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Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a general square matrix A.

Arnoldi decomposition: AV, = V1 Hy with

V. orthonormal, H; Hessenberg. H, = LU, = QR
V1=I‘O=b, szvkgk, rk:b—Axk.
FOM:

lVi & Higi=er = xXz=WV(U, (L er))

GMRES:
yr, = argming||b — AV, gl|> = argming |le; — H 4|2

= xp = Vu(B; H(QFer))

The columns of V, span KL (A,rg) = {p(A)rg|p € Pr_1}.
]Ck(Aa rO) — Span(r07 F{,..., rk—l)'



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)
MINRES:
¥, = argming||b — AV, |2 = argming |le; — Ty y|2
= xp= (Vu R, )(Qier)
Note. Short recurrences (eff. comp.) because of

e 7; tri-diagonal, and
o U, U=V, (CG) and W, R, =W, (MINRES)



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)

MINRES:
¥, = argming||b — AV, |2 = argming |le; — Ty y|2

= xXp= (VR 1) (Qer)

Details. For MINRES, see Exercise 7.8



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)
MINRES:
¥, = argming||b — AV, |2 = argming |le; — Ty y|2
= xp= (Vu R, )(Qier)

Note. Less stable because
e we rely on math. for orth. of V, (CG & MINRES)

o W, R, =V, (MINRES) IS a
three term vector recurrence for the wy's.



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)

MINRES:
¥ = argming||b — AV, gl[2 = argming|le; — T} y||2
= xp= (Vu R, )(Qier)
Note. If A is positive definite, then CG minimizes as well:

Y, = argming ||x — V, 4]l 4 = argming||b — AV, ]| 41



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)
MINRES:
¥, = argming||b — AV, |2 = argming |le; — Ty y|2
= xp= (Vu R, )(Qier)
SYMMLQ. Take X, = AV, y. with
¥ = argming [[x — AV, 4|2 & e1—Tp"Tpyr, =0
= Xp = Vo1 Tp(Tp* 1) "ter = (Mp1@Qr) ((RE) " teq)



Review. To simplify, take xg = 0, assume ||blj> = 1.

Solving AX = b for a Hermitian matrix A, ||b|l, =1

Lanczos decomposition: AV, = V1 T} with

V. orthonormal, 7} tri-diagonal. 1, = LU, = QR
Vi =rFrg=Db, szvkgk, r. = b — AXx,.
CcaG:

lV, & Thgh=e1 = Xp= MU (L er)

MINRES:
¥, = argming||b — AV, |2 = argming |le; — Ty y|2

= xXp= (VR 1) (Qer)

Details. For SYMMLQ, see Exercise 7.9.



FOM residual polynomials and Ritz values

Property. reC =r M =p(A)rg LV,
for some residual polynomial p, of degree k, i.e., p.(0) = 1.

ptOM = p; is the kth (CG or) FOM residual polynomial.

Theorem. pfM(Y) =0 <« H,§=39y§ for some i # O:
the zeros of p;OM are precisely the kth order Ritz values.

k
A
In particular, pi°M(A\) = [] <1 — —) (A €C).

j=1 Uj

Moreover, for a polynomial p of degree at most k£ with
p(0) = 1, we have that that

p=p;°M & p(H) =0.

Proof. Exercise 6.6.



FOM residual polynomials and Ritz values

Property. reC =r M =p(A)rg LV,
for some residual polynomial p, of degree k, i.e., p.(0) = 1.

ptOM = p; is the kth (CG or) FOM residual polynomial.

Theorem. pfM(Y) =0 <« H,§=39y§ for some i # O:

the zeros of p;OM are precisely the kth order Ritz values.

k
A
In particular, pi°M(A\) = [] <1 — —) (A €C).

j=1 Uj

Moreover, for a polynomial p of degree at most k£ with
p(0) = 1, we have that that

p=p;°M & p(H) =0.

Theorem. Similarly relate zeros of pf™MRES to harmonic
Ritz values of H,.



Solving AXx = b, an overview

A>|<

|
>
Y

Good precond.

a good preconditioner is available

the preconditioner is flexible

yes

flex. precond.

| no
GMRES

yes

= GCR



ill cond.

| no

MINRES

Solving AXx = b, an overview

= Good precond.

yes

= SYMMLQ

a good preconditioner is available
the preconditioner is flexible

yes

flex. precond.

| no
GMRES

Yes

= GCR



Solving AXx = b, an overview

no yes yes
A=A = Good precond.| = |flex. precond.|= GCR
{} ves U no { no
A>0l ¥ cq l GMRES
\U/ " \U/ no no
ill cond. y:e>SSYMM|_Q str indef| = |large im eig| = BI-CGSTAB
| no {J ves
MINRES BiCGstab(¥)

a good preconditioner is available
the preconditioner is flexible
A + A" is strongly indefinite
A has large imaginary eigenvalues



