG.

There are four alternative derivations of CG.

- GCR \leadsto (use $\mathbf{A}^* = \mathbf{A}$) \leadsto CR \leadsto use \mathbf{A}^{-1} inner product + efficient implementation.
- Lanczos + T = LU + efficient implementation.
- Orthogonalize residuals.

[Exercise 7.3]

- Nonlinear CG to solve $\mathbf{x} = \operatorname{argmin}_{\widetilde{\mathbf{X}}} \frac{1}{2} \|\mathbf{b} \mathbf{A}\widetilde{\mathbf{x}}\|_{A^{-1}}^2$
- . . .

$$\mathbf{u}_k = \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

$$\mathbf{u}_k = \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$
 $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$

Theorem. •
$$\mathbf{r}_k$$
, $\mathbf{K}\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}\mathbf{K}^{-1}, \mathbf{r}_0)$

- $\mathbf{r}_0, \dots, \mathbf{r}_{k-1}$ is a **Krylov basis** of $\mathcal{K}_k(\mathbf{A} \mathbb{K}^{-1}, \mathbf{r}_0)$
- ullet If \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathbf{r}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathcal{K}_k(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_0)$

$$\mathbf{u}_k = \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

Theorem. •
$$\mathbf{r}_k$$
, $\mathbf{K}\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}\mathbf{K}^{-1}, \mathbf{r}_0)$

- $\mathbf{r}_0, \dots, \mathbf{r}_{k-1}$ is a Krylov basis of $\mathcal{K}_k(\mathbf{A} \mathbb{K}^{-1}, \mathbf{r}_0)$
- ullet If \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathbf{r}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathcal{K}_k(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_0)$

$$\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{K}^{-1} \mathbf{r}_{k-1}$$
 by construction α_{k-1}

$$\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{K}^{-1} \mathcal{K}_{k-1} (\mathbf{A} \mathbf{K}^{-1}, \mathbf{r}_0)$$
 by induction

$$\mathbf{u}_k = \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

Theorem. •
$$\mathbf{r}_k$$
, $\mathbf{K}\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}\mathbf{K}^{-1}, \mathbf{r}_0)$

- $\mathbf{r}_0, \dots, \mathbf{r}_{k-1}$ is a Krylov basis of $\mathcal{K}_k(\mathbf{A} \mathbb{K}^{-1}, \mathbf{r}_0)$
- ullet If \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathbf{r}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathcal{K}_k(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_0)$

$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{K}^{-1} \mathbf{r}_{k-1}$$
 by construction β_k

$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbb{K}^{-1} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathbb{K}^{-1} \mathcal{K}_{k-1} (\mathbf{A} \mathbb{K}^{-1}, \mathbf{r}_0)$$
 by induction:

$$\mathbf{A} \mathsf{K}^{-1} \mathbf{r}_k \perp \mathsf{K}^{-1} \mathcal{K}_{k-1} (\mathbf{A} \mathsf{K}^{-1}, \mathbf{r}_0) \qquad \Leftrightarrow \qquad \mathbf{r}_k \perp \mathsf{K}^{-1} \mathbf{A} \mathsf{K}^{-1} \mathcal{K}_{k-1} (\mathbf{A} \mathsf{K}^{-1}, \mathbf{r}_0) \\ \qquad \qquad \qquad \Leftarrow \qquad \mathbf{r}_k \perp \mathsf{K}^{-1} \mathcal{K}_k (\mathbf{A} \mathsf{K}^{-1}, \mathbf{r}_0)$$

$$\mathbf{u}_k = \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

Theorem. • \mathbf{r}_k , $\mathbf{K}\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_0)$

- $\mathbf{r}_0, \dots, \mathbf{r}_{k-1}$ is a Krylov basis of $\mathcal{K}_k(\mathbf{AK}^{-1}, \mathbf{r}_0)$
- ullet If \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathbf{r}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{K}^{-1}\mathcal{K}_k(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_0)$

$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{K}^{-1} \mathbf{r}_{k-1}$$
 by construction β_k
$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbf{K}^{-1} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{K}^{-1} \mathcal{K}_{k-1} (\mathbf{A} \mathbf{K}^{-1}, \mathbf{r}_0)$$
 by induction:

$$\mathbf{A}\mathbf{K}^{-1}\mathbf{r}_{k} \perp \mathbf{K}^{-1}\mathcal{K}_{k-1}(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_{0}) \qquad \Leftrightarrow \qquad \mathbf{r}_{k} \perp \mathbf{K}^{-1}\mathbf{A}\mathbf{K}^{-1}\mathcal{K}_{k-1}(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_{0}) \\ \Leftarrow \qquad \mathbf{r}_{k} \perp \mathbf{K}^{-1}\mathcal{K}_{k}(\mathbf{A}\mathbf{K}^{-1},\mathbf{r}_{0})$$

$A^* = A \& K^* = K$: Preconditioned CG

$$\begin{aligned} \mathbf{x} &= \mathbf{0}, \ \mathbf{r} = \mathbf{b}, \ \mathbf{u} = \mathbf{0}, \ \rho = 1 \\ \text{While } \|\mathbf{r}\| > tol \ \text{do} \\ \text{Solve } \mathbf{K}\mathbf{C} = \mathbf{r} \ \text{for } \mathbf{C} \\ \sigma &= -\rho, \ \rho = \mathbf{c}^*\mathbf{r}, \ \beta = \rho/\sigma \\ \mathbf{u} \leftarrow \mathbf{c} - \beta \mathbf{u}, \ \mathbf{c} = \mathbf{A}\mathbf{u} \\ \sigma \leftarrow \mathbf{u}^*\mathbf{c}, \ \alpha = \rho/\sigma \\ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{c} \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{u} \\ \text{end while} \end{aligned}$$

Properties CG

Pros

- Low costs per step: 1 MV, 2 DOT, 3 AXPY to increase dimension Krylov subspace by one.
- Low storage: 5 large vectors (incl. b).
- Minimal res. method if A, K pos. def.: $\|\mathbf{r}_k\|_{\mathbf{\Delta}^{-1}}$ is min.
- Orthogonal residual method if $\mathbf{A}^* = \mathbf{A}$, $\mathbf{K}^* = \mathbf{K}$: $\mathbf{r}_k \perp \mathbf{K}^{-1} \mathcal{K}_k(\mathbf{A}\mathbf{K}^{-1}; \mathbf{r}_0)$.
- No additional knowledge on properties of A is needed.
- Robust: CG always converges if A, K pos. def..

Cons

- May break down if $\mathbf{A}^* = \mathbf{A} \not> 0$.
- Does **not** work if $\mathbf{A} \neq \mathbf{A}^*$.
- **CG** is sensitive to evaluation errors if $\mathbf{A}^* = \mathbf{A} \not> 0$. Often loss of a) super-linear conv., and b) accuracy. For two reasons:
 - 1) Loss of orthogonality in the Lanczos recursion
 - 2) As in FOM, bumps and peaks in CG conv. hist.

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

For general square non-singular A

- Apply CG to normal equations $(A^*Ax = A^*b) \rightsquigarrow CGNE$
- Apply CG to $AA^*y = b$ (then $x = A^*y$)

→ Graig's method

Disadvantage. Search in $\mathcal{K}_k(\mathbf{A}^*\mathbf{A},...)$:

- If $\mathbf{A} = \mathbf{A}^*$ then convergence is determined by \mathbf{A}^2 : condition number squared,
- Expansion \mathcal{K}_k requires 2 MVs (i.e., many costly steps).

For a discussion on Graig's method, see Exercise 8.1. For a Graig versus GCR, see Exercise 8.6.

For general square non-singular A

- Apply CG to normal equations $(A^*Ax = A^*b) \rightsquigarrow CGNE$
- Apply CG to $AA^*y = b$ (then $x = A^*y$)

→ Graig's method

Disadvantage. Search in $\mathcal{K}_k(\mathbf{A}^*\mathbf{A},...)$:

- If $\mathbf{A} = \mathbf{A}^*$ then convergence is determined by \mathbf{A}^2 : condition number squared,
- Expansion \mathcal{K}_k requires 2 MVs (i.e., many costly steps).

[Faber Manteufel 90]

Theorem. For general square non-singular \mathbf{A} , there is no Krylov solver that finds the best solution in de Krylov subspace $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$ using short recurrences.

