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Iterative methods in Matlab
With “help PCG” Matlab shows the iterative methods for solving

the square system Ax = b that are coded in Matlab.

>> help pcg

...

See also bicg, bicgstab, bicgstabl, cgs,

gmres, lsqr, minres, qmr, symmlq, tfqmr,

ichol, function_handle.
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Solving Ax = b, an overview

A + A∗ is strongly indefinite
A has large imaginary eigenvalues

a good preconditioner is available
the preconditioner is flexible

⇓ yes

A > 0 ⇒
yes CG

⇓ no

ill cond. ⇒
yes SYMMLQ

⇓ no

MINRES

A∗ = A ⇒
no Good precond. ⇒

yes flex. precond. yes
⇒ GCR

⇓ no

GMRES
⇓ no

⇓

⇓

str indef no
⇒ large im eig ⇒

no Bi-CGSTAB

⇓ yes

BiCGstab(ℓ)

⇓ yes

large im eig

⇓ yes

IDRstab

⇐
noIDR
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Program Lecture 11

In this lecture A is an (complex) n× n matrix.

We are interested in solving Ax = b for x.

Advanced topics

• IDR(s): a ‘recent’ iterative solution method

(for nonsymmetric A)

• Preconditioning if A forms a KKT systems
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Introduction

Today we will discuss two subjects of active research:

- IDR(s) is a ‘recent’ iterative method for nonsymmetric

systems.

- KKT systems (or saddle point problems) play a role in many

different areas and are notoriously difficult to solve.
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Program Lecture 11

In this lecture A is an (complex) n× n matrix.

We are interested in solving Ax = b for x.

Advanced topics

• IDR(s): a ‘recent’ iterative solution method

(for nonsymmetric A)

• Preconditioning if A forms a KKT systems
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Krylov subspace methods

Iterate: • Extract xk from Kk(A, r0)

• Stop if sufficiently accurate

• Expand Kk(A, r0) to Kk+1(A, r0)

Holy Grail
Krylov subspace method with the following properties

• Stable (‘orthogonal’ basis)

• ‘Minimal’ error

• Short recurrence

November 28, 2016 8

National Master Course

Krylov subspace methods

Iterate: • Extract xk from Kk(A, r0)

• Stop if sufficiently accurate

• Expand Kk(A, r0) to Kk+1(A, r0)

Holy Grail exists in ideal situations: if A is positive definite.

Example. CG for A positive definite.

Properties. • A-orthogonal basis

• minimal error w.r.t. the A-norm

• per step: 1MV, 3 vector updates, 2 inner products
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Krylov subspace methods

Iterate: • Extract xk from Kk(A, r0)

• Stop if sufficiently accurate

• Expand Kk(A, r0) to Kk+1(A, r0)

Holy Grail does not exist in general. For nonsymmetric systems

it is not possible to combine optimal error reduction with short

recurrences [Faber and Manteuffel, 1984].

Two different approaches have been taken:

• GMRES approach.

Minimizes residual norm but uses long recursions.

• Bi-CG approach. Puts residuals (bi-)orthogonal.

Uses short recursions, but no optimal reduction of an error norm.
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Krylov subspace methods

Iterate: • Extract xk from Kk(A, r0)

• Stop if sufficiently accurate

• Expand Kk(A, r0) to Kk+1(A, r0)

Bi-CG approach:
Solve Ax = b and, at the same time,

solve a ‘shadow’ system A∗ x̃ = r̃0.

Extract xk such that rk ⊥ Kk(A
∗ , r̃0) (bi-orthogonal residuals).

It suffices to have rk ⊥ r̃k−1, r̃k−2 (short recurrences).

Expand with rk.
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The Bi-CG approach
Bi-CG uses CG recursions but needs extra matvec with A∗.

Idea of Sonneveld: use ‘wasted’ matvec in a more useful way.

Result:

hybrid Bi-CG methods, transpose-free, product Lanczos type:

rk = qk(A) rBi-CG
k for some polynomial qk of degree k.

Examples.

• CGS [Sonneveld, 1989]

• Bi-CGSTAB [Van der Vorst, 1992]

• BiCGstab(ℓ) [Sleijpen and Fokkema, 1993]

• Several other variants
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IDR and IDR(s)
Sonneveld developed IDR in the 1970’s. IDR is a finite

termination Krylov method for solving nonsymmetric linear

systems.