Solving AXx = b, an overview

no yes yes

A=A = Good precond.| = |flex. precond.|= GCR
|} ves U no { no
A>0l ¥ cq l GMRES
\U/ " U no no
ill cond. y:e>SSYMM|_Q str indef| = |large im eig| = BI-CGSTAB
{ no {} ves {} ves
MINRES IDR 2 [large im eig| BiCGstab(¢)
i}yes
IDRstab

a good preconditioner is available
the preconditioner is flexible
A + A" is strongly indefinite
A has large imaginary eigenvalues



Solving AXx = b, an overview

str indef

A + A" is strongly indefinite
A has large imaginary eigenvalues

no
large im eig| = Bi-CGSTAB

Uyes
BiCGstab(¥)



AX =D

with A n X n non-singular.

Today’s topic. Iterative methods for general systems
using short recurrences



Program Lecture 8

CG

Bi-CG

Bi-Lanczos

Hybrid Bi-CG
Bi-CGSTAB, BiCGstab(¥)
IDR



Program Lecture 8

CG

Bi-CG

Bi-Lanczos

Hybrid Bi-CG
Bi-CGSTAB, BiCGstab(¥)
IDR



A" = A > 0, Conjugate Gradient

X=0, r=b,u=0, p=1
While ||r|| > tol do
o= —p, p=rr, B=plo
u<+<r—35gu, c=Au
o=u*c, a=p/o
r < r—ac
X < X+ au

end while




Construction CG.

There are four alternative derivations of CQG.

GCR ~ (use A* =A) ~» CR ~
use A~ ! inner product <+ efficient implementation.

Lanczos + T =LU + efficient implementation.
Orthogonalize residuals.

. _ .1 S
Nonlinear CG to solve x = argming 5||b — Ax||124_1



Conjugate Gradients, A* = A

u, = ry — B Up_1

I’k_|_1 =r; — OzkAUk




Conjugate Gradients, A* = A

u, = ry — B Up_1

I’k_|_1 =r; — OzkAUk

Theorem. e r;, u;y < Kpyi(A ,ro)
e fp,...,r,_1 is a Krylov basis of K (A , o)
o If r,, Aug L r._1, then ry, Aug L KCr.(A ,ro)



Conjugate Gradients, A* = A

u, = ry — B Up_1

rk:—l—l =r; — OzkAUk

Theorem. e r;, u;y < Kpyi(A ,ro)

e rpg,...,F._1 is a Krylov basis of (A ,¥o)

o If r,, Aug L r._1, then ry, Aug L KCr.(A ,ro)
Proof.

r, =r,_1 —or_1Au,_1 L o_1 by construction aj_q

r.=rp,_1—or_1AuU,_1 L Kr_1(A ,ro) by induction



Conjugate Gradients, A* = A

u, = rp, — B Ug_1
rk:—l—l = I’k — OzkAUk

Theorem. e r;, u;y < Kpyi(A ,ro)
e rpg,...,F._1 is a Krylov basis of (A ,¥o)
o If r,, Aug L r._1, then ry, Aug L KCr.(A ,ro)

Proof.
Au, = A r., — BrAug_1 L Fo_1 by construction gy
Au,=A Fp — Bk Au,_, L ’Ck_l(A ,ro) by induction:

A 1L Ke-1(A  ,ro) < rp L A Kg1(A o ro)
<~ r, L /Ck(A ,I’o)



Conjugate Gradients, A* = A, K* =K

u, = K= 1r, — Bpup_q

rk:—l—l =r; — OzkAUk

Theorem. e r;, Kug Ele_H(AK_l,ro)
e rg,...,r._1 is a Krylov basis of K (AK™1 rg)
o If r;, Aup L K~ 1r._1, then ry, Au;, L K71 (AK™1 rp)

Proof.
Au,=AK 'r,— 8, Au;_; L K 'r,_; by construction Sy
Au,=AK 'r,— B, Au;_1 L K1K,_1(AK 1 rp) by induction:

AK r, L K1, 1 (AK L rp) & r, L KIITAK 1,1 (AK™ 1 o)
<~ r, L K_lKk(AK—l, o)



A= A & K* = K: Preconditioned CG

X=0, r=b, u=0, p=1
While |[r|| > tol do

Solve KCc =r for C
oc=-p, p=Cr, B=p/o
u<+ c—p35gu, c=Au
o+ u*c, a=p/o

F < r—«acC

X < X+ au

end while




Properties CG

Pros

Low costs per step: 1 MV, 2 DOT, 3 AXPY
to increase dimension Krylov subspace by one.
Low storage: 5 large vectors (incl. b).
Minimal res. method if A, K pos. def.: ||rk||A_1 is min.
Orthogonal residual method if A* = A, K* = K:

r, L K_lle(AK_l; o).
No additional knowledge on properties of A is needed.
Robust: CQG always converges if A, K pos. def..

cons

O

May break down if A* = A # 0.
Does not work if A #= A",

CG is sensitive to evaluation errors if A* = A ¥ 0.
Often loss of a) super-linear conv., and b) accuracy.
For two reasons:
1) Loss of orthogonality in the Lanczos recursion
2) As in FOM, bumps and peaks in CG conv. hist.