For general square non-singular A

- Apply CG to normal equations $(A^*Ax = A^*b) \rightsquigarrow CGNE$
- Apply CG to $AA^*y = b$ (then $x = A^*y$)

→ Graig's method

Disadvantage. Search in $\mathcal{K}_k(\mathbf{A}^*\mathbf{A},...)$:

- If $\mathbf{A} = \mathbf{A}^*$ then convergence is determined by \mathbf{A}^2 : condition number squared,
- Expansion \mathcal{K}_k requires 2 MVs (i.e., many costly steps).

[Faber Manteufel 90]

Theorem. For general square non-singular \mathbf{A} , there is no Krylov solver that finds the best solution in de Krylov subspace $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$ using short recurrences.

Alternative. Construct residuals in a sequence of shrinking spaces (orthogonal to a sequence of growing spaces): adapt the construction of **CG**.

$$\mathbf{u}_k = \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$
 $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$

 \Leftrightarrow

Theorem. • \mathbf{r}_k , $\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}, \mathbf{r}_0)$

- $\mathbf{r}_0, \dots, \mathbf{r}_{k-1}$ is a Krylov basis of $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$
- If \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathbf{r}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$

$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathbf{r}_{k-1}$$

$$\mathbf{A} \mathbf{u}_k = \mathbf{A} \mathbf{r}_k - \beta_k \mathbf{A} \mathbf{u}_{k-1} \perp \mathcal{K}_{k-1} (\mathbf{A}, \mathbf{r}_0)$$

$$\mathbf{Ar}_k \perp \mathcal{K}_{k-1}(\mathbf{A}, \mathbf{r}_0)$$

by construction
$$\beta_{k-1}$$

$$\mathbf{r}_k \perp \mathbf{A} \mathcal{K}_{k-1}(\mathbf{A},\mathbf{r}_0)$$

$$\Leftarrow$$
 $\mathbf{r}_k \perp \mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$

$$\mathbf{u}_k = \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

Theorem. We have \mathbf{r}_k , $\mathbf{u}_k \in \mathcal{K}_{k+1}(\mathbf{A}, \mathbf{r}_0)$.

Suppose $\tilde{\mathbf{r}}_0, \dots, \tilde{\mathbf{r}}_{k-1}$ is a Krylov basis of $\mathcal{K}_k(\mathbf{A}^*, \tilde{\mathbf{r}}_0)$.

If
$$\mathbf{r}_k$$
, $\mathbf{A}\mathbf{u}_k \perp \widetilde{\mathbf{r}}_{k-1}$, then \mathbf{r}_k , $\mathbf{A}\mathbf{u}_k \perp \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{r}}_0)$.

$$\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{A} \mathbf{u}_{k-1} \perp \widetilde{\mathbf{r}}_{k-1}$$

$$\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1} \mathbf{A} \mathbf{u}_{k-1} \perp \mathcal{K}_{k-1} (\mathbf{A}^*, \widetilde{\mathbf{r}}_0)$$

$$\mathbf{A}\,\mathbf{u}_k = \mathbf{A}\,\mathbf{r}_k - eta_k\,\mathbf{A}\,\mathbf{u}_{k-1} \perp \widetilde{\mathbf{r}}_{k-1}$$

$$\mathbf{A}\,\mathbf{u}_k = \mathbf{A}\,\mathbf{r}_k - \beta_k\,\mathbf{A}\,\mathbf{u}_{k-1} \perp \mathcal{K}_{k-1}(\mathbf{A}^*,\widetilde{\mathbf{r}}_0)$$

by construction
$$\alpha_{k-1}$$
 by induction

by construction
$$\beta_{k-1}$$
 by induction:

$$\mathbf{Ar}_k \perp \mathcal{K}_{k-1}(\mathbf{A}^*, \widetilde{\mathbf{r}}_0) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \mathbf{r}_k \perp \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{r}}_0) \supset \mathbf{A}^* \mathcal{K}_{k-1}(\mathbf{A}^*, \widetilde{\mathbf{r}}_0)$$

$$\mathbf{u}_k = \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

$$\mathbf{r}_k,\,\mathbf{u}_k\in\mathcal{K}_{k+1}(\mathbf{A},\mathbf{r}_0),\qquad \mathbf{r}_k,\,\mathbf{A}\mathbf{u}_k\perp\widetilde{\mathbf{r}}_{k-1}$$

With
$$\begin{split} \rho_k &\equiv (\mathbf{r}_k, \widetilde{\mathbf{r}}_k) \quad \& \quad \sigma_k \equiv (\mathbf{A}\mathbf{u}_k, \widetilde{\mathbf{r}}_k) \\ \text{and, since} \quad &\widetilde{\mathbf{r}}_k + \overline{\vartheta}_k \, \mathbf{A}^* \, \widetilde{\mathbf{r}}_{k-1} \in \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{r}}_0) \\ & \quad &\overline{\cdot} \text{ is the complex conjugate} \end{split}$$
 for some ϑ_k ,

we have that
$$\alpha_k = \frac{(\mathbf{r}_k, \widetilde{\mathbf{r}}_k)}{(\mathbf{A}\mathbf{u}_k, \widetilde{\mathbf{r}}_k)} = \frac{\rho_k}{\sigma_k}$$

and
$$\beta_k = \frac{(\mathbf{A}\mathbf{r}_k, \widetilde{\mathbf{r}}_{k-1})}{(\mathbf{A}\mathbf{u}_{k-1}, \widetilde{\mathbf{r}}_{k-1})} = \frac{(\mathbf{r}_k, \mathbf{A}^* \widetilde{\mathbf{r}}_{k-1})}{\sigma_{k-1}} = \frac{-\rho_k}{\vartheta_k \, \sigma_{k-1}}$$

$$\mathbf{u}_k = \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

$$\mathbf{r}_k,\,\mathbf{u}_k\in\mathcal{K}_{k+1}(\mathbf{A},\mathbf{r}_0),\qquad \mathbf{r}_k,\,\mathbf{A}\mathbf{u}_k\perp\widetilde{\mathbf{r}}_{k-1}$$

With
$$ho_k \equiv (\mathbf{r}_k, \bar{q}_k(\mathbf{A}^*) \tilde{\mathbf{r}}_0)$$
 & $\sigma_k \equiv (\mathbf{A} \mathbf{u}_k, \bar{q}_k(\mathbf{A}^*) \tilde{\mathbf{r}}_0)$ and, since $q_k(\zeta) + \vartheta_k \zeta \, q_{k-1}(\zeta) \in \mathcal{P}_{k-1}$ for some ϑ_k , we have that $\alpha_k = \frac{\rho_k}{\sigma_k}$ & $\beta_k = \frac{-\rho_k}{\vartheta_k \, \sigma_{k-1}}$

Classical **Bi-CG** [Fletcher '76] generates the **shadow** residuals $\tilde{\mathbf{r}}_k = \bar{q}_k(\mathbf{A}^*)\tilde{\mathbf{r}}_0$ with the same polynomal as \mathbf{r}_k $(q_k = p_k)$

$$\mathbf{r}_k = p_k(\mathbf{A})\mathbf{r}_0, \qquad \tilde{\mathbf{r}}_k = \bar{p}_k(\mathbf{A}^*)\tilde{\mathbf{r}}_0$$
:

i.e., compute $\tilde{\mathbf{r}}_{k+1}$ as

$$\begin{split} \widetilde{\mathbf{r}}_{k+1} &= \widetilde{\mathbf{r}}_k - \bar{\alpha}_k \, \mathbf{A}^* \widetilde{\mathbf{u}}_k, \qquad \text{with} \qquad \widetilde{\mathbf{u}}_k = \widetilde{\mathbf{r}}_k - \bar{\beta}_k \, \widetilde{\mathbf{u}}_{k-1}. \end{split}$$
 In particular, $\vartheta_k = \alpha_{k-1}.$

However, other choices for q_k are possible as well.

Example.
$$q_k(\zeta) = (1 - \omega_{k-1}\zeta) \, q_{k-1}(\zeta) \quad (\zeta \in \mathbb{C}).$$
 Then, $\vartheta_k = \omega_{k-1}$ and $\tilde{\mathbf{r}}_k = \tilde{\mathbf{r}}_{k-1} - \bar{\omega}_{k-1} \, \mathbf{A}^* \tilde{\mathbf{r}}_{k-1}$,

with, for instance, $\bar{\omega}_{k-1}$ to minimize $\|\tilde{\mathbf{r}}_k\|_2$.

