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Program Lecture 9

• Least squares problems

• The SVD

• Regularisation

• CG for the normal equations

• LSQR and Bi-diagonalization
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Least squares problems

In this lesson we consider the problem

Ax = b

with A ∈ Cn×k, x ∈ Ck, and b ∈ Cn (as in Exercise 3.18).

Furthermore,

- The system may be inconsistent (b 6∈ R(A)).

- Usually k ≪ n.

- The rank of A may be smaller than k.
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Least squares problems (2)
The system Ax = b may be inconsistent. We therefore solve it

in the sense of least squares, meaning that we solve the

minimisation problem minx ‖Ax− b‖2, i.e.,

xLS = argminx‖Ax− b‖2

Solutions xLS to this problem satisfy the normal equations

A∗AxLS = A∗b

and hence

rLS = b−AxLS ⊥ R(A)

If rank(A) < k the least squares solution is not unique.
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Least squares problems (3)

Suppose rank(A) < k and xLS is a least-squares solution. Then

x̂ = xLS + y with y ∈ N (A)

is also a least squares solution.

The least square solution with minimum norm is unique.

This Least Square Minimal Norm solution xLSMN solves the

constrained problem

min
x
‖Ax− b‖2 subject to x ⊥ N (A).
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The Singular Value Decomposition
Let A ∈ C

n×k be a matrix of rank r.

There exist unitary matrices U ∈ C
n×n and V ∈ C

k×k such that

A = UΣV∗ , Σ =



 Σr 0

0 0



 ,

where Σ ∈ R
n×k and Σr = diag(σ1, σ2, · · · , σr), such that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = . . . = σmin(k,n).

A = UΣV∗ is the SVD of A with singular triples (σi,vi,ui):

σi is called a singular value of A,

with left singular vector ui ≡ Uei,

and right singular vector vi ≡ Vei.
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The SVD (2)
A maps from C

k to C
n.

The columns of U form an orthonormal basis of the image space

C
n, while the columns of V form an orthonormal basis if the

domain space C
k. The diagonal matrix Σ is the matrix

representation of A with respect to these basis.

If Ur and Vr consists of the first r columns of U and V

respectively, then

A = Ur Σr V∗
r

is the economical form of the SVD.

Ur spans R(A), while Vr spans N (A)⊥, r is the rank of A.
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The SVD, applications
• For numerically solving LSMN problems of modest dim..

• For theoretical analysis of LSMN problems.

• ‖A‖2 = max ‖Ax‖2 = σ1, min ‖Ax‖2 = σk, C2(A) = σ1

σk
,

max and min over all normalized x, i.e., ‖x‖2 = 1.
• Geometry: angles between spaces V andW can be obtained

from the SVD of V∗W, where the orthonormal matrices V and

W span the space V andW , respectively.

• Compression: Often the first, say p, singular vectors and

singular values contain the essential information of the matrix

(p can be modest even if σp+1, . . . are not negligible see the

following example). This fact is exploited by methods as

Principal Orthogonal Directions.
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Matrices can be viewed

as functions on a

(discrete) rectangular

domain: (i, j) aij .
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Matrices can be viewed

as pictures (in gray scale

colors).
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Partial SVD

A = Ur Σr V∗
r =

r∑

i=1

σi uiv
∗
i

The following pictures show for some matrix A,

for j = 2, 3, . . . , r

• at the left the matrix
j−1∑

i=1

σi uiv
∗
i

from the partial SVD and

• at the right the rank 1 matrix

σj ujv
∗
j .
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The matrix A.
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Singular

values of A.
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The SVD and the LSMN solution
The least-squares minimum norm solution can be computed

using the SVD by

xLSMN = V



 Σ−1
r 0

0 0



U∗b = Vr Σ−1
r U∗

r b

The matrix

A† ≡ V



 Σ−1
r 0

0 0



U∗ = Vr Σ−1
r U∗

r

is called the Moore-Penrose pseudoinverse of A.



November 9, 2016 39

National Master Course

The SVD and the LSMN solution (2)
Theorem. xLSMN = A†b.

Proof. With z ∈ C
k and c ∈ C

n s.t. x = Vz and b = Uc, partition

z =



 z1

z2



 , c =



 c1

c2



 , where z1 ≡ V∗
r x, c1 ≡ U∗

rb.

Then, Ax = AVz = UΣz and ‖b−Ax‖2 = ‖U(c− Σz)‖2 =

=

∥∥∥∥∥∥



 c1

c2



−



 Σr 0

0 0







 z1

z2





∥∥∥∥∥∥
2

=

∥∥∥∥∥∥



 c1 − Σrz1

c2





∥∥∥∥∥∥
2

:

‖b−Ax‖2 is minimised by z1 = Σ−1
r c1 and ‖x‖2 by z2 = 0.



November 9, 2016 40

National Master Course

The SVD and the LSMN solution (3)
Theorem. xLSMN = A†b.

Note that, except for the ordering, the
1

σi
for σi > 0,

form the non-zero singular values of the solution operator A†.

If (σi,vi,ui) is a singular triple of A, then ( 1
σi

,ui,vi)

( (0,ui,vi) if σi = 0) is a singular triple of A†.