Program Lecture 8

CG

Bi-CG

Bi-Lanczos

Hybrid Bi-CG
Bi-CGSTAB, BiCGstab(¥)
IDR



For general square non-singular A
e Apply CG to normal equations (A*Ax = A*b) ~ CGNE

e Apply CG to AA"Y = Db (then x = A'y)
~ @Qraig’s method

Disadvantage. Search in K (A*A,...):

e If A = A* then convergence is determined by AZ2: con-
dition number squared, . ...
e Expansion K requires 2 MVs (i.e., many costly steps).



For general square non-singular A
e Apply CG to normal equations (A*Ax = A*b) ~ CGNE

e Apply CG to AA"Y = Db (then x = A'y)
~ @Qraig’s method

Disadvantage. Search in K (A*A,...):

e If A = A* then convergence is determined by AZ2: con-
dition number squared, . ...
e Expansion K requires 2 MVs (i.e., many costly steps).

Theorem. For general square non-singular A, there is
no Krylov solver that finds the best solution in de Krylov
subspace K. (A, rg) using short recurrences.



For general square non-singular A
e Apply CG to normal equations (A*Ax = A*b) ~ CGNE

e Apply CG to AA"Y = Db (then x = A'y)
~ @Qraig’s method

Disadvantage. Search in K (A*A,...):

e If A = A* then convergence is determined by AZ2: con-
dition number squared, . ...
e Expansion K requires 2 MVs (i.e., many costly steps).

Theorem. For general square non-singular A, there is
no Krylov solver that finds the best solution in de Krylov
subspace K. (A, rg) using short recurrences.

Alternative. Construct residuals in a sequence of shrin-

king spaces (orthogonal to a sequence of growing spaces):
adapt the construction of CG.



Conjugate Gradients, A* = A. K=1

U, =rp — BpUp_1

rk:—l—l =r; — OzkAUk

Theorem. o 1, ug € Kry1(A,rp)
e rpg,...,F._1 is a Krylov basis of K.(A,rg)
o If r, Aup L r._q, then rp, Aup L Kk(A, ro)

Proof.

Au. = Ar, — Bk AU, 1 Lrp 4 by construction 51@—1
Au,=Ar;, — Bk Au,_1 L /Ck_l(A, ro) by induction:
Ar, L Kr—1(A,ro) <= r, L AK,_1(A,ro)

<~ r, L /Ck(A, I’o)



Bi-Conjugate Gradients

U, =rp — BpUp_1

rk:—l—l =r; — OzkAUk

Theorem. We have rg, ug € Ky 1(A,rp).

~

Suppose rg,...,F_1 is a Krylov basis of Kp.(A* rg).
If re, Auk 1L Fk—la then re, Auk 1L /Ck(A*,Fo)

Proof.

Fo=1"r, 1 — a1 AU,_1 L g1 by construction aj_1
r. =rp_1—or_1 Aug_1 L /Ck_l(A*,Fo) by induction
Au,=Ar, — B, Aui_1 L .1 by construction Bx_1
Au, = Ar, — Bk Au,_, L Kk_l(A*,Fo) by induction:

Ar;, L Ki—1(A",ro) = re L Kr(A",Fo) D A'Ky_1 (A", Fo)



Bi-Conjugate Gradients

U, =rp — BpUp_1

rk:—l—l =r; — OzkAUk

With pr. = (g, ry) & o = (Aug, Iy)

and, since rp+ 0, A r_1 € Ki(A*Tg) for some ¥y,
re,r

we have that = (e, F) Pk

~ (Auy, ) oy

and B, = (Arg, Fr_1) :(rk,A*Fk_l): — Py



Bi-Conjugate Gradients

U, =rp — BpUp_1

rk:—l—l =r; — OzkAUk

With pr = (rg, @e(A)rg) & o = (Aug, g (A)rp)
and, since q.(C) + 9 Cqr_1(C) € Pr_q for some 9y,

we have that ap="% & pg =_"Fk
Ok Vo1




Bi-Conjugate Gradients

Classical BiI-CG generates the shadow residuals
r. = q.(A*)rg with the same polynomal as ry (g = pi)
v, = pr(A)ro, r, = pp(A")rg:
i.e., compute ry4 1 as
Fk—|—1 :Fk—&kA*lle, with G/{: :Fk_Bk Gk—l'

In particular, ¥, = ap_1.