The next transparancy displays classical Bi-CG.

Bi-CG

$$\begin{array}{lll} \mathbf{x} = \mathbf{0}, & \mathbf{r} = \mathbf{b}. & \mathbf{Choose} \ \tilde{\mathbf{r}} \\ \mathbf{u} = \mathbf{0}, & \rho = 1 & \tilde{\mathbf{u}} = \mathbf{0} \\ \text{While} & \|\mathbf{r}\| > tol \ \text{do} \\ & \sigma = -\rho, & \rho = (\mathbf{r}, \tilde{\mathbf{r}}), & \beta = \rho/\sigma \\ & \mathbf{u} \leftarrow \mathbf{r} - \beta \, \mathbf{u}, & \mathbf{c} = \mathbf{A}\mathbf{u}, & \tilde{\mathbf{u}} \leftarrow \tilde{\mathbf{r}} - \bar{\beta} \, \tilde{\mathbf{u}}, & \tilde{\mathbf{c}} = \mathbf{A}^* \tilde{\mathbf{u}} \\ & \sigma = (\mathbf{c}, \tilde{\mathbf{r}}), & \alpha = \rho/\sigma \\ & \mathbf{r} \leftarrow \mathbf{r} - \alpha \, \mathbf{c}, & \tilde{\mathbf{r}} \leftarrow \tilde{\mathbf{r}} - \bar{\alpha} \, \tilde{\mathbf{c}} \\ & \mathbf{x} \leftarrow \mathbf{x} + \alpha \, \mathbf{u} \\ & \text{end while} \end{array}$$

Bi-CG

$$\begin{array}{lllll} \mathbf{x} = \mathbf{0}, & \mathbf{r} = \mathbf{b}. & \mathbf{Choose} \ \tilde{\mathbf{r}} \\ \mathbf{u} = \mathbf{0}, & \rho = 1 & \tilde{\mathbf{c}} = \mathbf{0} \\ \text{While} & \|\mathbf{r}\| > tol \ \text{do} \\ & \sigma = -\rho, & \rho = (\mathbf{r}, \tilde{\mathbf{r}}), & \beta = \rho/\sigma \\ & \mathbf{u} \leftarrow \mathbf{r} - \beta \, \mathbf{u}, & \mathbf{c} = \mathbf{A}\mathbf{u}, & \tilde{\mathbf{c}} \leftarrow \mathbf{A}^* \tilde{\mathbf{r}} - \bar{\beta} \, \tilde{\mathbf{c}} \\ & \sigma = (\mathbf{c}, \tilde{\mathbf{r}}), & \alpha = \rho/\sigma \\ & \mathbf{r} \leftarrow \mathbf{r} - \alpha \, \mathbf{c}, & \tilde{\mathbf{r}} \leftarrow \tilde{\mathbf{r}} - \bar{\alpha} \, \tilde{\mathbf{c}} \\ & \mathbf{x} \leftarrow \mathbf{x} + \alpha \, \mathbf{u} \\ & \text{end while} \end{array}$$

Selecting the initial shadow residual \tilde{r}_0 .

- Often recommended: $\tilde{\mathbf{r}}_0 = \mathbf{r}_0$.
- Practical experience: select $\tilde{\mathbf{r}}_0$ randomly (unless $\mathbf{A}^* = \mathbf{A}$).

Exercise. Bi-CG and CG coincide

if **A** is Hermitian and $\tilde{\mathbf{r}}_0 = \mathbf{r}_0$.

Exercise. Derive a version of **Bi-CG** that includes a preconditioner **K**.

Show that **Bi-CG** and **CG** coincide

if **A** and **K** are Hermitian and $\tilde{\mathbf{r}}_0 = \mathbf{K}^{-1}\mathbf{r}_0$.

Exercise 8.9 gives an alternative derivation of Bi-CG.

Properties Bi-CG

Pros

- Usually selects good approximations from the search subspaces (Krylov subspaces).
- Low costs per step: 2 DOT, 5 AXPY.
- Low storage: 7 large vectors.
- No knowledge on properties of A is needed.

Cons

- Non-optimal Krylov subspace method.
- Not robust: Bi-CG may break down.
- **Bi-CG** is sensitive to evaluation errors (often loss of super-linear convergence).
- \circ Convergence depends on shadow residual $\tilde{\mathbf{r}}_0$.
- 2 MV needed to expand search subspace by 1 vector.
- 1 MV is by A*.

Properties Bi-CG

Pros

- Usually selects good approximations from the search subspaces (Krylov subspaces).
- Low costs per step: 2 DOT, 5 AXPY.
- Low storage: 8 large vectors.
- No knowledge on properties of A is needed.

Cons

- Non-optimal Krylov subspace method.
- Not robust: Bi-CG may break down.
- **Bi-CG** is sensitive to evaluation errors (often loss of super-linear convergence).
- \circ Convergence depends on **shadow** residual $\tilde{\mathbf{r}}_0$.
- 2 MV needed to expand search subspace by 1 vector.
- 1 MV is by \mathbf{A}^* .

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

Bi-Lanczos

Find coefficients α_k , β_k , $\widetilde{\alpha}_k$ and $\widetilde{\beta}_k$ such that (bi-orthogonalize)

$$\begin{split} \gamma_k \mathbf{v}_{k+1} &= \mathbf{A} \mathbf{v}_k - \alpha_k \mathbf{v}_k - \beta_k \mathbf{v}_{k-1} - \ldots \perp \mathbf{w}_k, \mathbf{w}_{k-1}, \ldots \\ \widetilde{\gamma}_k \mathbf{w}_{k+1} &= \mathbf{A}^* \mathbf{w}_k - \widetilde{\alpha}_k \mathbf{w}_k - \widetilde{\beta}_k \mathbf{w}_{k-1} - \ldots \perp \mathbf{v}_k, \mathbf{v}_{k-1}, \ldots \end{split}$$

Select appropriate scaling coefficients γ_k and $\tilde{\gamma}_k$.

Then

$$\mathbf{AV}_k = \mathbf{V}_{k+1} \underline{H}_k \text{ with } \underline{H}_k \text{ Hessenberg}$$

$$\mathbf{A}^* \mathbf{W}_k = \mathbf{W}_{k+1} \underline{\widetilde{H}_k} \text{ with } \underline{\widetilde{H}_k} \text{ Hessenberg}$$
 and
$$\mathbf{W}_{k+1}^* \mathbf{V}_{k+1} = D_{k+1} \text{ diagonal}$$

Exercise. $T_k \equiv \mathbf{W}_k^* \mathbf{A} \mathbf{V}_k = D_k H_k = \widetilde{H_k}^* D_k$ is tridiagonal.

Exploit $\widetilde{H_k} = D_k H_k^* D_k^*$ and tridiagonal structure: \leadsto Bi-Lanczos.

Bi-Lanczos

Find coefficients α_k , β_k , $\widetilde{\alpha}_k$ and $\widetilde{\beta}_k$ such that (bi-orthogonalize)

$$\begin{aligned} \gamma_k \mathbf{v}_{k+1} &= \mathbf{A} \mathbf{v}_k - \alpha_k \mathbf{v}_k - \beta_k \mathbf{v}_{k-1} - \ldots \perp \mathbf{w}_k, \mathbf{w}_{k-1}, \ldots \\ \widetilde{\gamma}_k \mathbf{w}_{k+1} &= \mathbf{A}^* \mathbf{w}_k - \widetilde{\alpha}_k \mathbf{w}_k - \widetilde{\beta}_k \mathbf{w}_{k-1} - \ldots \perp \mathbf{v}_k, \mathbf{v}_{k-1}, \ldots \end{aligned}$$

Select appropriate scaling coefficients γ_k and $\tilde{\gamma}_k$.

