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Ax = b Ax = λx

Subspace methods

Iterate until sufficiently accurate:

• Expansion. Expand the search subspace Vk.
Restart if dim(Vk) is too large.

• Extraction. Extract an appropriate approximate
solution (ϑ,u) from the search subspace.

Example. Krylov subspace methods

as GMRES, CG, Arnoldi, Lanczos: expansion by tk = Avk

Goal.

Expansion. ∠(x,Vk+1) ≪ ∠(x,Vk)

Extraction. Find u ∈ Vk s.t. ∠(x,u) ≈ ∠(x,Vk+1)

Program Lecture 12

Extracting eigenpairs

• Extraction

• Ritz values and harmonic Ritz values

Perturbed eigenproblems

• Errors and perturbations

• Miscellenuous results

• Accuracy eigenvalues versus eigenvectors

• Perturbed eigenpairs

• Forward error and residual

• Pseudo spectra

Extraction strategies

Let V ≡ span(V) be a search subspace.

Find u ≡ Vy ∈ V such that

• (Ritz–)Galerkin. Au− ϑu ⊥ V Ritz values

Orthogonal residuals Au− b ⊥ V for solving Ax = b

• Petrov–Galerkin. Au− ϑu ⊥ AV harmonic Ritz values.

Minimal residuals for solving Ax = b:

u = minargz‖Az− b‖2 ⇔ Au− b ⊥ AV

• Refined Ritz. For a given approximate eigenvalue ϑ,

u ≡ minargũ∈V‖Aũ− ϑũ‖2



Selection

Ritz–Galerkin and Petrov–Galerkin lead to

k Ritz pairs (ϑi,ui), Petrov pairs, respectively (i = 1, . . . , k).

Select the most ‘promising’ one as approximate eigenpair.

‘Most promising’:

1) Formulate a property that, among all eigenpairs,

characterizes the wanted eigenpair

Example. λ = max(Re(λj)), λ = min|λj|, λ = min|λj − τ |, . . . .

2) Select among all Ritz pairs the one with this property.

Example. ϑ = max(Re(ϑi)), ϑ = min|ϑi|, ϑ = min|ϑi − τ |, . . . .

Warning. May lead to a ‘wrong’ selection

One wrong selection = one ‘useless’ iteration step.

One wrong selection at restart may spoil convergence.

Ritz values

Proposition. u = Vy. Ritz values are Rayleigh quotients:

Au− ϑu ⊥ V ⇒ ϑ = ρ(u) ≡ u∗Au
u∗u .

Proposition. For a given approximate eigenvector u,

the Rayleigh quotient is best approximate eigenvalue, i.e.,

gives the smallest residual:

‖Au− ϑu‖2 ≤ ‖Au− ϑ̃u‖2 (ϑ̃ ∈ C) ⇒ ϑ = ρ(u).

Proof.

Au− ϑu ⊥ V ⇒ Au− ϑu ⊥ Vy = u ⇔ ϑ = ρ(u).

‖Au− ϑu‖2 ≤ ‖Au− ϑ̃u‖2 (ϑ̃ ∈ C) ⇔ Au− ϑu ⊥ u.

Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I,

where X = [x1, . . . ,xn], Λ = diag(λ1, . . . , λn):

• Axi = λixi (i = 1, . . . , n),

• the eigenvectors xi form an orthonormal basis of C
n.

Terminology. A has an orthonormal basis X of eigenvectors.

Note. A is normal iff A∗A = AA∗.

Hermitian and unitary matrices are normal.

A is normal ⇔

A has an orthonormal basis of eigenvectors.

Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

u approximate eigenvector, ‖u‖2 = 1, ϑ = ρ(u).

u =
∑

βixi with
∑

i |βi|
2 = 1,

ϑ = ρ(u) =
∑

i |βi|
2λi.

Proposition. If A is normal, then any Ritz value is

a convex mean (i.e., weighted averages) of eigenvalues.

Proposition. Ritz values form

• a safe selection for finding extremal eigenvalues,

• an unsafe selection for interior eigenvalues.



Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Note that A−1x = 1
λ x and 1

λ extremal in { 1
λi
}

With respect to W, find x̃ ≡ Wy st A−1x̃− µx̃ ⊥ W:

largest µ forms a safe selection ( ⇒ λ ≈ 1
µ, x̃ ≈ x)

Select W = AV. Then, with u ≡ Vy, we have x̃ = Au

A−1x̃− µx̃ ⊥ W ⇔ 1
µu−Au ⊥ AV

Proposition. Harmonic Ritz values form a safe selection

for finding eigenvalues in the interior (close to 0).