However, other choices for q;. are possible as well.
Example. ¢, (¢) = (1 —wi_1¢0) ¢x—1(¢) (€ € C).
Then, 19]{ = WE_1 and Fk = Fk—l — (Dk—l A*Fk—lv

with, for instance, @,_1 to minimize ||rg>.



BiI-CG

X=0, r=D>b. Choose
u=0, p=1 u=
While ||r|| > tol do

oc=-p, p=(r,r), B=p/o

U<+ r—pu, c=Au, u<+ r—g3gu, c=A"u
o= (c,r), a=p/o
r < r—ac, r <+ r—ac

X < X+ au

end while




BiI-CG

X=0, r=>0b. Choose
u=0, p=1 C =
While ||r|| > tol do

oc=-p, p=(rr), B=p/o

U<+ r—pu, c=Au, C +— A'r—j3c
o= (c,r), a=p/o
r <~ r—ac, r <+ r—ac

X < X+ au

end while




Selecting the initial shadow residual r.

e Often recommended: rg = ry.

e Practical experience: select rg randomly (unless A" = A).

EXxercise. Bi-CG and CQG coincide

if A is Hermitian and rg = rg.

Exercise. Derive a version of BI-CGQG that includes a pre-
conditioner K.

Show that BI-CQG and CQG coincide

if A and K are Hermitian and ro = K~ 1rg.



Properties Bi-CGQG

Pros

Usually selects good approximations from
the search subspaces (Krylov subspaces).
Low costs per step: 2 DOT, 5 AXPY.
Low storage: 7 large vectors.

No knowledge on properties of A is needed.

cons

©)

Non-optimal Krylov subspace method.
Not robust: Bi-CG may break down.
Bi-CG is sensitive to evaluation errors

(often loss of super-linear convergence).
Convergence depends on shadow residual rg.
2 MV needed to expand search subspace by 1 vector.
1 MV is by A".



e Not robust: BI-CG may break down.
e BIi-CGQG is sensitive to evaluation errors
(often loss of super-linear convergence).



Program Lecture 8

CG

Bi-CG

Bi-Lanczos

Hybrid Bi-CG
Bi-CGSTAB, BiCGstab(¥)
IDR



Bi-Lanczos

Find coefficients ay, 8g, &y and i such that (bi-orthogonalize)
VeVk+1 = AV —ogVp — BpV—1 — .- L Wg, Wi g, ...
VeWk+1 = A"WE — oW — BpWp_1 — ... L Vg, Vg, ...
Select appropriate scaling coefficients v, and ~;..
Then
AVk = Vk—l—lﬂk with Ek Hessenberg
AW, = W, 1 H, with H;, Hessenberg
and Wz_|_1vk_|_1 = Dk—|—1 diagonal

Exercise. T, = WAV, = D H}, = f{vk*Dk is tridiagonal.

Exploit H, = D,H; D} and tridiagonal structure:
~ Bil-Lanczos.



Bi-Lanczos

Find coefficients ay, 8, & and 8 such that (bi-orthogonalize)
VeVk+1 = AV — apVi — BpVi—1 L Wi, wp_q
VeWk+1 = A"WE — Wi — SpWg 1 L Vg, Vg
Select appropriate scaling coefficients v, and ~;.
Then
AVk = Vk—l—lﬂk with Ek Hessenberg
AW, = W, 1 H, with H;, Hessenberg
and Wz_|_1vk_|_1 = Dk—|—1 diagonal

Exercise. T, = WAV, = D H}, = f{vk*Dk is tridiagonal.

Exploit H, = D,H; D} and tridiagonal structure:
~ Bil-Lanczos.



Lanczos

p=|roll, vi=ro/p

50201 V0:0

for k=1,2,... do
V=AV,— B _1Vi_1
Oék:V;';\Nl, V — \~I—Osz]€
B = |IVIl, Vg1 =V/By

end while




Bi-Lanczos

Select a ro,

Vi=ro/||ro

Yo =0, 60 =1,

For k=1,2,... do
O, = WV,
v=AVvV,

Br = Vk—10k/0k-1,
V < V— BpVj_q,
o = WZV/(Sk,

V < V— ap Vg,
Select a v, #0
Vit1 = V/7,

\% — [%—17"]{3];

end while

I, vo=0, wi=rgo/||ro

and a ry
, Wo=0

Y =0, so=1

w = A'w,

Bk = V- 10k/0k_1
W < W — Ekwk—l
Q. = O

W — W — o Wy
and a v, =0
Wit1 = W/,
Wi = [W_1, W]




Bi-Lanczos + T = LU + efficient implementation
~ BI-CGQG



BiI-CG

X=0, r=>0b. Choose
u=0, p=1 C =
While ||r|| > tol do

oc=-p, p=(rr), B=p/o

U<+ r—pu, c=Au, C +— A'r—j3c
o= (c,r), a=p/o
r <~ r—ac, r <+ r—ac

X < X+ au

end while




Bi-CG may break down

0) Lucky breakdown if rp, = 0.