Then

$$\mathbf{AV}_k = \mathbf{V}_{k+1}\underline{H}_k \text{ with } \underline{H}_k \text{ Hessenberg}$$

$$\mathbf{A}^*\mathbf{W}_k = \mathbf{W}_{k+1}\underline{\widetilde{H}_k} \text{ with } \underline{\widetilde{H}_k} \text{ Hessenberg}$$
 and
$$\mathbf{W}_{k+1}^*\mathbf{V}_{k+1} = D_{k+1} \text{ diagonal}$$

Exercise. $T_k \equiv \mathbf{W}_k^* \mathbf{A} \mathbf{V}_k = D_k H_k = \widetilde{H_k}^* D_k$ is tridiagonal.

Exploit $\widetilde{H_k} = D_k H_k^* D_k^*$ and tridiagonal structure:

→ Bi-Lanczos.

See Exercise 8.7 for details.

Lanczos

$$\begin{split} \rho &= \|\mathbf{r}_0\|, \quad \mathbf{v}_1 = \mathbf{r}_0/\rho \\ \beta_0 &= 0, \quad \mathbf{v}_0 = \mathbf{0} \\ \text{for } k = 1, 2, \dots \text{ do} \\ \widetilde{\mathbf{v}} &= \mathbf{A} \, \mathbf{v}_k - \beta_{k-1} \, \mathbf{v}_{k-1} \\ \alpha_k &= \mathbf{v}_k^* \, \widetilde{\mathbf{v}}, \quad \widetilde{\mathbf{v}} \leftarrow \widetilde{\mathbf{v}} - \alpha_k \, \mathbf{v}_k \\ \beta_k &= \|\widetilde{\mathbf{v}}\|, \quad \mathbf{v}_{k+1} = \widetilde{\mathbf{v}}/\beta_k \end{split}$$
 end while

Bi-Lanczos

Select a
$$\mathbf{r}_0$$
, and a $\widetilde{\mathbf{r}}_0$ $\mathbf{v}_1 = \mathbf{r}_0/\|\mathbf{r}_0\|$, $\mathbf{v}_0 = \mathbf{0}$, $\mathbf{w}_1 = \widetilde{\mathbf{r}}_0/\|\widetilde{\mathbf{r}}_0\|$, $\mathbf{w}_0 = \mathbf{0}$ $\gamma_0 = 0$, $\delta_0 = 1$, $\widetilde{\gamma}_0 = 0$, $\widetilde{\delta}_0 = 1$ For $k = 1, 2, \ldots$ do $\delta_k = \mathbf{w}_k^* \mathbf{v}_k$, $\widetilde{\mathbf{w}} = \mathbf{A} \mathbf{v}_k$, $\widetilde{\mathbf{w}} = \mathbf{A}^* \mathbf{w}_k$ $\widetilde{\beta}_k = \overline{\widetilde{\gamma}}_{k-1} \delta_k / \delta_{k-1}$, $\widetilde{\beta}_k = \overline{\gamma}_{k-1} \overline{\delta}_k / \overline{\delta}_{k-1}$ $\widetilde{\mathbf{v}} \leftarrow \widetilde{\mathbf{v}} - \beta_k \mathbf{v}_{k-1}$, $\widetilde{\mathbf{w}} \leftarrow \widetilde{\mathbf{w}} - \widetilde{\beta}_k \mathbf{w}_{k-1}$ $\alpha_k = \mathbf{w}_k^* \widetilde{\mathbf{v}} / \delta_k$, $\widetilde{\mathbf{w}} \leftarrow \widetilde{\mathbf{w}} - \widetilde{\beta}_k \mathbf{w}_k$ Select a $\gamma_k \neq 0$ and a $\widetilde{\gamma}_k \neq 0$ $\mathbf{v}_{k+1} = \widetilde{\mathbf{v}} / \gamma_k$, $\mathbf{w}_{k+1} = \widetilde{\mathbf{w}} / \gamma_k$, $\mathbf{w}_k = [\mathbf{W}_{k-1}, \mathbf{v}_k]$, end while

Arnoldi: $\mathbf{AV}_k = \mathbf{V}_{k+1}\underline{H}_k$.

If $\mathbf{A}^* = \mathbf{A}$, then $\underline{T}_k \equiv \underline{H}_k$ tridiagonal \leadsto Lanczos

Lanczos + T = LU + efficient implementation

∼→ CG

Bi-Lanczos + T = LU + efficient implementation \leadsto **Bi-CG**

Bi-CG

$$\begin{array}{lllll} \mathbf{x} = \mathbf{0}, & \mathbf{r} = \mathbf{b}. & \mathbf{Choose} \ \tilde{\mathbf{r}} \\ \mathbf{u} = \mathbf{0}, & \rho = 1 & \tilde{\mathbf{c}} = \mathbf{0} \\ \text{While} & \|\mathbf{r}\| > tol \ \text{do} \\ & \sigma = -\rho, & \rho = (\mathbf{r}, \tilde{\mathbf{r}}), & \beta = \rho/\sigma \\ & \mathbf{u} \leftarrow \mathbf{r} - \beta \, \mathbf{u}, & \mathbf{c} = \mathbf{A}\mathbf{u}, & \tilde{\mathbf{c}} \leftarrow \mathbf{A}^* \tilde{\mathbf{r}} - \bar{\beta} \, \tilde{\mathbf{c}} \\ & \sigma = (\mathbf{c}, \tilde{\mathbf{r}}), & \alpha = \rho/\sigma \\ & \mathbf{r} \leftarrow \mathbf{r} - \alpha \, \mathbf{c}, & \tilde{\mathbf{r}} \leftarrow \tilde{\mathbf{r}} - \bar{\alpha} \, \tilde{\mathbf{c}} \\ & \mathbf{x} \leftarrow \mathbf{x} + \alpha \, \mathbf{u} \\ & \text{end while} \end{array}$$

Bi-CG may break down

- 0) Lucky breakdown if $\mathbf{r}_k = \mathbf{0}$.
- 1) Pivot breakdown or LU-breakdown,
- i.e., LU-decomposition may not exist.

Corresponds to $\sigma = 0$ in **Bi-CG**

Remedy.

- \circ Composite step **Bi-CG** (skip once forming $T_k = L_k U_k$)
- Form T = QR as in **MINRES** (from the beginning): simple **Quasi Minimal Residuals**
- 2) Bi-Lanczos may break down,

i.e., a diagonal element of D_k may be zero.

Corresponds to $\rho = 0$ in **Bi-CG**

Remedy. o Look ahead

General remedy. • Restart • Look ahead in QMR

Note. CG may suffer from pivot breakdown when applied to a Hermitian, non definite matrix $(\mathbf{A}^* = \mathbf{A})$ with positive as well as negative eigenvalues):

MINRES and SYMMLQ cure this breakdown.

Note. Exact breakdowns are rare.

However, near breakdowns lead to irregular convergence and instabilities. This leads to

- loss of speed of convergence
- loss of accuracy

Properties Bi-CG

Advantages

- Usually selects good approximations from the search subspaces (Krylov subspaces).
- 2 DOT, 5 AXPY per step.
- Storage: 8 large vectors.
- No knowledge on properties of A is needed.

Drawbacks

- Non-optimal Krylov subspace method.
- Not robust: Bi-CG may break down.
- **Bi-CG** is sensitive to evaluation errors (often loss of super-linear convergence).
- \circ Convergence depends on **shadow** residual $\tilde{\mathbf{r}}_0$.
- 2 MV needed to expand search subspace.
- 1 MV is by **A***.