Analysis showed that IDR can be viewed as Bi-CG combined

with local minimal residual steps.

This discovery led to the development of first CGS, and later of

Bi-CGSTAB.

As a result of these developments the basic IDR idea was

abandoned for the Bi-CG-approach.

Recently, it was realized that the IDR-approach was abandoned

too soon and proposed a generalization of IDR: IDR(s).
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The IDR approach
Generate residuals rk = b−Axk that are in nested
subspaces Gj of decreasing dimension.

Select an n× s matrix R̃, a so-called IDR test matrix.

Then the Gj are related by

Gj = (µjI−A)(Gj−1 ∩ R̃
⊥
),

where

• R̃
⊥

is the subspace of vectors in Cn that are orthogonal to

all columns r̃ℓ (ℓ = 1, . . . , s) of R̃,

• the µj are parameters in C.

It can be proved that ultimately rk ∈ {0} (The IDR theorem).
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The IDR theorem
Theorem. With R̃ an n× s matrix, (µj) a sequence of scalars,

and G0 ≡ Cn, define the sequence (Gj) of subspaces Gj by

G′j ≡ Gj ∩ R̃
⊥
, Gj+1 ≡ (µj+1I−A)G′j (j = 0, 1, . . .).

Then (i) the Gj are nested, i.e., Gj+1 ⊆ Gj for all j > 0.

(ii) if R̃
⊥

does not contain an eigenvector of A,

then Gj+1 $ Gj , unless Gj = {0}.

In particular,

(i′) AG′j ⊂ Gj .

Note that Gj = 1
µj
Gj = (I− 1

µj
A)G′j−1 if µj 6= 0.
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The IDR theorem
Theorem. With R̃ an n× s matrix, (µj) a sequence of scalars,

and G0 ≡ Cn, define the sequence (Gj) of subspaces Gj by

G′j ≡ Gj ∩ R̃
⊥
, Gj+1 ≡ (µj+1I−A)G′j (j = 0, 1, . . .).

Then (i) the Gj are nested, i.e., Gj+1 ⊆ Gj for all j > 0.

(ii) if R̃
⊥

does not contain an eigenvector of A,

then Gj+1 $ Gj , unless Gj = {0}.

In particular,

(ii′) dim(Gj+1) < dim(Gj) unless Gj = {0}.

Usually, dim(Gj+1) = dim(Gj)− s.
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The IDR theorem
Theorem. With R̃ an n× s matrix, (µj) a sequence of scalars,

and G0 ≡ Cn, define the sequence (Gj) of subspaces Gj by

G′j ≡ Gj ∩ R̃
⊥
, Gj+1 ≡ (µj+1I−A)G′j (j = 0, 1, . . .).

Then (i) the Gj are nested, i.e., Gj+1 ⊆ Gj for all j > 0.

(ii) if R̃
⊥

does not contain an eigenvector of A,

then Gj+1 $ Gj , unless Gj = {0}.

This explains naming: Induced Dimension Reduction.

IDR: constructs rk in Gj ≡ (I− ωjA)G′j−1 with ωj = 1
µj

.
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The IDR theorem
Theorem. With R̃ an n× s matrix, (µj) a sequence of scalars,

and G0 ≡ Cn, define the sequence (Gj) of subspaces Gj by

G′j ≡ Gj ∩ R̃
⊥
, Gj+1 ≡ (µj+1I−A)G′j (j = 0, 1, . . .).

Then (i) the Gj are nested, i.e., Gj+1 ⊆ Gj for all j > 0.

(ii) if R̃
⊥

does not contain an eigenvector of A,

then Gj+1 $ Gj , unless Gj = {0}.

Proof. See Exercise 11.1
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Making an IDR algorithm
Note that v ∈ R̃

⊥
⇔ R̃

∗
v = 0.

Let V = Vj be an n× s matrices with columns in Gj .

With the s× s matrix σ ≡ R̃
∗
V and Π1 ≡ I−Vσ−1R̃

∗
,

rj ∈ Gj  r′j ≡ Π1 rj ∈ G
′
j  rj+1 ≡ r′j − ωAr′j ∈ Gj+1

Note. Updating xj with residual rj , requires U with V = AU.
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Making an IDR algorithm
Note that v ∈ R̃

⊥
⇔ R̃

∗
v = 0.