1) Pivot breakdown or LU-breakdown,
Il.e., LU-decomposition may not exist.
Corresponds to o = 0 in BI-CGQG
Remedy.
o Composite step Bi-CG (skip once forming T, = L.Uy)

o Form T = QR as in MINRES (from the beginning):
simple Quasi Minimal Residuals

2) Bi-Lanczos may break down,
i.e., a diagonal element of D, may be zero.
Corresponds to p =0 in Bi-CG

Remedy. o Look ahead

General remedy. o Restart o Look ahead in QMR



Note. CG may suffer from pivot breakdown
when applied to a Hermitian, non definite matrix
(A* = A with positive as well as negative eigenvalues):

MINRES and SYMMLQ cure this breakdown.

Note. Exact breakdowns are rare.
However, near breakdowns lead to irregular convergence
and instabilities. This leads to

o loss of speed of convergence
o loss of accuracy



Properties Bi-CGQG

Advantages

e Usually selects good approximations from
the search subspaces (Krylov subspaces).

o 2 DOT, 5 AXPY per step.

e Storage: 8 large vectors.

e NoO knowledge on properties of A is needed.

Drawbacks

o Non-optimal Krylov subspace method.

e Not robust: Bi-CG may break down.

e BI-CGQG is sensitive to evaluation errors
(often loss of super-linear convergence).

o Convergence depends on shadow residual rj.

e 2 MV needed to expand search subspace.

e 1 MV is by A*.




e Hybrid BI-CG



Bi-Conjugate Gradients, K=I

U, =rp — BpUp_1

rk:—l—l =r; — OzkAUk

With pr = (rg, @e(A)rg) & o = (Aug, g (A)rp)
and, since q.(C) + 9 Cqr_1(C) € Pr_q for some 9y,

we have that ap="% & pg =_"Fk
Ok Vo1




Transpose-free BI-CG

pr = (i, qp(A") ¥o) = (g (A)rg, o),
o = (Aug, g (A*) rg) = (Aqr(A)ug,rp)

Qi = q1(A)

Pk Qrup = Qi — Br QrUi_1,
0k, Qple+1 = Qrrr — ap AQruy,

(&i-co) |

(Pol) Compute g4 of degree k+ 1 s.t. ¢;41(0) = 1.
Compute Qk_|_1uk, Qk_|_1rk_|_1
(from Quuy, Qplr+1,---



Transpose-free BI-CG

pr = (i, qp(A") ¥o) = (g (A)rg, o),
o = (Aug, g (A*) rg) = (Aqr(A)ug,rp)

Qi = q1(A)

Pk Qrup = Qi — Br QrUi_1,
0k, Qple+1 = Qrrr — ap AQruy,

(&i-co) |

(Pol) Compute g4 of degree k+ 1 s.t. ¢;41(0) = 1.
Compute Qk_|_1uk, Qk_|_1rk_|_1

Example. qk_|_1(C) = (1 —wir$)qr(<)



Transpose-free Bi-CGQG

pr = (i, qp(A") ¥o) = (g (A)rg, o),
o = (Aug, g (A*) rg) = (Aqr(A)ug,rp)

Qi = q1(A)

Pk Qrup = Qi — Br QrUi_1,
0k, Qple+1 = Qrrr — ap AQruy,

(&i-co) |

(Pol) Compute g4 of degree k+ 1 s.t. ¢;41(0) = 1.
Compute Qk+1uk, Qk_|_1rk_|_1

Example. g;41(¢) = (1 —wi()qr(¢) (¢ €C)
{ W Q41U = Qrug — w, AQpU,
Qr41re+1 = Qprp+1 — wr AQEIk41,



Transpose-free Bi-CQG; Practice

: /! — BiCG /! — BiCG
Work with u, = Qkuk and r. = rik_l_l

Write u;_1 and rg, instead of QuuP'“? and Qury'C, resp.
pr = (i, o), o = (Aug,rg)

pp = (ri,fo), UL =rp — Brug_q,
— I ¥ /I — / /A /
o = (AU}, ¥g), F.=rp—apAu,, X, =X, + apu)

(Br-c6) {

(Pol) Compute updating coefficients for gz 1.

Compute Uz, Fe+1, Xi41

Example.

