
1

National Master Course

Delft University of Technology

Numerical Linear Algebra

Improving iterative solvers:
preconditioning, deflation, numerical
software and parallelisation

Gerard Sleijpen and Martin van Gijzen

November 29, 2017

November 29, 2017 2

National Master Course

Solving Ax = b, an overview

A+A
∗ is strongly indefinite

A has large imaginary eigenvalues

a good precond itioner is available

the precond itioner is flex ible

⇓ yes

A > 0 ⇒
yes

CG

⇓ no

ill cond. ⇒
yes

SYMMLQ

⇓ no

MINRES

A∗ = A ⇒
no Good precond. ⇒

yes flex. precond. yes
⇒ GCR

⇓ no

GMRES

⇓ no

⇓
⇓

str indef no
⇒ large im eig ⇒

no Bi-CGSTAB

⇓ yes

BiCGstab(ℓ)

⇓ yes

large im eig

⇓ yes

IDRstab

⇐
noIDR
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Introduction
We already saw that the performance of iterative methods can

be improved by applying a preconditioner. Preconditioners (and

deflation techniques) are a key to successful iterative methods.

In general they are very problem dependent.

Today we will discuss some standard preconditioners and we will

explain the idea behind deflation.

We will also discuss some efforts to standardise numerical

software.

Finally we will discuss how to perform scientific computations on

a parallel computer.
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Program

• Preconditioning

• Diagonal scaling, Gauss-Seidel, SOR and SSOR

• Incomplete Choleski and Incomplete LU

• Deflation

• Numerical software

• Parallelisation

• Shared memory versus distributed memory

• Domain decomposition
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Preconditioning
A preconditioned iterative solver solves the system

M−1Ax = M−1b.

The matrix M is called the preconditioner.

The preconditioner should satisfy certain requirements:

• Convergence should be (much) faster (in time) for the

preconditioned system than for the original system. Normally

this means that M is constructed as an “easily invertible”

approximation to A. Note that if M = A any iterative method

converges in one iteration.

• Operations with M−1 should be easy to perform ("cheap").

•M should be relatively easy to construct.
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Why preconditioners?
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Why preconditioners?
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Why preconditioning? (2)

From the previous pictures it is clear that, in 2-d, we need

O(1/h) = O(√n) iterations to move information from one end to

the other end of the grid.

So, at best it takes O(n3/2) operations to compute the solution

with an iterative method.

In order to improve this we need a preconditioner that enables

fast propagation of information through the mesh.
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Clustering the spectrum
In lecture 7 we saw that CG performs better when the spectrum

of A is clustered.

Therefore, a good preconditioner clusters the spectrum.
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Incorporating a preconditioner

Normally the matrix M−1A is not explicitly formed.

The multiplication

u = M−1Av

can simply be carried out by the two operations

t = Av %% MatVec

solve Mu = t for u %% MSolve.
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Incorporating a preconditioner (2)

Preconditioners can be applied in different ways:

• from the left

M−1Ax = M−1b,

• centrally

M = LU; L−1AU−1y = L−1b; x = U−1y,

• or from the right

AM−1y = b; x = M−1y.

• Some methods allow implicit preconditioning.

Left, central and right preconditioning is explicit.
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Incorporating a preconditioner (3)
All forms of preconditioning lead to the same spectrum.

Yet there are differences:

• Left preconditioning is most natural: no extra step is required to

compute x;

• Central preconditioning allows to preserve symmetry (if U = L∗);

• Right preconditioning does not affect the residual norm.

• Implicit preconditioning does not affect the residual norm, no

extra steps are required to compute x. Unfortunately, not all

methods allow implicit preconditioning. If possible, adaption of

the code of the iterative solver is required.

• Explicit preconitioning allows optimisation of the combination of

MSolve and MatVec as the Eisentat trick.
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CG with central preconditioning

x = Ux0, r = L−1(b−Ax), u = 0, ρ = 1 %% Initialization

while ‖r‖ > tol do

σ = −ρ, ρ = r∗r, β = ρ/σ

u← r− β u, c = (L−1AU−1)u

σ = u∗c, α = ρ/σ

r← r− α c %% update residual

x← x+ αu %% update iterate

end while

x← U−1x

Here, M = LU with U = L∗. Note that M is positive definite.

If M = (L̃+D)D−1(L̃+D)∗, take L ≡ (L̃+D)D−
1

2 .
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CG with implicit preconditioning

x = x0, r = b−Ax, u = 0, ρ = 1 %% Initialization

while ‖r‖ > tol do

c = M−1r

σ = −ρ, ρ = c∗r, β = ρ/σ

u← c− βu, c = Au

σ = u∗c, α = ρ/σ

r← r− α c %% update residual

x← x+ αu %% update iterate

end while

M should be Hermitian. Matlab takes M1,M2 (i.e., M = M1M2).