Let V = Vj be an n× s matrices with columns in Gj .

With the s× s matrix σ ≡ R̃
∗
V and Π1 ≡ I−Vσ−1R̃

∗
,

rj ∈ Gj  r′j ≡ Π1 rj ∈ G
′
j  rj+1 ≡ r′j − ωAr′j ∈ Gj+1

Note. Updating xj with residual rj , requires U with V = AU.

How to compute the s columns in Gj+1 of an n× s matrix Vj+1 ?

Apply the above approach for “rj  rj+1” also to Vj ?
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Making an IDR algorithm
Note that v ∈ R̃

⊥
⇔ R̃

∗
v = 0.

Let V = Vj be an n× s matrices with columns in Gj .

With the s× s matrix σ ≡ R̃
∗
V and Π1 ≡ I−Vσ−1R̃

∗
,

rj ∈ Gj  r′j ≡ Π1 rj ∈ G
′
j  rj+1 ≡ r′j − ωAr′j ∈ Gj+1

Note. Updating xj with residual rj , requires U with V = AU.

How to compute the s columns in Gj+1 of an n× s matrix Vj+1 ?

Apply the above approach for “rj  rj+1” also to Vj ?

Π1V = 0 :-(
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Making an IDR algorithm
Note that v ∈ R̃

⊥
⇔ R̃

∗
v = 0.

Let V = Vj be an n× s matrices with columns in Gj .

With the s× s matrix σ ≡ R̃
∗
V and Π1 ≡ I−Vσ−1R̃

∗
,

rj ∈ Gj  r′j ≡ Π1 rj ∈ G
′
j  rj+1 ≡ r′j − ωAr′j ∈ Gj+1

Note. Updating xj with residual rj , requires U with V = AU.

Idee. rj+1 ∈ Gj , because Gj+1 ⊂ Gj .

Repeat the above approach for “rj  rj+1” to construct

r
(0)
j+1 ≡ rj+1, r

(1)
j+1, r

(2)
j+1, . . . in Gj+1.
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Making an IDR algorithm
Note that v ∈ R̃

⊥
⇔ R̃

∗
v = 0.

Let V = Vj be an n× s matrices with columns in Gj .

With the s× s matrix σ ≡ R̃
∗
V and Π1 ≡ I−Vσ−1R̃

∗
,

rj ∈ Gj  r′j ≡ Π1 rj ∈ G
′
j  rj+1 ≡ r′j − ωAr′j ∈ Gj+1

Note. Updating xj with residual rj , requires U with V = AU.

V can be computed from, for instance, residual differences

Vj+1 = [v1, . . . ,vs], where vi ≡ ∆r
(i)
j+1 ≡ r

(i−1)
j+1 − r

(i)
j+1.

Uj+1 = [u1, . . . ,us], where ui ≡ ∆x
(i)
j+1 ≡ x

(i)
j+1 − x

(i−1)
j+1 .

Note that vi ∈ Gj since both r
(i−1)
j+1 and r

(i)
j+1 in Gj .
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Making an IDR algorithm (2)
Note. On the previous transparency, we suggested to form an

n× s matrix Vj+1 in Gj+1 after the formation of the s + 1 residual

vectors r
(i)
j+1 (i = 0, . . . , s).

However, if we repeatedly replace the oldest column in V by the

newest residual difference, then all of the columns of V are in Gj

(some are in Gj+1) and V can also be used in the projection Π1

for forming vectors in G′j . After s + 1 of these replacements, the

resulting V is a matrix with all columns in Gj+1.

The first approach requires more memory (the old V and U

have to be stored unto all new vectors are available).

Both approaches can be shown to lead to the same r′j+1.
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Prototype IDR(s) algorithm.

for k = 0, 1, 2, . . . do

σ = R̃
∗
V, ~β = R̃

∗
r. Solve σ~α = ~β for ~α

v = V ~α, u = U ~α,

r′ = r− v, s = Ar′, x′ = x + u,

if k = 0 mod (s + 1), ω = (s∗r′)/(s∗s)

r = r′ − ω s, x = x′ + ω r′

v← v + ω s, u← u + ω r′,

V← [V̂,v], U← [Û,u]

if (‖r‖ < tol), break

end do

Here, Ŵ ≡ [w2, . . . ,ws] if W = [w1,w2, . . . ,ws].