— a1/ /
{ Wk, uk_|_1—uk—kauk,
— / — v/ /
I’k_|_1 = I’k — WL Ark, Xk—I—l = Xk -+ wkl’k



Example.  ¢;41(¢) = (1 —wi()gr(¢() (¢ €C)

How to choose w;”

Bi-CGSTABilized. With s; = Ar,,
Sk

wy, = argming||r, — w Arljo = -




BICGSTAB

X=0, r=b. Choose r
u=0, w=o=1.
While |[r|| > tol do
o+ —wo, p=(rr), B=p/o
u<+<r—_zsgu, c = Au
o= (cr), a=p/o
r < r—ac,
X < X+ au

s=Ar, w=(r>s)/(s,s)
U<+ u—wc
X <— X+ wr
r < r—ws

end while




Hybrid Bi-CG or product type Bi-CG

r. = g (AP C = q,.(A) pp'“(A) rg

pp'<© is the kth “Bi-CG residual polynomial”

How to select ;.77

q.. for efficient steps & fast convergence.

Fast convergence by
e reducing the residual
e sStabilizing the BiI-CGQG part

e Other when used as linear solver for the Jacobian system in a
Newton scheme for non-linear equations,
by reducing the number of Newton steps



Hybrid Bi-CG

Examples.

CGS Bi-CG x BI-CG
Bi-CGSTAB GCR(1) x Bi-CG
GPBI-CG 2-truncated GCR x BI-CG
BiCGstab(¥) GCR(¥Y) x Bi-CG



Properties hybrid BI-CGQG

Pros

e Converges often twice as fast as BI-CG w.r.t. # MVSs:
each MV expands the search subspace
Bi-CG: X —Xp € Kk(A; rp) a 2k MV.
Hybrid BI-CG: X — X € Kor(A;rg) @ 2k MV.

e Work/MV and storage similar to Bi-CG.

e [ranspose free.

o Explicit computation of Bi-CQG scalars.

cons

e Non-optimal Krylov subspace method.
e Peaks in the convergence history.

e Large intermediate residuals.

o Breakdown possibilities.



Conjugate Gradients Squared

r, = pg C(A)pp “°(A) ro

CGS exploits recurrence relations for the Bi-CG polyno-
mials to design a very efficient algorithm.

Properties
-+ Hybrid BiI-CG.

-+ A very efficient algorithm:
1 DOT/MV, 3.25 AXPY/MV;
storage: 7 large vectors.

— Often high peaks in its convergence history
— (Often large intermediate residuals

-+ Seems to do well as linear solver in a Newton scheme



Conjugate Gradients Squared

X=0, r=Db. Choose T.
u=w=0, p=1.

While ||r|| > tol do

o=—p, p=(rr), B=p/o
W<+ uU— ;3w

V=r—pu

W<+ V—38wW, Cc=Aw
oc=(cr), a=p/o
Uu=—V—«acC

r < r—aA(v+u)

X < X+ a(v+u)

end while




e Bi-CGSTAB, BiCGstab(¥)



Properties BiI-CGSTAB

Pros

e Hybrid BI-CG.

e Converges faster (& smoother) than CGS.
e More accurate than CGS.

e 2DOT/MV, 3 AXPY/MV.

e Storage: 6 large vectors.

Ccons Danger of
(A) Lanczos breakdown (pp. = 0),
(B) pivot breakdown (o, = 0),

(C) breakdown minimization (wr, = 0).
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i YGCR(lOO)Y 77777
'100-truncated GCR’ -
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1.0e-05 |

Log10 of residual norm

1.0e-06 |-

1.0e-07 |

1.0e-08 |-

1.0e-09 k L ! A L . i
0 50 100 150 200 250 300
Mv

—(aug)z — (auy)y =1 on [0, 1] x [0, 1].
a = 1000 for 0.1 <zx,y<0.9and a=1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.
82 x 82 volumes. ILU Decomp.



1
u=1 _
100 | 1=1
A =104
A =10e-5
A =10e2
0 u=1 1

—(auz)z — (auy)y +buy, = f on [0, 1] x [0, 1].
definition of a = A and of f = F; F = 0 except ...



log10 of residual norm

- - Bi-CG, -- Bi-CGSTAB, - BiCGstah(2)
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number of matrix multiplications

—(aug)z — (auy)y + buy, = f on [0,1] x [0, 1].
b(z,y) = 2exp(2(z? 4+ y2)), a changes strongly
Dirichlet BC. 129 x 129 volumes. ILU Decomp.

500



log10 of residual norm

- - Bi-CG, -- Bi-CGSTAB, - BiCGstah(2)
4 T T T T T

0 100 200 300 400 500 600 700 800 900 1000

number of matrix multiplications

—(aug)z — (auy)y + buy, = f on [0,1] x [0, 1].
b(z,y) = 2exp(2(z? 4+ y2)), a changes strongly
Dirichlet BC. 201 x 201 volumes. ILU Decomp.