Harmonic Ritz values

For ease of discussion,

assume AX = XΛ with X∗X = I.

Assume • we are interested in eigenvalue λ closest to 0,
• 0 is in the interior of the spectrum, • λ 6= 0.

Strategy using harmonic Ritz values

1) Solve Au− ϑu ⊥ AV

2) Select ϑ closest to 0.

Proposition. If A is normal, then harmonic Ritz values are

harmonic means of the eigenvalues.
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A given n × n matrix, Ax = λx

In practice: Only approximate eigenpairs (ϑ,u) can be

computed, ϑ ∈ C, u a non-trivial n-vector.
{

λ − ϑ forward error in the appr. eigenvalue
∠(x,u) forward error in the appr. eigenvector

with residual r ≡ Au− ϑu.

A perturbation ∆ of A such that

(A − ∆)u = ϑu

is called a backward error of the appr. eigenpair.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A− ∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2
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Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A− ∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

For a given approximate eigenvector u,

we have the smallest residual

ϑ = argminµ‖Au− µu‖2 ⇔ Au− ϑu ⊥ u ⇔ ϑ =
u∗Au

u∗u

ρ(u) ≡ u∗Au
u∗u is the Rayleigh quotient (of u wrt A).

Note. If ϑ is the Rayleigh quotient, then r ⊥ u.
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Backward error

(ϑ,u) with ϑ ∈ C, u a non-trivial n-vector is an approximate

eigenpair if the residual r ≡ Au− ϑu is small.

Proposition. With ‖u‖2 = 1 and ∆ ≡ ru∗, we have

(A− ∆)u = ϑu & ‖∆‖2 ≤ ‖r‖2

• How do eigenpairs respond to perturbations?

• How to find (approximate) eigenpairs

(with small residuals).

Note. ∆ may be structured.

Here, we will pay special attention only to ∆ = ru∗,

i.e., structure from backward error. 13

Useful results, A∗ = A

Theorem [Courant–Fischer] If λ1 ≤ . . . ≤ λn, then

λi = min
W

max
w

ρ(w) (i = 1, . . . , n),

where the maximum is taken over all non-zero w ∈ W

and the minimum over all i-dimensional subspaces W.

Theorem [Cauchy interlace] The eigenvalues of A,

if A =

[
H b
b∗ α

]
, and H interlace:

λ1(A) ≤ λ1(H) ≤ λ2(A) ≤ λ2(H) ≤ . . . ≤ λn−1(H) ≤ λn(A)

Useful result for Hermitian problems using subspace methods, where,
per step, the projected matrix is extended with one row and one co-
lumn.
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Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate

then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of

order square of the error of the eigenvector.

Let A be Hermitian: A∗ = A.

Theorem. |ρ(u) − λ| ≤ sin2∠(x,u) · maxi |λi − λ|.

Theorem. If λ = λ1 < λi all i > 1, then

sin2∠(x1,u) ≤
ρ(u) − λ1

λ2 − λ1
.

Proofs. Write u = cx + sz, where z ⊥ x and ‖z‖2 = 1.

ρ(u) − λ = u∗(A− λI)u = s2z∗(A− λ)z

and ρ(z) = z∗Az is in the convex hull of {λj | j 6= j0}.

In case x = x1 we have that ρ(z) ≥ λ2 (Courant–Fischer).
15

Examples

[
0 τ
τ 0

]
,

[
0 1
τ 0

]
,

[
1 τ
τ −1

]
,

[
0 τ
0 0

]
,

[
τ 1
0 0

]
,



0 1 0
0 0 τ
τ 0 0




If λ = λi(0) is a non-simple eigenvalue of A(τ) at τ = 0,

then λi(τ) can be expressed as a Puiseux series

λi+m(τ) = λ +
∞∑

j=1

αj ωm ηj, (m = 0,1, . . . , p − 1, τ ≈ 0),

where η ≡ r1/p eiφ/p if τ = r eiφ, and ω ≡ e2πi/p, p ≤ mult(λ).
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Smooth perturbations

For τ ∈ C, consider A(τ) ≡ A− τE.

Then A(0) = A and τ  A(τ) is smooth.

Theorem.

• There are continuous functions τ  λj(τ) such that

λ1(τ), . . . , λn(τ) are the eigenvalues of A(τ)

counted according to multiplicity (τ ∈ C).