November 28, 2016 18

National Master Course

Initialising IDR.
R̃: Select R̃ (orthonormal) randomly. Then

i) 100% probability that R̃
⊥

does not contain an eigenvector of A.

ii) appears to work well in practise.

To have eR orthonormal, take the Q of a QR-decomposition of an n× s random matrix.

V: With U with columns spanning Ks(A, r0), the IDR algorithm

is also a Krylov subspace method:

r
(i)
j ∈ Kk(A, r0) ∩ Gj for k ≥ j(s + 1), i = 0, . . . , s.

For instance, with V = U = [ ],

r0 = b−Ax0, and x = x0,

start with s steps of the Local

Minimal Residual method‘;

for k = 1, . . . , s,
u = r, v = Au

compute ω

r← r− ωv, x← x + ωu

V← [V,v], U← [U,u]
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Convergence of IDR(s)
The figure below shows typical convergence of Bi-CGSTAB,

GMRES (optimal) and IDR(s).

0 200 400 600 800 1000 1200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Number of MATVECS

lo
g 10

 ||
r|

| 2

Convection−diffusion problem

GMRES
Bi−CGSTAB
BiCGstab(2)
IDR(1)
IDR(2)
IDR(4)
IDR(8)
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Convergence of IDR(s) (2)

Typically, the number of MVs required by IDR(s) equals
s+1

s times the number of MVs required by GMRES:

Theorem. s+1
s ×# MVs GMRES = # MVs IDR(s) for s→∞.
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Convergence of IDR(s) (2)

Typically, the number of MVs required by IDR(s) equals
s+1

s times the number of MVs required by GMRES:

Theorem. s+1
s ×# MVs GMRES = # MVs IDR(s) for s→∞.

Practise. ∞ = 8.
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IDR and Bi-CG
The IDR ‘philosophy’ is quite different from the Bi-CG approach:

• Bi-CG methods compute residuals in a sequence of growing

subspaces: the Krylov subspace Kk+1(A, r0) grows in every

iteration (in dimension).

• In IDR the residuals are forced to be in decreasing

subspaces Gj .

However, the two approaches are mathematically closely related:

• Bi-CG computes the kth residual in Kk(A
∗, r̃0)

⊥,

that is, residuals from a sequence of shrinking spaces.

• with a Krylov subspace start, IDR find residuals in

Kk(A, r0).
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IDR and Bi-CG
The IDR ‘philosophy’ is quite different from the Bi-CG approach:

• Bi-CG methods compute residuals in a sequence of growing

subspaces: the Krylov subspace Kk+1(A, r0) grows in every

iteration (in dimension).

• In IDR the residuals are forced to be in decreasing

subspaces Gj .

However, the two approaches are mathematically closely related:

• The link is closest with Bi-CGSTAB:

IDR(1) and Bi-CGSTAB are (mathematically) equivalent.
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IDR and block Krylov.
The block Krylov subspace Kj(A

∗, R̃) is defined by

Kj(A
∗, R̃) ≡

{
j−1∑

i=0

(A∗)i R̃ ~αi | ~αi ∈ Cs

}
.

For any polynomial q, with j ≡ degree(q),

define the Sonneveld subspace G(q,A, R̃) by

G(q,A, R̃) ≡ {q(A)v | v ⊥ Kj(A
∗, R̃)}.

Theorem. Let q0(λ) ≡ 1, and, for j = 1, 2, . . .,

ωj ≡
1
µj

, qj(λ) ≡ (1− ωj λ) qj−1(λ). Then, Gj = G(qj ,A, R̃).
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IDR and hybrid Bi-CG
Recall that rBi-CG

k ⊥ Kk(A
∗, r̃0)

• The CGS residual can be written as the residual Bi-CG

polynomial pk ≡ pBi-CG
k squared times the initial residual r0:

rCGS
k = pk(A)pk(A)r0 = pk(A)rBi-CG

k ∈ G(pk,A, [ r̃0]).

• Bi-CGSTAB residual can be written as a ‘stab’ polynomial

qk ≡ qBi-CGSTAB
k in A times the Bi-CG residual rBi-CG

k :

rBi-CGSTAB
k = qk(A)rBi-CG

k .

Recall that in Bi-CGSTAB, qk(λ) = (1− ωkλ) qk−1(λ).