For instance, M1 = L̃D−1 + I and M2 = (L̃+D)∗.
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Incorporating a preconditioner (4)
Explicit preconditioning requires

• preprocessing (to solve Mb′ = b for b′ in left

preconditioning, and x′
0 = Mx0 in right preconditioning),

• adjust MatVec: adjustment of the code for the operation

that does the matrix-vector multiplication (to produce, say,

c = M−1Au),

• postprocessing (to solve Mx = x′ for x in right precond.).

Implicit preconditioning requires

• adaption of the code of the iterative solver.

Matlab’s PCG uses implicit preconditioning.
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Preconditioning in MATLAB (1)

Example. L ≡ L̃+D, where A = L̃+D+ L̃
∗

is p.d..

Ax = b, M ≡ LD−1L∗
 D

1

2L−1AL−∗D
1

2y = D
1

2L−1b

function [PreMV,pre_b,PostProcess,pre_x0] = preprocess(A,b,x0)

L = tril(A); D = diag(sqrt(diag(A))); L = L/D; U = L’;

function c = MyPreMV(u);

c = L\(A*(U\u));

end

PreMV = @MyPreMV; pre_b = L\b; pre_x0 = U*x0;

function x = MyPostProcess(y)

x = U\y;

end

PostProcess = @MyPostProcess;

end

Here, A is a sparse matrix. Note that L,U,D are also sparse
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Preconditioning in MATLAB (2)

Example. L ≡ L̃+D, where A = L̃+D+ L̃
∗

is p.d..

Ax = b, M ≡ LD−1L∗
 D

1

2L−1AL−∗D
1

2y = D
1

2L−1b

function x = CG(A,b,tol,kmax,x0)

...

c=A*u;

...

end

In Matlab’s command window, replace

> x = CG(A,b,100,10ˆ(-8),x0);

by

> [pMV,pb,postP,px0] = preprocess(A,b,x0);

> y = CG(pMV,pb,100,10ˆ(-8),px0);

> x = postP(y);
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Preconditioning in MATLAB (3)

Example. L ≡ L̃+D, where A = L̃+D+ L̃
∗

is p.d..

Ax = b, M ≡ LD−1L∗
 D

1

2L−1AL−∗D
1

2y = D
1

2L−1b

The CG code should take both functions and matrices:

function x = CG(A,b,tol,kmax,x0)

A_is_matrix = isnumeric(A);

function c=MV(u)

if A_is_matrix, c=A*u; else, c=A(u); end

end

...

c=MV(u);

...

end
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Preconditioning in MATLAB (4)

Example. L ≡ L̃+D, where A = L̃+D+ L̃
∗

is p.d..

Ax = b, M ≡ LD−1L∗
 implicit preconditioning

function MSolve = SetPrecond(A)

L = tril(A); U = L’; D = diag(diag(A));

function c = MyPreMV(u);

c = U\(D*(L\u));

end

MSolve = @MyMSolve;

end

function x = PCG(A,b,tol,kmax,MSolve,x0)

...

c=MSolve(r);

...

c=A(u);

...

end
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Diagonal scaling

Diagonal scaling or Jacobi preconditioning uses

M = diag(A)

as preconditioner. Clearly, this preconditioner does not enable

fast propagation through a grid. On the other hand, operations

with diag(A) are very easy to perform and diagonal scaling can

be useful as a first step, in combination with other techniques.

If the choice for M is restricted to diagonals,

then M = diag(A) minimize C(M−1A) is some sense.
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Gauss-Seidel, SOR and SSOR
The Gauss-Seidel preconditioner is defined by

M = L+D

with L the strictly lower-triangular part of A and D = diag(A).

By introducing a relaxation parameter ω (using D/ω instead of

D), we get the SOR-preconditioner.

For symmetric problems it is wise to take a symmetric

preconditioner. A symmetric variant of Gauss-Seidel is

M = (L+D)D−1(L+D)∗

By introducing a relaxation parameter ω (i.e., by using D/ω

instead of D) we get the so called SSOR-preconditioner.
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ILU-preconditioners
ILU-preconditioners are the most popular ‘black box’

preconditioners. They are constructed by making a standard

LU-decomposition

A = LU.

However, during the elimination process some nonzero entries in

the factors are discarded (i.e., replaced by 0). This leads to

M = LU with L and U the “incomplete” L- and U-factors.