Breakdown of the minimization

Exact arithmetic, w; = O:

— NoO reduction of residual by

Qpi17ht1 = (I—wpA) Qprplcf. (%)

— qr+1 is of degree k: BI-CG scalars can not be computed,;
breakdown of incorporated Bi-CG.

Finite precision arithmetic, w; = O:

— Poor reduction of residual by (%)

— Bi-CGQG scalars are seriously affected by evaluation errors:
drop of speed of convergence.

wr ~ 0 to be expected if A is real and

A has eigenvalues with rel. large imaginary part: wy is reall



Example.  ¢;41(¢) = (1 —wi()gr(¢() (¢ €C)

How to choose w;”

Bi-CGSTABIlized. With s, = Ar,
Skr%
S;Sk

wy, = argming||r, — w Ar|jo =

BiCGstab(/). Cycle ¢ times through the Bi-CG part
to compute AU/, Ay for j=0,...,¢,

/ — BiCG / — BiCG —
where now U’ = Qk”k+e—1 and r' = rikH for k= md¢.

Ym = argming||r’ — [AF, .., Ar'172



oo =1
we =1 — [AF, . A9,

Qe =1 —1[¢ ..., ¢ 1m)an(¢) (C€0)



BiCGstab(¥) for £ > 2

{ qp+1(A) = Aqr(A) k #= mf
Gmot-0(A) = dm(A) gne(A)  k=ml
where ¢,, of exact degree ¢, ¢,»(0) = 1 and

Sm  minimizes  [[¢n(A) gme(A) rEE ll2-
-

om IS @ GCR residual polynomial of degree /.

Note that real polynomials of degree > 2 can have complex
Zeros.



BiCGstab(¥) for £ > 2

{ ax+1(A) = A qi(A) k #= m/
@it (A) = dm(A) gne(A)  k=ml
where ¢,, of exact degree ¢, ¢,,(0) = 1 and

Sm  minimizes  [[¢n(A) grme(A) rEE ll2-
-

Minimization in practice: pm(C) =1 — Zg_ %m) Cj

(’Y( ) = argming, »[[r — 21 v AT V|,
j

Compute Ar, A2y, ..., AtY explicitly.

With R = [Ar’,...,Aﬁr’], Nm = (7§m>,..., ém))T we have
[Normal Equations, use Choleski] (R*R)%m,» = R*r



BiCGstab(¥)

Xx=0, r=[b]. Choose .
u=1[0], v=0=1.

While || r|| > tol do
O < —YOo
For j=1 to /¢ do
p=(r;r), pB=plo

u<r—3gu, u<+ [uAu;]
o= (Uj+1,r), a=p/o
Fr < r—aus 41, r<—[r,Arj]
X < X4+ aup

end for

R=ro/y1. Solve (R*R)Y = R*r; for ¥
u <« [ug—(muzx~+ ...+ yUp1)]
r« [ri—(yr2+ ...+ vyre1)l

X < X—I—(’ylr1+...—|—’ygl’g>
end while




epsilon = 10°(-16); ell = 4;
x = zeros(b); rt = rand(b);
sigma = 1; omega = 1; u = zeros(b);

y = MV(x); r = b-y;

norm = r’x*r; nepsilon = norm*epsilon”2; L = 2:ell1+1;
while norm > nepsilon
sigma = —-omegax*sigma; y = r;
for j = 1l:ell
rho = rt’*y; beta = rho/sigma;

u = r-betax*u;
y = MV(u(:,j)); u(:,j+1) = y;
sigma = rt’*y; alpha = rho/sigma;
r = r-alpha*u(:,2:j+1);
x = x+alpha*u(:,1);
y = MV(r(:,3)); r(,j+l) =y;

end

G = r’+r; gamma = G(L,L)\G(L,1); omega = gamma(ell);
u = ux[l;-gammal; r = rx[l;-gammal; x = x+r*[gamma;O0];
norm = r’*r;

end



log10 of residual norm

- - Bi-CG, -- Bi-CGSTAB, - BiCGstah(2)

LLLLLLLL

0 100 200 300 400

number of matrix multiplications

Uzzr + Uyy + Uz + 1000u,; = f.

500

600

f s.t. u(x,y,z) = exp(zyz) sin(mz) sin(ry) sin(wz).
(52 x 52 x 52) volumes. No preconditioning.



. BICGStah2, : Bi-CGSTAB, -- BiCGstab(2), - BiCGstab(4)

log10 of residual norm

o

0 100 200 300 400 500 600

number of matrix multiplications

—(auz)z — (auy)y =1 on [0,1] x [0, 1].
a= 1000 for 0.1 <z,y<0.9 and a =1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.
200 x 200 volumes. ILU Decomp.