Hence, rBi-CGSTAB
k = r

IDR(1)
k ∈ Gk = G(qk,A, [ r̃0]).
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Convergence of IDR(s) (3)
IDR(s) does not work well on strongly a-symmetric matrices:
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3D convection−diffusion problem, real P
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IDR6
Bi−CGSTAB
GMRES

uxx + uyy + uzz + 1000ux = f .
Discretized with 50× 50× 50 volumes. No preconditioning.
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Convergence of IDR(s) (4)
IDR(s) does not work well on strongly a-symmetric matrices:
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Convergence history linear solvers. Matrix "meier01" is 1000 x 1000

bicgstab
BiCGstab(2)
bi−idrs(8)

uxx + uyy + uzz + 1000ux = f .
Discretized with 10× 10× 10 volumes. No preconditioning.
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IDRstab
For almost skew matrices the ‘stabilisation’ polynomial,

qj(λ) ≡ (1− ωjλ)(1− ωj−1λ) · · · (1− ω1λ).

based on linear factors does not work well (should have complex

zeros). An alternative is to use stabilisation polynomials with

higher order factors (as in BiCGstab(ℓ)).

The resulting method is called IDRstab,

with corresponding algorithm IDR(s)stab(ℓ).



November 28, 2016 26

National Master Course

IDRstab
For almost skew matrices the ‘stabilisation’ polynomial,

qj(λ) ≡ (1− ωjλ)(1− ωj−1λ) · · · (1− ω1λ).

based on linear factors does not work well (should have complex

zeros). An alternative is to use stabilisation polynomials with

higher order factors (as in BiCGstab(ℓ)).

The resulting method is called IDRstab,

with corresponding algorithm IDR(s)stab(ℓ).

The IDR theorem. For each j and polynomials tj of exact degree ℓ, define

G′j ≡ Gj ∩ Kℓ(A
∗, eR)⊥, Gj+1 ≡ tj(A)G′j .

Then, Gj+1 $ Gj , . . . . Usually, dim(Gj+1) = dim(Gj)− sℓ.
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Convergence IDRstab
The picture below shows the convergence for the same problem
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uxx + uyy + uzz + 1000ux = f .
Discretized with 50× 50× 50 volumes. No preconditioning.
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Convergence IDRstab (2)
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GMRES
Bi−CGSTAB
IDR(4)
BiCGstab(4)
IDR(4)STAB(4)

−uxx − uyy + (α/
√

2) (ux + uy)− βu = f

on unit-square, homogenuous Dirichlet BC, f st solution u = xy(1− x)(1− y),

(201× 201) finite differences. No preconditioning.
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Convergence IDRstab (3)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−10

−8

−6

−4

−2

0

2

Number of MATVECS
lo

g(
|r

|/|
b|

)

Convergence, α = 0 β = 1000

 

 
GMRES
Bi−CGSTAB
IDR(4)
BiCGstab(4)
IDR(4)STAB(4)

−uxx − uyy + (α/
√

2) (ux + uy)− βu = f

on unit-square, homogenuous Dirichlet BC, f st solution u = xy(1− x)(1− y),

(201× 201) finite differences. No preconditioning.
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Convergence IDRstab (4)
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Convergence IDRstab (5)
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GMRES
Bi−CGSTAB
IDR(4)
BiCGstab(4)
IDR(4)STAB(4)

−uxx − uyy + (α/
√

2) (ux + uy)− βu = f

on unit-square, homogenuous Dirichlet BC, f st solution u = xy(1− x)(1− y),

(201× 201) finite differences. No preconditioning.
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Program Lecture 11

In this lecture A is an (complex) n× n matrix.

We are interested in solving Ax = b for x.

Advanced topics

• IDR(s): a ‘recent’ iterative solution method

(for nonsymmetric A)

• Preconditioning if A forms a KKT systems
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KKT or saddle point systems

Karush-Kuhn-Tucker systems frequently arise in optimisation.

KKT systems are also know as saddle-point systems.

The matrix A of a KKT system has the following block structure

A =


 H B∗

B −C




with H and C symmetric positive definite matrices:

A is symmetric.

Systems with such a matrix arise in many other applications, for

example in CFD (Stokes problem) and in structural engineering.

The matrix C is often a stabilisation term.
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Optimisation

Consider the Quadratic Program

min(1
2x
∗Hx + q∗x) st Bx = b,

i.e., we minimise over all x ∈ Cn for which Bx = b.