Discarding nonzero entries can be done on basis of two criteria:

• Sparsity pattern: e.g., an entry in a factor is only kept if it

corresponds to a nonzero entry in A;

• Size: small entries in the decomposition are dropped.
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Sparsity patterns, fill
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Sparsity patterns, fill
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Sparsity patterns, ILU(0)
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Sparsity patterns, ILU(1)
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Sparsity patterns, ILU(2)
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ILU-preconditioners (2)

Modified ILU-preconditioners are constructed by making an

ILU-decomposition

M = LU.

However, during the elimination process the nonzero entries in

the factors that are discarded in the ILU construction are now

added to the diagonal entry of U. Then A1 = M1.

The idea here is that both A and M have the approximately the

same effect when acting on “smooth” functions (vectors).
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ILU-preconditioners (2)

The number of nonzero entries that is maintained in the

LU-factors is normally of the order of the number of nonzeros

in A.

This implies that operations with the ILU-preconditioner are

approximately as costly as multiplications with A.

For A Symmetric Positive Definite a special variant of ILU

exists, called Incomplete Choleski. This preconditioner is

based on the Choleski decomposition A = CC∗.
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Deflation

There are two popular ways to improve the convergence of

Krylov solvers.

• Preconditioning: improve distribution of the eigenvalues

(cluster eigenvalues).

• Deflation: remove eigenvectors with eigenvalues that are

small in absolute value.

Actually, small eigenvalues are mapped to zero and

approximate solution are constructed in the orthogonal

complement of the kernel of the deflated matrix.
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Deflation (2)
U is an n× s matrix (typically with s small), V ≡ AU . Suppose

the interaction matrix µ ≡ U∗AU = U∗V is non-singular.

Consider the skew projections

Π1 ≡ I−Vµ−1U∗ and Π0 ≡ I−Uµ−1U∗A

Note. Π1y ⊥ U for all n-vectors y, Π1AU = 0, Π1A = AΠ0

Theorem. Put A′ ≡ Π1A and b′ ≡ Π1b.

If x′ solves A′x′ = b′ for x′ ⊥ U,

then x ≡ Π0x
′ +Uµ−1U∗b solves Ax = b.

Exercise. If A is Hermitian, then A′ is Hermitian.
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Deflation (3)

The deflated map A′ maps U⊥ to U⊥. In particular, Krylov

subspaces generated by A′ and b′ are orthogonal to U and

Krylov subspace solvers find approximate solutions in U⊥.

If the space spanned by the columns of U (approximately)

contains the eigenvectors associated with the s absolute

smallest eigenvalues, then the deflated map A′ has

(approximately) the same eigenvalues as A, except for the s

absolute smallest ones, which are replaced by 0.

When A′ is considered as a map from U⊥ to U⊥, then these 0

eigenvalues are removed (then A′ has only n− s eigenvalues).
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Deflation, examples.

• Multiple right hand side systems or block systems.

U = [u1, . . . ,us], where uj are the Ritz vectors with absolute

smallest Ritz values obtained from solving Ax = b1 with

GMRES. Then U can be used to solve Ax = b2, . . . .

• GCRO: Local Minimal Residual iteration where the update

vector uk in step k is obtained by solving

A′u′ = rk for u′ ⊥ Uk−1

with ℓ steps of GMRES. In the next step Uk ≡ [Uk−1,uk].

• Multi-grid. U is the matrix that represents the restric-

tion to a coarse grid, U∗ is the prolongation, µ−1 is the coarse grid

correction. s is not really small in this application (typically s = n
4
).
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Deflation, examples (2)
• In many application (typically those from CFD), eigenvectors

with absolute small eigenvalues correspond to smooth (non- or

mildly oscillating) functions on the computational grid. Then the

columns of U are taken to be vectors corresponding to smooth

functions, as the function of all 1, plus functions that are 1 on

part of the grid and 0 elsewhere. The part of the grid where the

function is 0 can be a part where the coefficients in the PDE are

(small) constant.

The idea here is that the ‘hampering’ eigenvectors are not known

but they will be close to the space spanned by the U-vectors.

Deflation of this type is typically applied in case of an isolated

cluster of absolute small eigenvalues.
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Numerical software
To promote the use of good quality software several efforts have

been made in the past. We mention:

• Eispack: Fortran 66 package for eigenvalue computations.

• Linpack: F77 package for dense or banded linear systems.

• BLAS: standardisation of basic linear algebra operations.

Available in several languages.

• LAPACK: F77 package for dense eigenvalue problems and

linear systems. Builds on BLAS and has replaced Eispack

and Linpack. F90 and C++ versions also exist.