-. BiCGStab2, : Bi-CGSTAB, -- BiCGstah(2), - BiCGstab(4)

log10 of residual norm

0 200 400 600 800 1000

number of matrix multiplications
—e(uge + uyy) + alz, y)uzs + b(x, y)u, = 0 on [0,1] x [0,1], Dirichlet BC

w(x,y) = sin(wz) + sin(137x) 4+ sin(wy) + sin(137y)
(201 x 201) volumes, no preconditioning.
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-121

-14f

_16 | | | | |
0 50 100 150 200 250 300

Uzzr + Uyy + Uz + 1000 u, = f.

f is defined by the solution
u(x,y,z) = exp(ayz) sin(wx) sin(wy) sin(wz).

(10 x 10 x 10) volumes. No preconditioning .



Accurate Bi-CG coefficients
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Why using pol. factors of degree > 27

Hybrid BI-CGQG, that is faster than Bi-CGSTAB
1 sweep BiCGstab(¢) versus ¢ steps Bi-CGSTAB:

e Reduction with MR-polynomial of degree /¢
is better than ¢x MR-pol. of degr. 1.

e MR-polynomial of degree ¢ contributes
only once to an increase of p;

Why not?

o Efficiency:
1.754+0.25-¢ DOT/MV, 2540.5-¢4 AXPY/MV

Storage: 2¢ 4+ 5 large vector.

o Loss of accuracy:

ekl = 11D — Axill| < ... 4 c€ max (|| || |A]|A=7 ||)

o break-downs are possible



Properties Bi-CGQG

Advantages

e Usually selects good approximations from
the search subspaces (Krylov subspaces).

e 2 DOT, 5 AXPY per step.

e Storage: 8 large vectors.

e NoO knowledge on properties of A is needed.

Drawbacks

o Non-optimal Krylov subspace method.

e NoOt robust: BiI-CG may break down.

e BI-CGQG is sensitive to evaluation errors
(often loss of super-linear convergence).

o Convergence depends on shadow residual r.

e 2 MV needed to expand search subspace.

e 1 MV is by A*.




Program Lecture 8

CG

Bi-CG

Bi-Lanczos

Hybrid Bi-CG
Bi-CGSTAB, BiCGstab(¥)
IDR



Hybrid Bi-CG

Notation. If p;. is a polynomial of exact degree k,

ro n-vector, let

S(px, A, o) = {pp(A)v | v L K (A", rp)}

Theorem. Hybrid Bi-CG find residuals ry € S(pr, A, rg).

Example.
Bi-CGSTAB: pk()\) = (1 — wk)\) pk—l()‘)
where, in every step,

wp, = minarg,l||lr — wAr||>, where r = p;._1(A)v, v = rEi—CG



Hybrid Bi-CG

Notation. If p;. is a polynomial of exact degree k,

ro n-vector, let

S(px, A, o) = {pp(A)v | v L K (A", rp)}

Theorem. Hybrid Bi-CG find residuals ry € S(pr, A, rg).

Example.

BiCGstab(¥): pr(A\) = (1 — wiA) p_1(N)
where, every ¢th step

¥ = minargs||r — [Ar, ..., Ar]9||2, where r = p;_,(A)rF-<C.
(1=AA— .=y X)) = (1 —wpA) - - (1 —wi_gN)



Induced Dimension Reduction

Definition. If p; is a polynomial of exact degree k,

R=Rp=][rq,...,Fs] an n x s matrix, then

S(pr: A, R) = {pp(A)V | v L (A R)},
is the pi.-Sonneveld subspace. Here

k-1
Kk(A*, R) = { Z (A*)J R’?j | ’7j < (CS} :
j=0

Theorem. IDR find residuals r, € S(p, A, R).

Example.
Bi-CGSTAB: pk(A) = (1 — wk)\) pk—1(>‘)
where, in every step,

wp, = mMinargy|lr — wAr|2, where r =p;_1(A)v, v =rpP"<C



IDR

Select an Xg.

Select n X s matrices U and R.
Compute C = AU.

X=Xg, r—-b—-—AX, =5, 1 =1

while ||r|| > tol do

Solve AR/*C&’: R'r for ~
v=r—Cqy, s=Av

j++, if j > s, w=s8*v/s's, ;=0
Ue, +— Uy 4 wv, X=X+ Ueg;
ro=r, r=v—ws, Ce¢; =rg—r
1++, if 1 >s5, 1 =1

end while




—

Select n X ¥ matricex U and R

Experiments suggest R = qr(rand(n, ¢),0)
U and C can be constructed from ¢ steps of GCR.