With βi ≡ u∗
i b, βiui is the component of b in the direction ui.

With αi ≡ v∗
i xLSMN, αivi is the comp. of xLSMN is the dir. vi.

Then
αi =

1

σi
βi (i = 1, . . . , r), αi = 0 (i > r).
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Noisy problems
In least-squares problems b often corresponds to measured

date, which means that we are actually solving the noisy
problem

Ax = b + δb.

On average noise is equally large in the direction of all singular

vectors, while the ‘ideal’ solution x typically has small

components in the ‘singular direction’ with small singular values.

These small singular values have a dramatic effect on the

LSMN-solution (why?)!!!

This is an example of a so-called ill-posed problem: small

perturbations in the data give a large perturbation in the solution.



November 9, 2016 42

National Master Course

Regularization
Limiting this effect is called regularisation.

Several regularization methods have been proposed:

• Set small singular values to 0. This requires the explicit

calculation of the SVD, which is not possible for large scale

problems.

If σi is a singular value of A, then





1
σi

if σi ≥ δ

0 if σi < δ

is a singular value of the solution operator for this method.
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Regularization
Limiting this effect is called regularisation.

Several regularization methods have been proposed:

• Tykhonov regularisation. Solve the damped least squares

problem: min
x

∥∥∥∥∥∥



 A

τI



x−



 b

0





∥∥∥∥∥∥
2

.

If σi is a singular value of A, then

σi

σ2
i + τ2

is a singular value of the solution operator for Tykhonov reg..
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Regularization
Limiting this effect is called regularisation.

Several regularization methods have been proposed:

• Use an iterative method as CG for the normal equations.

If σi is a singular value of A, then

qj(σ
2
i )σi

is a singular value of this solution operator at step k.

Here, qj is the j − 1 degree solution polynomial: 1− λqj(λ) is the

CG residual polynomial. Note that qj(λ) ≈ 1
λ

for non-zero

eigenvalues λ = σ2
i of A∗A. Moreover, convergence to small

eigenvalues λ (i.e., small singular values) is slow.



November 9, 2016 46

National Master Course

Regularization
Limiting this effect is called regularisation.

Several regularization methods have been proposed.

Limiting the effect of amplification of small perturbations in the

data introduces approximation errors. Regularization techniques

have to balance between these two effects, i.e., find an

appropriate values for δ, τ , and j, respectively.

If, for instance, for each τ (i.e., many τ ), xτ is the solution as

obtained by Tykhonov regularisation, then inspection of the

so-called L-curve τ  (‖b−Axτ‖2, ‖xτ‖2) may suggest an

appropriate value for τ : select a τ that corresponds to a point in

the ‘elbow’ of the L-curve.
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Conjugate Gradient Least Square

CG can always be applied to the normal equations

A∗Ax = A∗b

since A∗A is Hermitian positive semi-definite.

The stability can be improved by replacing inner products

u∗ (A∗Au) by inner products (Au)∗Au

which leads to the algorithm CGLS.

Note that, with x0 = 0, we have that xj ∈ R(A∗) = N (A)⊥.
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CGLS (2)

r0 = b−Ax0,

s0 = A∗ r0, u0 = s0, ρ0 = s∗0 s0 %% Initialization

for j = 0, 1, . . . , do

cj = Auj

σj = c∗j cj , αj =
ρj

σj

xj+1 = xj + αj uj %% update iterate

rj+1 = rj − αj cj %% update residual

sj+1 = A∗ rj+1 %% residual normal equations

ρj+1 = s∗j+1sj+1, βj =
ρj+1

ρj

uj+1 = sj+1 + βj uj %% update direction vector

end for
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CGLS (2)

r = b−Ax0, x = x0

s = A∗ r, u = s, ρ = s∗ s %% Initialization

while . . . do

c = Au

σ = c∗ c, α = ρ
σ

x← x + αu %% update iterate

r← r− α c %% update residual

s = A∗ r %% residual normal equations

ρ0 = ρ, ρ = s∗ s, β = ρ
ρ0

u← s + β u %% update direction vector

end for



November 9, 2016 50

National Master Course

CGLS (3)

CGLS can also be used for solving nonsymmetric square

systems. However, this has two important disadvantages:

• The work per iteration is twice as much as in CG;

• C2(A∗A) = C2(A)2,

which means that convergence is often very slow.
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CGLS (4), Assignment

Assuming that C2 ≡ C2(A) = 100 and A is Hermitian:

1. Give an upper bound on the number of CG iterations

required to satisfy ‖x−xj‖A

‖x−x0‖A
< 10−6.

Hint: use the upper bound

‖x− xj‖A
‖x− x0‖A

≤ 2

(√C2 − 1√C2 + 1

)j

≤ 2 exp(− 2j√C2
).

2. Answer the same question for CGLS.
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1. Give an upper bound on the number of CG iterations
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< 10−6.
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≤ 2

(√C2 − 1√C2 + 1

)j

≤ 2 exp(− 2j√C2
).