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

Bi-Conjugate Gradients, K=I

$$\mathbf{u}_k = \mathbf{r}_k - \beta_k \, \mathbf{u}_{k-1}$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \, \mathbf{A} \, \mathbf{u}_k$$

$$\mathbf{r}_k,\,\mathbf{u}_k\in\mathcal{K}_{k+1}(\mathbf{A},\mathbf{r}_0),\qquad \mathbf{r}_k,\,\mathbf{A}\mathbf{u}_k\perp\widetilde{\mathbf{r}}_{k-1}$$

With
$$ho_k \equiv (\mathbf{r}_k, \overline{q}_k(\mathbf{A}^*)\widetilde{\mathbf{r}}_0)$$
 & $\sigma_k \equiv (\mathbf{A}\mathbf{u}_k, \overline{q}_k(\mathbf{A}^*)\widetilde{\mathbf{r}}_0)$ and, since $q_k(\zeta) + \vartheta_k \zeta \, q_{k-1}(\zeta) \in \mathcal{P}_{k-1}$ for some ϑ_k , we have that $\alpha_k = \frac{\rho_k}{\sigma_k}$ & $\beta_k = \frac{-\rho_k}{\vartheta_k \, \sigma_{k-1}}$

Transpose-free Bi-CG

$$\rho_k = (\mathbf{r}_k, \bar{q}_k(\mathbf{A}^*) \, \tilde{\mathbf{r}}_0) = (q_k(\mathbf{A}) \mathbf{r}_k, \tilde{\mathbf{r}}_0),$$

$$\sigma_k = (\mathbf{A} \mathbf{u}_k, \bar{q}_k(\mathbf{A}^*) \, \tilde{\mathbf{r}}_0) = (\mathbf{A} q_k(\mathbf{A}) \mathbf{u}_k, \tilde{\mathbf{r}}_0)$$

$$\mathbf{Q}_k \equiv q_k(\mathbf{A})$$

$$(\text{Bi-CG}) \begin{cases} \rho_k, & \mathbf{Q}_k \mathbf{u}_k = \mathbf{Q}_k \mathbf{r}_k - \beta_k \, \mathbf{Q}_k \mathbf{u}_{k-1}, \\ \sigma_k, & \mathbf{Q}_k \mathbf{r}_{k+1} = \mathbf{Q}_k \mathbf{r}_k - \alpha_k \, \mathbf{A} \mathbf{Q}_k \mathbf{u}_k, \end{cases}$$

(PoI) Compute q_{k+1} of degree k+1 s.t. $q_{k+1}(0)=1$. Compute $\mathbf{Q}_{k+1}\mathbf{u}_k$, $\mathbf{Q}_{k+1}\mathbf{r}_{k+1}$ (from $\mathbf{Q}_k\mathbf{u}_k$, $\mathbf{Q}_k\mathbf{r}_{k+1},\ldots$

Transpose-free Bi-CG

$$\begin{split} \rho_k &= (\mathbf{r}_k, \bar{q}_k(\mathbf{A}^*) \, \widetilde{\mathbf{r}}_0) = (q_k(\mathbf{A}) \mathbf{r}_k, \widetilde{\mathbf{r}}_0), \\ \sigma_k &= (\mathbf{A} \mathbf{u}_k, \bar{q}_k(\mathbf{A}^*) \, \widetilde{\mathbf{r}}_0) = (\mathbf{A} q_k(\mathbf{A}) \mathbf{u}_k, \widetilde{\mathbf{r}}_0) \end{split}$$

$$\mathbf{Q}_k \equiv q_k(\mathbf{A})$$

(Bi-CG)
$$\begin{cases} \rho_k, & \mathbf{Q}_k \mathbf{u}_k = \mathbf{Q}_k \mathbf{r}_k - \beta_k \mathbf{Q}_k \mathbf{u}_{k-1}, \\ \sigma_k, & \mathbf{Q}_k \mathbf{r}_{k+1} = \mathbf{Q}_k \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{Q}_k \mathbf{u}_k, \end{cases}$$

(PoI) Compute q_{k+1} of degree k+1 s.t. $q_{k+1}(0)=1$. Compute $\mathbf{Q}_{k+1}\mathbf{u}_k$, $\mathbf{Q}_{k+1}\mathbf{r}_{k+1}$

Example.
$$q_{k+1}(\zeta) = (1 - \omega_k \zeta) q_k(\zeta)$$

Transpose-free Bi-CG

$$\rho_k = (\mathbf{r}_k, \bar{q}_k(\mathbf{A}^*) \, \tilde{\mathbf{r}}_0) = (q_k(\mathbf{A}) \mathbf{r}_k, \tilde{\mathbf{r}}_0),$$

$$\sigma_k = (\mathbf{A} \mathbf{u}_k, \bar{q}_k(\mathbf{A}^*) \, \tilde{\mathbf{r}}_0) = (\mathbf{A} q_k(\mathbf{A}) \mathbf{u}_k, \tilde{\mathbf{r}}_0)$$

$$\mathbf{Q}_k \equiv q_k(\mathbf{A})$$

(Bi-CG)
$$\begin{cases} \rho_k, & \mathbf{Q}_k \mathbf{u}_k = \mathbf{Q}_k \mathbf{r}_k - \beta_k \, \mathbf{Q}_k \mathbf{u}_{k-1}, \\ \sigma_k, & \mathbf{Q}_k \mathbf{r}_{k+1} = \mathbf{Q}_k \mathbf{r}_k - \alpha_k \, \mathbf{A} \mathbf{Q}_k \mathbf{u}_k, \end{cases}$$

(PoI) Compute q_{k+1} of degree k+1 s.t. $q_{k+1}(0)=1$. Compute $\mathbf{Q}_{k+1}\mathbf{u}_k$, $\mathbf{Q}_{k+1}\mathbf{r}_{k+1}$

Example.
$$q_{k+1}(\zeta) = (1 - \omega_k \zeta) q_k(\zeta)$$
 $(\zeta \in \mathbb{C})$.
$$\begin{cases} \omega_k, & \mathbf{Q}_{k+1} \mathbf{u}_k = \mathbf{Q}_k \mathbf{u}_k - \omega_k \mathbf{A} \mathbf{Q}_k \mathbf{u}_k, \\ \mathbf{Q}_{k+1} \mathbf{r}_{k+1} = \mathbf{Q}_k \mathbf{r}_{k+1} - \omega_k \mathbf{A} \mathbf{Q}_k \mathbf{r}_{k+1}, \end{cases}$$
.

Transpose-free Bi-CG; Practice

Work with $\mathbf{u}_k' \equiv \mathbf{Q}_k \mathbf{u}_k^{\mathrm{BiCG}}$ and $\mathbf{r}_k' \equiv \mathbf{Q}_k \mathbf{r}_{k+1}^{\mathrm{BiCG}}$ Write \mathbf{u}_{k-1} and \mathbf{r}_k , instead of $\mathbf{Q}_k \mathbf{u}_{k-1}^{\mathrm{BiCG}}$ and $\mathbf{Q}_k \mathbf{r}_k^{\mathrm{BiCG}}$, resp.

$$\rho_k = (\mathbf{r}_k, \widetilde{\mathbf{r}}_0), \quad \sigma_k = (\mathbf{A}\mathbf{u}_k', \widetilde{\mathbf{r}}_0)$$

$$(\text{Bi-CG}) \, \left\{ \begin{array}{l} \rho_k = (\mathbf{r}_k, \widetilde{\mathbf{r}}_0), & \mathbf{u}_k' = \mathbf{r}_k - \beta_k \mathbf{u}_{k-1}, \\ \sigma_k = (\mathbf{A}\mathbf{u}_k', \widetilde{\mathbf{r}}_0), & \mathbf{r}_k' = \mathbf{r}_k - \alpha_k \, \mathbf{A}\mathbf{u}_k', & \mathbf{x}_k' = \mathbf{x}_k + \alpha_k \mathbf{u}_k' \end{array} \right.$$

(PoI) Compute updating coefficients for q_{k+1} . Compute $\mathbf{u}_k, \quad \mathbf{r}_{k+1}, \quad \mathbf{x}_{k+1}$

Example.

$$\begin{cases} \omega_k, & \mathbf{u}_{k+1} = \mathbf{u}_k' - \omega_k \, \mathbf{A} \mathbf{u}_k', \\ & \mathbf{r}_{k+1} = \mathbf{r}_k' - \omega_k \, \mathbf{A} \mathbf{r}_k', \quad \mathbf{x}_{k+1} = \mathbf{x}_k' + \omega_k \mathbf{r}_k' \end{cases}$$

Example.
$$q_{k+1}(\zeta) = (1 - \omega_k \zeta) q_k(\zeta)$$
 $(\zeta \in \mathbb{C})$

How to choose ω_k ?

Bi-CGSTABilized. With
$$\mathbf{s}_k \equiv \mathbf{A}\mathbf{r}_k'$$
,

$$\omega_k \equiv \mathrm{argmin}_\omega \|\mathbf{r}_k' - \omega \, \mathbf{A} \mathbf{r}_k'\|_2 = \frac{\mathbf{s}_k^* \mathbf{r}_k'}{\mathbf{s}_k^* \mathbf{s}_k}$$

as in Local Minimal Residual method, or, equivalently, as in GCR(1).