Here, H is a n× n positive definite matrix,

B is m× n with m ≤ n, q and b are given vectors.

At the solution x⋆, we have the KKT conditions:

Hx⋆ + B∗λ⋆ + q = 0 & Bx⋆ = b.

Here, λ⋆ is an m-vector of Lagrange multipliers.

This leads to a KKT system with C = 0.
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Computational Fluid Dynamics

∆ ≡ ∂2

∂x2 + ∂2

∂y2 is the Laplacian, ∇ ≡ ( ∂
∂x , ∂

∂x)T is the gradient,

∇∗ ≡ ( ∂
∂x , ∂

∂x) is the divergence. All operators here in 2-dim.

The 2-d Stokes equation

 −µ∆ ∇

∇∗ 0





 ~u

p





 −

~f

0




(& BC) governs the motion of a slow viscous flow: ~u = (u, v)T is

the velocity field, p the pressure, ~f is a known external force field

(as gravitation, etc.).

Discretisation leads to a KKT system with C = 0.
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Tykhonov regularisation

The Tychonov regularisation problem, here with A n× k,

argmin{‖Ax− b‖2 + τ2‖x‖22 | x ∈ Ck}

is equivalent to the KKT system

 I A

A∗ −τ2I





 y

x


 =


 0

−A∗b




Remarks. Here, H = I, B = A∗, C = τ2I.

Generally, C2(H) will be large.
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Tykhonov regularisation

The Tychonov regularisation problem, here with A n× k,

argmin{‖Ax− b‖2 + τ2‖x‖22 | x ∈ Ck}

is equivalent to the KKT system

 I A

A∗ −τ2I





 y

x


 =


 0

−A∗b




Remarks. In Tomography, noise in the solution is large in

directions of singular vectors with small singular values and are

to be supressed, while in CFD these singular vectors correspond

to ‘smooth’ components of the solution and have to be resolved.
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Tykhonov regularisation

The Tychonov regularisation problem, here with A n× k,

argmin{‖Ax− b‖2 + τ2‖x‖22 | x ∈ Ck}

is equivalent to the KKT system

 I A

A∗ −τ2I





 y

x


 =


 0

−A∗b




Remarks. The term −τ2I is added to enhance stability of the

problem.
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Preconditioning a KKT-system (1)

Many preconditioners have been developed that make use of the

fact that of the system matrix A a block LU-decomposition can

be made:

 H B∗

B −C


 =


 I O∗

BH−1 I





 H B∗

O −MS


 .

Here, MS ≡ BH−1B∗ + C.

−MS is the so-called Schur complement (of H in A).
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Preconditioning a KKT-system (1)

Many preconditioners have been developed that make use of the

fact that of the system matrix A a block LU-decomposition can

be made:

 H B∗

B −C


 =


 I O∗

BH−1 I





 H B∗

O −MS


 .

Here, MS ≡ BH−1B∗ + C.

−MS is the so-called Schur complement (of H in A).

Note that multiplication by MS (as required in a Krylov method

for solving Ms = r for s) involves solving a system for H.

May require Nesting methods.
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Preconditioning a KKT-system (2)
Idea (e.g., Elman, Silvester, Wathen): as (right) preconditioner,

take

P ≡


 H B∗

O −MS


 , AP−1 =


 I O∗

BH−1 I




has only eigenvalue 1 and GMRES is ready in 2 iterations.

BUT

• The preconditioner P is nonsymmetric (and the

eigensystem is extremely sensitive to perturbations).

• The Schur complement is too expensive to compute and

has to be approximated

• resulting in a ‘perturbed’ P.
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Preconditioning a KKT-system (3)
An SPD block-diagonal preconditioner:

P ≡


 H O∗

O MS




Can be used with MINRES (short recurrences).

If C = 0, then the preconditioned matrix has three distinct

eigenvalues ⇒ MINRES needs three iterations.

• The main question is again how to make a cheap

approximation to the Schur complement.

• The eigensystem is well conditioned (less sensitive to

perturbations).
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Concluding remarks

In the MATLAB assignment you will apply IDR(s) to KKT systems

from optimization.

You will:

• Construct an efficient KKT preconditioner

• Compare preconditioned IDR(s) with several other iterative

methods
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