2. Answer the same question for CGLS.

Answer: CG: 73, CGLS 726
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Orthonormal basis

Arnoldi and Lanczos (GMRES, . . . ) construct an orthonormal

(partial) basis V and exploit this basis in both image space and

domain space since the transformation to this basis preserves

• eigen structure: (V∗AV)y = λy ⇔ Ax = λx with x = Vy.

• matrix polynomial structure: V∗pj(A)V = pj(V
∗AV).

This is not the case if we select different basis in image space

basis and domain space. However, in the problems of this

lecture image space (Cn) is different from domain space (Ck)

anyway. From the SVD, we already learnt that it may be helpfull

to work with different basis.
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Bidiagonalisation

With finitely many Householder reflections, we can obtain

AV = UB

with V k × k unitary, U n× n unitary,

and B = (bij) n× k lower bidiagonal: bij = 0 if i 6∈ {j, j + 1}.

Bidiagonal is as close to diagonal as we can get in finite steps.

See also Theorem 3.5.

This suggest to construct recursively, partial V and U for high

dimensional A.
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Bidiagonalisation (2)
Bidiagonalisation algorithm (Golub and Kahan)

β1u1 = b, α1v1 = A∗u1

for i = 2, 3, . . . do

βiui = Avi−1 − αi−1ui−1

αivi = A∗ui − βivi−1

end for

with αi > 0 and βi > 0 such that ‖ui‖ = ‖vi‖ = 1.

Normalisation leads to orthogonalisation: ui ⊥ uj , vi ⊥ vj (j < i).

Moreover, vk ∈ R(A∗) = N (A)⊥ and uk ∈ span(b,R(A)).

See also Exercise 9.6.
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Bidiagonalisation (3)

With Uj ≡ [u1,u2, · · · ,uj ], Vk ≡ [v1,v2, · · · ,vj ],

B j ≡





α1

β2 α2

β3
. . .
. . . αj

βj





,

and Bj the j × j upper block of B j , we have

β1Uj e1 = b, AVj−1 = Uj B j−1, A∗Uj = Vj B∗
j .
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Least Square QR

LSQR constructs approximate solutions of the form xj = Vj yj .

Then

rj ≡ b−Axj = β1Uj+1 e1 −AVj yj

= β1Uj+1e1 −Uj+1 B j yj

= Uj+1(β1e1 −B j yj).

Note that xj ⊥ N (A) and b ∈ span(Uj+1).

Minimizing ‖rj‖2 is equivalent to solving the least squares

problem

miny‖β1e1 −B j y‖2.
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LSQR (2)

In LSQR

yj = argminy‖β1e1 −B j y‖2
is solved using the QR-decomposition of B j :

xj = (Vj R−1
j )(Q ∗

j (β1e1)), where B j = Q j Rj .

The QR-decomposition in LSQR is based on Givens rotations,

Rj is bidiagonal.
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LSQR (3)

LSQR is famous for its robustness.

However,

A∗AVj = A∗Uj+1 B j = Vj+1 B∗
j+1 B j .

Therefore, xj ∈ Kj(A
∗A,A∗b). Similarly, rj ∈ Kj+1(AA∗,b).

Convergence of LSQR is as of CGLS.
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Bidiagonalisation and Lanczos
Note that the normal equation

A∗Ax = A∗b

is equivalent to the augmented system


 I A

A∗ 0







 r

x



 =



 b

0



 .

We will now argue that LSQR can be viewed as a MINRES

variant applied to the ‘augmented’ form of the normal equations.

In particular, we will derive the bidiagonalisation by applying

Lanczos to the augmeneted system.
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Bidiagonalisation and Lanczos

Applying Lanczos to


 I A

A∗ 0







 r

x



 =



 b

0



 starting with



 b

0



 .

This leads to the Lanczos vectors


 u1

0



 ,



 0

v1



 ,



 u2

0



 ,



 0

v2



 ,



 u3

0



 , . . .

with ui and vi as in bidiagonalisation.
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Lanczos and LSQR
Rearranging the basis, substitution in the augmented system,

using xj = Vj yj , rj = Uj+1 tj , and and the Gallerkin condition,

gives


 U∗
j+1 0

0 V∗
j







 I A

A∗ 0







 Uj+1 tj

Vj yj



 =



 U∗
j+1b

0



 ,

which leads to the lower dimensional (tridiagonal) system


 I B j

B ∗
j 0







 tj

yj



 =



 β1e1

0





which is equivalent to yj = argminy‖β1e1 −B j y‖2.
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Lanczos and LSQR (2)

Apparently, Lanczos applied to the (block) structured problem

allows computational savings: there is no need to save the block

of zeros in the Lanczos vectors, inner products with zeros are

trivial. Bidiagonalisation exploits these savings.

Note. Similarly computational savings strategies can sometimes

be applied to other structured problems as well.
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Final remarks

Today we have seen CG-type methods for the normal equations.

These methods can also be applied to nonsymmetric systems.

The disadvantage of this approach is that the condition number

may be squared compared to the original system. This may lead

to slow convergence and/or an inaccurate solution.

However, there are also classes of problems for which the

normal equations approach works quite well, in particular if A is

close to an orthogonal matrix.
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