BICGSTAB

$$\begin{array}{l} \mathbf{x} = \mathbf{0}, \ \mathbf{r} = \mathbf{b}. \quad \text{Choose } \widetilde{\mathbf{r}} \\ \mathbf{u} = \mathbf{0}, \ \omega = \sigma = \mathbf{1}. \\ \\ \text{While } \|\mathbf{r}\| > tol \ \text{do} \\ \\ \sigma \leftarrow -\omega\sigma, \ \rho = (\mathbf{r},\widetilde{\mathbf{r}}), \ \beta = \rho/\sigma \\ \mathbf{u} \leftarrow \mathbf{r} - \beta \mathbf{u}, \ \mathbf{c} = \mathbf{A}\mathbf{u} \\ \\ \sigma = (\mathbf{c},\widetilde{\mathbf{r}}), \ \alpha = \rho/\sigma \\ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{c}, \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{u} \\ \mathbf{s} = \mathbf{A}\mathbf{r}, \ \omega = (\mathbf{r},\mathbf{s})/(\mathbf{s},\mathbf{s}) \\ \mathbf{u} \leftarrow \mathbf{u} - \omega \mathbf{c} \\ \mathbf{x} \leftarrow \mathbf{x} + \omega \mathbf{r} \\ \mathbf{r} \leftarrow \mathbf{r} - \omega \mathbf{s} \\ \text{end while} \end{array}$$

Hybrid Bi-CG or product type Bi-CG

$$\mathbf{r}_k \equiv q_k(\mathbf{A})\mathbf{r}_k^{\mathrm{Bi-CG}} = q_k(\mathbf{A})\,p_k^{\mathrm{BiCG}}(\mathbf{A})\,\mathbf{r}_0$$

 p_k^{BiCG} is the $k\mathrm{th}$ "Bi-CG residual polynomial"

How to select q_k ??

 q_k for efficient steps & fast convergence.

Fast convergence by

- reducing the residual
- stabilizing the Bi-CG part
- Other when used as linear solver for the Jacobian system in a Newton scheme for non-linear equations, by reducing the number of Newton steps

Hybrid Bi-CG

Examples.

CGS Bi-CG × Bi-CG Sonneveld [1989]

Bi-CGSTAB $GCR(1) \times Bi-CG$ van der Vorst [1992]

GPBi-CG 2-truncated **GCR** × **Bi-CG** Zhang [1997]

 $BiCGstab(\ell)$ $GCR(\ell) \times Bi-CG$ SI. Fokkema [1993]

For more details on hybrid Bi-CG,

see Exercise 8.11 and Exercise 8.12.

For a derivation of GPBi-CG, see Exercise 8.13.

Properties hybrid Bi-CG

Pros

Converges often twice as fast as Bi-CG w.r.t. # MVs:
 each MV expands the search subspace

Bi-CG: $\mathbf{x}_k - \mathbf{x}_0 \in \mathcal{K}_k(\mathbf{A}; \mathbf{r}_0)$ à 2k MV. Hybrid Bi-CG: $\mathbf{x}_k - \mathbf{x}_0 \in \mathcal{K}_{2k}(\mathbf{A}; \mathbf{r}_0)$ à 2k MV.

- Work/MV and storage similar to Bi-CG.
- Transpose free.
- Explicit computation of Bi-CG scalars.

Cons

- Non-optimal Krylov subspace method.
- Peaks in the convergence history.
- Large intermediate residuals.
- Breakdown possibilities.

Conjugate Gradients Squared

$$\mathbf{r}_k = p_k^{\mathrm{BiCG}}(\mathbf{A}) \, p_k^{\mathrm{BiCG}}(\mathbf{A}) \, \mathbf{r}_0$$

CGS exploits recurrence relations for the **Bi-CG** polynomials to design a very efficient algorithm.

Properties

- + Hybrid Bi-CG.
- + A very efficient algorithm: 1 DOT/MV, 3.25 AXPY/MV; storage: 7 large vectors.
- Often high peaks in its convergence history
- Often large intermediate residuals
- + Seems to do well as linear solver in a Newton scheme

Conjugate Gradients Squared

$$\begin{array}{l} \mathbf{x} = \mathbf{0}, \ \mathbf{r} = \mathbf{b}. \quad \text{Choose } \tilde{\mathbf{r}}. \\ \mathbf{u} = \mathbf{w} = \mathbf{0}, \ \rho = 1. \\ \\ \text{While } \|\mathbf{r}\| > tol \text{ do} \\ \\ \sigma = -\rho, \quad \rho = (\mathbf{r}, \tilde{\mathbf{r}}), \quad \beta = \rho/\sigma \\ \\ \mathbf{w} \leftarrow \mathbf{u} - \beta \mathbf{w} \\ \\ \mathbf{v} = \mathbf{r} - \beta \mathbf{u} \\ \\ \mathbf{w} \leftarrow \mathbf{v} - \beta \mathbf{w}, \quad \mathbf{c} = \mathbf{A} \mathbf{w} \\ \\ \sigma = (\mathbf{c}, \tilde{\mathbf{r}}), \quad \alpha = \rho/\sigma \\ \\ \mathbf{u} = \mathbf{v} - \alpha \mathbf{c} \\ \\ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{A} (\mathbf{v} + \mathbf{u}) \\ \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha (\mathbf{v} + \mathbf{u}) \\ \\ \text{end while} \end{array}$$

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

Properties Bi-CGSTAB

Pros

- Hybrid **Bi-CG**.
- Converges faster (& smoother) than CGS.
- More accurate than CGS.
- 2 DOT/MV, 3 AXPY/MV.
- Storage: 6 large vectors.

Cons Danger of

(A) Lanczos breakdown
$$(\rho_k = 0)$$
,

(B) pivot breakdown
$$(\sigma_k = 0)$$
,

(C) breakdown minimization
$$(\omega_k = 0)$$
.

$$-(a\,u_x)_x-(a\,u_y)_y=1$$
 on $[0,1]\times[0,1].$ $a=1000$ for $0.1\leq x,y\leq 0.9$ and $a=1$ elsewhere.

Dirichlet BC on y=0, Neumann BC on other parts of Boundary. 82×82 volumes. ILU Decomp.

 $-(a u_x)_x - (a u_y)_y + b u_x = f$ on $[0,1] \times [0,1]$. $b(x,y) = 2 \exp(2(x^2 + y^2))$, a changes strongly Dirichlet BC. 129×129 volumes. ILU Decomp.

 $-(a u_x)_x - (a u_y)_y + b u_x = f \text{ on } [0,1] \times [0,1].$ $b(x,y) = 2 \exp(2(x^2 + y^2)), \text{ a changes strongly}$ Dirichlet BC. 201 × 201 volumes. ILU Decomp.

Breakdown of the minimization

Exact arithmetic, $\omega_k = 0$:

No reduction of residual by

$$\mathbf{Q}_{k+1} r_{k+1} = (\mathbf{I} - \omega_k \mathbf{A}) \mathbf{Q}_k \mathbf{r}_{k+1}^{\mathsf{BiCG}}. \tag{*}$$

 $-q_{k+1}$ is of degree k: **Bi-CG** scalars can not be computed; breakdown of incorporated **Bi-CG**.

Finite precision arithmetic, $\omega_k \approx 0$:

- Poor reduction of residual by (*)
- Bi-CG scalars are seriously affected by evaluation errors:
 drop of speed of convergence.

 $\omega_k pprox 0$ to be expected if **A** is real and

A has eigenvalues with rel. large imaginary part: ω_k is real!

Example.
$$q_{k+1}(\zeta) = (1 - \omega_k \zeta) q_k(\zeta)$$
 $(\zeta \in \mathbb{C})$

How to choose ω_k ?

Bi-CGSTABilized. With $\mathbf{s}_k \equiv \mathbf{A}\mathbf{r}_k'$,

$$\omega_k \equiv \operatorname{argmin}_{\omega} \|\mathbf{r}_k' - \omega \mathbf{A}\mathbf{r}_k'\|_2 = \frac{\mathbf{s}_k^* \mathbf{r}_k'}{\mathbf{s}_k^* \mathbf{s}_k}$$

as in Local Minimal Residual method, or, equivalently, as in GCR(1).