The above software can be downloaded from

http://www.netlib.org.
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B asic L inear A lgebra S ubroutines

The BLAS libraries provide a standard for basic linear algebra

subroutines. The BLAS library is available in optimised form on

many (super)computers. Three versions are available:

• BLAS 1: vector-vector operations;

• BLAS 2: matrix-vector operations;

• BLAS 3: matrix-matrix operations.
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BLAS 1

Examples of BLAS 1 routines are:

• Vector update: daxpy

• Inner product: ddot

• Vector scaling: dscal
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Cache memory

Computers normally have small, fast memory close to the

processor, the so called cache memory.

For optimal performance data in the cache should be reused as

much as possible.

Level 1 BLAS routines are for this reason not very efficient: for

every number that is loaded into the cache only one calculation

is made.
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BLAS 2 and 3

An example of a BLAS 2 routine is the matrix-vector

multiplication routine dgemv.

An example of a BLAS 3 routine is the matrix-matrix

multiplication routine dgemm.

BLAS 2 and in particular BLAS 3 routines make much better use

of the cache than BLAS 1 routines.
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Parallel computing

Modern supercomputers may contain many thousands of

processors. Another popular type of parallel computer is the

cluster of workstations connected via a communication network.

Parallel computing poses special restrictions on the numerical

algorithms. In particular, algorithms that rely on recursions are

difficult to parallelise.
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Shared versus distributed memory

An important distinction in computer architecture is the memory

organisation.

Shared memory machines have a single address space: all

processors read from and write to the same memory. This type

of machines can be parallelised using fine grain, loop level

parallelisation techniques.

On distributed memory computers every processors has its

own local memory. Data is exchanged via a message passing

mechanism. Parallelisation should be done using a coarse grain

approach. This is often achieved by making a domain

decomposition.
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Domain decomposition
A standard way to parallelise a grid-based computation is to split

the domain into p subdomains, and to map each subdomain on a

processor.
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Domain decomposition (2)

The domain decomposition decomposes the system Ax = b

into blocks. For two subdomains one obtains

A =


 A11 A12

A21 A22




 x1

x2


 =


 b1

b2


 ,

x1 and x2 represent the subdomain unknowns, A11 and A22

the subdomain discretization matrices and A12 and A21 the

coupling matrices between subdomains.
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Parallel matrix-vector multiplication
For the matrix-vector multiplication (MV, MatVec)

u = Av

the operations

u1 = A11v1 +A12v2 and u2 = A22v2 +A21v1

can be performed in parallel.

However, processor 1 has to send (part of) v1 to processor 2

before the computation, and processor 2 (part of) v2 to

processor 1.

This kind of communication is local, only informations from

neighbouring subdomains is needed.
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Parallel vector operations

Inner products (DOT)

u∗v

are calculated by computing the local inner products

u∗

1v1 and u∗

2v2.

The final result is obtained by adding all local inner products.

This requires global communication.

Vector updates (AXPY)

x← x+ αy

can be performed locally, without any communication.

November 29, 2017 45

National Master Course

Domain decomposition
preconditioners

It is a natural idea to solve a linear system

Ax = b

by solving the subdomain problems independently and to iterate

to correct for the error.

This idea has given rise to the family of domain decomposition

preconditioners.

The theory for domain decomposition preconditioners is vast,

here we only discuss some important ideas.
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Block-Jacobi preconditioner

A simple domain decomposition preconditioner is defined by

M =


 A11 0

0 A22




(Block-Jacobi preconditioner) or, in general, by

M =




A11

. . .

AMM




The subdomain systems can be solved in parallel.
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Solution of subdomain problems

There are several ways to solve the subdomain problems:

• Exact solves. This is in general (too) expensive.

• Inexact solves using an incomplete decomposition

(block-ILU).

• Inexact solves using an iterative method to solve the

subproblems. Since in this case the preconditioner is

variable, the outer iteration should be flexible, for example

GCR.
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On the scalability of block-Jacobi

Without special techniques, the number of iterations increases

with the number of subdomains. The algorithm is not scalable.

To overcome this problems techniques can be applied to enable

the exchange of information between subdomains.
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Improving the scalability

Two popular techniques improve the flow of information are:

• Use an overlap between subdomains. Of course one has to

ensure that the value of unknowns in gridpoints that belong

to multiple domains is unique.

• Use a coarse grid correction. The solution of the coarse grid

problem is added to the subdomain solutions.

This idea is closely related to multigrid, since the coarse-grid

solution is the non-local, smooth part of the solution that

cannot be represented on a single subdomain.
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Concluding remarks

Preconditioners are the key to a successful iterative method.

Today we saw some of the most important preconditioners. The

’best’ preconditioner, however, depends completely on the

problem.
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