BiCGstab(ℓ). Cycle ℓ times through the **Bi-CG** part to compute $\mathbf{A}^j\mathbf{u}'$, $\mathbf{A}^j\mathbf{r}'$ for $j=0,\ldots,\ell$, where now $\mathbf{u}'\equiv\mathbf{Q}_k\mathbf{u}_{k+\ell-1}^{\mathrm{BiCG}}$ and $\mathbf{r}'\equiv\mathbf{Q}_k\mathbf{r}_{k+\ell}^{\mathrm{BiCG}}$ for $k=m\ell$. $\vec{\gamma}_m\equiv \mathrm{argmin}_{\vec{\gamma}}\|\mathbf{r}'-[\mathbf{A}\mathbf{r}',\ldots,\mathbf{A}^\ell\mathbf{r}']\vec{\gamma}\|_2$

$$\mathbf{r}_{k+\ell} = \mathbf{r}' - [\mathbf{A}\mathbf{r}', \dots, \mathbf{A}^{\ell}\mathbf{r}']\vec{\gamma}_m$$
$$q_{k+\ell}(\zeta) = (1 - [\zeta, \dots, \zeta^{\ell}]\vec{\gamma}_m)q_k(\zeta) \quad (\zeta \in \mathbb{C})$$

for
$$\ell > 2$$

BiCGstab(ℓ) for $\ell \geq 2$ [S1 Fokkema 93, S1 vdV Fokkema 94]

$$\begin{cases} q_{k+1}(\mathbf{A}) = \mathbf{A} q_k(\mathbf{A}) & k \neq m\ell \\ q_{m\ell+\ell}(\mathbf{A}) = \phi_m(\mathbf{A}) q_{m\ell}(\mathbf{A}) & k = m\ell \end{cases}$$

where ϕ_m of exact degree ℓ , $\phi_m(0) = 1$ and

$$\phi_m$$
 minimizes $\|\phi_m(\mathbf{A})\underbrace{q_{m\ell}(\mathbf{A})}_{\mathbf{r}'}\mathbf{r}_{m\ell+\ell}^{\mathsf{BiCG}}\|_2.$

 ϕ_m is a **GCR** residual polynomial of degree ℓ .

Note that real polynomials of degree ≥ 2 can have complex zeros.

BiCGstab(ℓ) for $\ell \geq 2$ [S1 Fokkema 93, S1 vdV Fokkema 94]

$$\begin{cases} q_{k+1}(\mathbf{A}) = \mathbf{A} q_k(\mathbf{A}) & k \neq m\ell \\ q_{m\ell+\ell}(\mathbf{A}) = \phi_m(\mathbf{A}) q_{m\ell}(\mathbf{A}) & k = m\ell \end{cases}$$

where ϕ_m of exact degree ℓ , $\phi_m(0) = 1$ and

$$\phi_m$$
 minimizes $\|\phi_m(\mathbf{A})\underbrace{q_{m\ell}(\mathbf{A})}_{\mathbf{r}'}\mathbf{r}_{m\ell+\ell}^{\mathsf{BiCG}}\|_2.$

Minimization in practice:
$$p_m(\zeta) = 1 - \sum_{j=1}^{\ell} \gamma_j^{(m)} \zeta^j$$

$$(\gamma_j^{(m)}) \equiv \operatorname{argmin}_{(\gamma_j)} \|\mathbf{r}' - \sum_{j=1}^{\ell} \gamma_j \mathbf{A}^j \mathbf{r}'\|_2,$$

Compute $\mathbf{Ar}', \mathbf{A}^2 \mathbf{r}', \ldots, \mathbf{A}^{\ell} \mathbf{r}'$ explicitly.

With $\mathbf{R} \equiv \left[\mathbf{A} \mathbf{r}', \dots, \mathbf{A}^{\ell} \mathbf{r}' \right], \ \vec{\gamma}_m \equiv (\gamma_1^{(m)}, \dots, \gamma_{\ell}^{(m)})^{\mathsf{T}}$ we have

[Normal Equations, use Choleski] $(\mathbf{R}^*\mathbf{R})\vec{\gamma}_m = \mathbf{R}^*\mathbf{r}'$

BiCGstab(ℓ)

```
x = 0, r = [b]. Choose \tilde{r}.
u = [0], \ \gamma_{\ell} = \sigma = 1.
While \|\mathbf{r}\| > toI do
         \sigma \leftarrow -\gamma_{\ell} \sigma
         For j=1 to \ell do

\rho = (\mathbf{r}_i, \widetilde{\mathbf{r}}), \quad \beta = \rho/\sigma

                 \mathbf{u} \leftarrow \mathbf{r} - \beta \mathbf{u}, \quad \mathbf{u} \leftarrow [\mathbf{u}, \mathbf{A}\mathbf{u}_j]
                 \sigma = (\mathbf{u}_{j+1}, \widetilde{\mathbf{r}}), \quad \alpha = \rho/\sigma
                  \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{u}_{2:j+1}, \quad \mathbf{r} \leftarrow [\mathbf{r}, \mathbf{A}\mathbf{r}_j]
                  \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{u}_1
         end for
         \mathsf{R} \equiv \mathsf{r}_{2:\ell+1}. Solve (\mathsf{R}^*\mathsf{R})\vec{\gamma} = \mathsf{R}^*\mathsf{r}_1 for \vec{\gamma}
         \mathbf{u} \leftarrow [\mathbf{u}_1 - (\gamma_1 \mathbf{u}_2 + \ldots + \gamma_\ell \mathbf{u}_{\ell+1})]
         \mathbf{r} \leftarrow [\mathbf{r}_1 - (\gamma_1 \mathbf{r}_2 + \ldots + \gamma_\ell \mathbf{r}_{\ell+1})]
         \mathbf{x} \leftarrow \mathbf{x} + (\gamma_1 \mathbf{r}_1 + \ldots + \gamma_\ell \mathbf{r}_\ell)
 end while
```

```
epsilon = 10^{(-16)}; ell = 4;
x = zeros(b); rt = rand(b);
sigma = 1; omega = 1; u = zeros(b);
y = MV(x); r = b-y;
norm = r'*r; nepsilon = norm*epsilon^2; L = 2:ell+1;
while norm > nepsilon
   sigma = -omega*sigma; y = r;
   for j = 1:ell
       rho = rt'*y; beta = rho/sigma;
       u = r-beta*u;
       y = MV(u(:,j)); u(:,j+1) = y;
       sigma = rt'*y; alpha = rho/sigma;
       r = r-alpha*u(:,2:j+1);
       x = x+alpha*u(:,1);
       y = MV(r(:,j)); r(:,j+1) = y;
   end
  G = r'*r; gamma = G(L,L)\backslash G(L,1); omega = gamma(ell);
  u = u*[1;-gamma]; r = r*[1;-gamma]; x = x+r*[gamma;0];
  norm = r'*r;
end
```


$$u_{xx} + u_{yy} + u_{zz} + 1000u_x = f.$$

$$f \text{ s.t. } u(x,y,z) = \exp(xyz)\sin(\pi x)\sin(\pi y)\sin(\pi z).$$
 (52 × 52 × 52) volumes. No preconditioning.

$$-(a\,u_x)_x-(a\,u_y)_y=1$$
 on $[0,1]\times[0,1].$ $a=1000$ for $0.1\leq x,y\leq 0.9$ and $a=1$ elsewhere.

Dirichlet BC on y=0, Neumann BC on other parts of Boundary. 200×200 volumes. ILU Decomp.

-. BiCGStab2, : Bi-CGSTAB, -- BiCGstab(2), - BiCGstab(4)

 $-\epsilon(u_{xx}+u_{yy})+a(x,y)u_x+b(x,y)u_y=0$ on $[0,1]\times[0,1],$ Dirichlet BC $\epsilon=10^{-1}, \quad a(x,y)=4x(x-1)(1-2y), \quad b(x,y)=4y(1-y)(1-2x),$ $u(x,y)=\sin(\pi x)+\sin(13\pi x)+\sin(\pi y)+\sin(13\pi y)$ (201 × 201) volumes, no preconditioning.

$$u_{xx} + u_{yy} + u_{zz} + 1000 \, u_x = f.$$

$$f \text{ is defined by the solution}$$

$$u(x,y,z) = \exp(xyz) \sin(\pi x) \sin(\pi y) \sin(\pi z).$$

$$(10 \times 10 \times 10) \text{ volumes. No preconditioning }.$$

$$\rho_k = (\mathbf{r}_k, \tilde{\mathbf{r}}_0), \qquad \qquad \rho_k^* = \rho_k (1 + \epsilon)$$

Accurate Bi-CG coefficients

$$|\epsilon| \leq n \, \overline{\xi} \, \frac{\|\, \mathbf{r}_k \,\|_2 \, \|\, \widetilde{\mathbf{r}}_0 \|_2}{|(\mathbf{r}_k, \widetilde{\mathbf{r}}_0)|} = \frac{n \, \overline{\xi}}{\widehat{\rho}_k} \quad \text{where} \quad \widehat{\rho}_k \equiv \frac{|(\mathbf{r}_k, \widetilde{\mathbf{r}}_0)|}{\|\, \mathbf{r}_k \|_2 \, \|\, \widetilde{\mathbf{r}}_0 \|_2}$$

Why using pol. factors of degree ≥ 2 ?

Hybrid Bi-CG, that is faster than Bi-CGSTAB

1 sweep $BiCGstab(\ell)$ versus ℓ steps Bi-CGSTAB:

- Reduction with MR-polynomial of degree ℓ is better than $\ell \times$ MR-pol. of degr. 1.
- MR-polynomial of degree ℓ contributes only once to an increase of $\widehat{\rho}_k$

Why not?

Efficiency:

$$1.75 + 0.25 \cdot \ell$$
 DOT/MV, $2.5 + 0.5 \cdot \ell$ AXPY/MV Storage: $2\ell + 5$ large vector.

Loss of accuracy:

$$\left| \| \mathbf{r}_k \| - \| \mathbf{b} - \mathbf{A} \mathbf{x}_k \| \right| \le \ldots + c \, \overline{\xi} \, \max \left(|\gamma_i| \, \left\| \, |\mathbf{A}| \, |\mathbf{A}^{i-1} \, \widehat{\mathbf{r}}| \, \right\| \right)$$

o break-downs are possible

Properties Bi-CG

Advantages

- Usually selects good approximations from the search subspaces (Krylov subspaces).
- 2 DOT, 5 AXPY per step.
- Storage: 8 large vectors.
- No knowledge on properties of A is needed.

Drawbacks

- Non-optimal Krylov subspace method.
- Not robust: **Bi-CG** may break down.
- **Bi-CG** is sensitive to evaluation errors (often loss of super-linear convergence).
- \circ Convergence depends on **shadow** residual $\widetilde{\mathbf{r}}_0$.
- 2 MV needed to expand search subspace.
- 1 MV is by \mathbf{A}^* .

Program Lecture 8

- CG
- Bi-CG
- Bi-Lanczos
- Hybrid **Bi-CG**
- Bi-CGSTAB, BiCGstab(ℓ)
- IDR

Hybrid Bi-CG

Notation. If p_k is a polynomial of exact degree k, $\tilde{\mathbf{r}}_0$ n-vector, let

$$\mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{r}}_0) \equiv \{p_k(\mathbf{A})\mathbf{v} \mid \mathbf{v} \perp \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{r}}_0)\}$$

Theorem. Hybrid **Bi-CG** find residuals $\mathbf{r}_k \in \mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{r}}_0)$.

Example.

Bi-CGSTAB:
$$p_k(\lambda) = (1 - \omega_k \lambda) p_{k-1}(\lambda)$$

where, in every step,

$$\omega_k = \mathrm{minarg}_{\omega} \|\mathbf{r} - \omega \mathbf{A} \mathbf{r}\|_2$$
, where $\mathbf{r} = p_{k-1}(\mathbf{A}) \mathbf{v}$, $\mathbf{v} = \mathbf{r}_k^{\mathrm{Bi-CG}}$

Hybrid Bi-CG

Notation. If p_k is a polynomial of exact degree k, $\tilde{\mathbf{r}}_0$ n-vector, let

$$\mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{r}}_0) \equiv \{p_k(\mathbf{A})\mathbf{v} \mid \mathbf{v} \perp \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{r}}_0)\}$$

Theorem. Hybrid **Bi-CG** find residuals $\mathbf{r}_k \in \mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{r}}_0)$.

Example.

BiCGstab(
$$\ell$$
): $p_k(\lambda) = (1 - \omega_k \lambda) p_{k-1}(\lambda)$

where, every ℓ th step

$$\vec{\gamma} = \text{minarg}_{\vec{\gamma}} \|\mathbf{r} - [\mathbf{A}\mathbf{r}, \dots, \mathbf{A}^{\ell}\mathbf{r}]\vec{\gamma}\|_{2}$$
, where $\mathbf{r} = p_{k-\ell}(\mathbf{A})\mathbf{r}_{k}^{\text{Bi-CG}}$.
$$(1 - \gamma_{1}\lambda - \dots - \gamma_{\ell}\lambda^{\ell}) = (1 - \omega_{k}\lambda) \cdot \dots \cdot (1 - \omega_{k-\ell}\lambda)$$

Induced Dimension Reduction

Definition. If p_k is a polynomial of exact degree k,

$$\widetilde{\mathbf{R}} \equiv \widetilde{\mathbf{R}}_0 = [\widetilde{\mathbf{r}}_1, \dots, \widetilde{\mathbf{r}}_s]$$
 an $n \times s$ matrix, then

$$\mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{R}}) \equiv \left\{ p_k(\mathbf{A}) \mathbf{v} \mid \mathbf{v} \perp \mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{R}})
ight\},$$

is the p_k -Sonneveld subspace. Here

$$\mathcal{K}_k(\mathbf{A}^*, \widetilde{\mathbf{R}}) \equiv \left\{ \sum_{j=0}^{k-1} (\mathbf{A}^*)^j \, \widetilde{\mathbf{R}} \, \vec{\gamma}_j \mid \vec{\gamma}_j \in \mathbb{C}^s
ight\}.$$

Theorem. IDR find residuals $\mathbf{r}_k \in \mathcal{S}(p_k, \mathbf{A}, \widetilde{\mathbf{R}})$.

Example.

Bi-CGSTAB:
$$p_k(\lambda) = (1 - \omega_k \lambda) p_{k-1}(\lambda)$$

where, in every step,

$$\omega_k = \mathrm{minarg}_{\omega} \|\mathbf{r} - \omega \mathbf{A} \mathbf{r}\|_2$$
, where $\mathbf{r} = p_{k-1}(\mathbf{A}) \mathbf{v}$, $\mathbf{v} = \mathbf{r}_k^{\mathrm{Bi-CG}}$

IDR

```
Select an x_0.
Select n \times s matrices U and \mathbf{R}.
Compute C \equiv AU.
x = x_0, r - b - Ax, j = s, i = 1
while \|\mathbf{r}\| > toI do
       Solve \widetilde{\mathbf{R}}^* \mathbf{C} \vec{\gamma} = \widetilde{\mathbf{R}}^* \mathbf{r} for \vec{\gamma}
       \mathbf{v} = \mathbf{r} - \mathbf{C}\vec{\gamma}, \mathbf{s} = \mathbf{A}\mathbf{v}
       j++, if j>s, \omega=\mathbf{s}^*\mathbf{v}/\mathbf{s}^*\mathbf{s}, j=0
       \mathbf{U}e_i \leftarrow \mathbf{U}\vec{\gamma} + \omega \mathbf{v}, \ \mathbf{x} = \mathbf{x} + \mathbf{U}e_i
       \mathbf{r}_0 = \mathbf{r}, \ \mathbf{r} = \mathbf{v} - \omega \mathbf{s}, \ \mathbf{C} e_i = \mathbf{r}_0 - \mathbf{r}
       i+++, if i > s, i = 1
end while
```

Select $n \times \ell$ matricex \mathbf{U} and $\widetilde{\mathbf{R}}$

Experiments suggest $\widetilde{\mathbf{R}} = \operatorname{qr}(\operatorname{rand}(n, \ell), 0)$

U and **C** can be constructed from ℓ steps of **GCR**.

We will discuss IDR in more detail in Lecture 11.

See also Exercise 11.1—Exercise 11.5.