• If λj(0) is a simple eigenvalue of A(0), then

τ  λj(τ) is analytic for τ ≈ 0.

If, for some vector w, the associated eigenvector xj(τ) is

scaled st w∗xj(τ) = 1, then τ  xj(τ) is also analytic.

• If A(τ) is Hermitian (τ ∈ R), then there are eigenvalues

λj(τ) and eigenvectors xj(τ) that depend analytically on τ

(j = 1, . . . , n), τ ≈ 0. 17

Analysis strategy

To avoid technical details, we focuss on simple eigenvalues:

λ = λ(0) is an eigenvalue of A = A(0) of multiplicity 1.

x = x(0) is the associated normalised eigenvector.

We will identify convenient non-singular matrices V

(i.e., basis transforms) such that

V−1AV =

[
λ a∗

0 A1

]
and V−1EV =

[
ν f∗

r̃ E1

]

Special cases: • ǫE = ∆ and ǫ ≪ 1
• ǫE = ru∗ (rank 1)
• A normal (V∗V = I)
• A and E Hermitian

(V = X and V−1AV diagonal)
• Combinations
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The conditioning of an eigenvector

Ax = λx, λ simple, ‖x‖2 = 1

With Ã ≡ (I− xx∗)A(I− xx∗)

and taking the inverse of Ã− λI on x⊥, we have

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

tan∠(x,u) . ‖(Ã− λI)−1‖2 ‖∆‖2

Condx(A) ≡ ‖(Ã− λI)−1‖2

Interpretation. x1, . . . ,xn orthonormal (i.e., A normal) ⇒

‖(Ã− λI)−1‖2 = max

{
1

|λj − λ|
| λj 6= λ

}
=

1

γ

γ ≡ minλj 6=λ |λj − λ| is the spectral gap for λ. 19

The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ − λ| =
|y∗∆x|

|y∗x|
+ O(‖∆‖22) .

‖∆‖2
|y∗x|

Condλ(A) ≡
1

cos∠(x,y)

Theorem [Weyl] If A = A∗ and ∆ = ∆∗, then

|λi(A + ∆) − λi(A)| ≤ ‖∆‖2.

(y∗x = 1, O(τ2)-term is 0.) In this case, we even have

λ1(∆) ≤ λi(A + ∆) − λi(A) ≤ λn(∆)

Proof. Apply Courant–Fischer.
20



The conditioning of an eigenvalue

Ax = λx, y∗A = λy∗, λ simple, ‖x‖2 = ‖y‖2 = 1

Theorem. For some (ϑ,u) with (A−∆)u = ϑu, we have

|ϑ − λ| =
|y∗∆x|

|y∗x|
+ O(‖∆‖22) .

‖∆‖2
|y∗x|

Condλ(A) ≡
1

cos∠(x,y)

∆ = ru∗.Theorem [Bauer-Fike]. If A is normal, then

|ϑ − λ| ≤ ‖r‖2 for some λ ∈ Λ(A).

∆ = ru∗.Theorem. If A is normal and ϑ = ρ(u), then

‖r‖2 ≤ 1
2 γ ⇒ |ρ(u) − λ| ≤

‖r‖22
γ − ‖r‖

(with γ the spectral gap for λ; y∗∆x = u∗ru∗u = 0).
21

Quantifying perturbations

([
λ a∗

0 A1

]
− τ

[
ν f∗

r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

Note. ‖zτ‖2 is the tangent of the angle between the ei-

genvector (1,0T)T and the perturbed eigenvector (1,zT
τ )T.





λ − τν + a∗zτ − τf∗zτ = λ(τ)

(A1 − τE1 − λ(τ)I)zτ = τ r̃

Hence, for τ → 0,




zτ = τ (A1 − λI)−1r̃ + O(τ2)

λ − λ(τ) = τ [ν − a∗(A1 − λI)−1r̃] + O(τ2)

If a = 0, then

λ − λ(τ) = τν + τ2f∗(A1 − λI)−1r̃ + O(τ3)
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Quantifying perturbations

([
λ a∗

0 A1

]
− τ

[
ν f∗

r̃ E1

]) [
1
zτ

]
= λ(τ)

[
1
zτ

]
, (∗)

with λ(0) = λ and z0 = 0.

In our application, τ = ǫ, ǫE = ∆, and we can take

• V = X, the basis of eigenvectors  Bauer–Fike,

• V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis x⊥.

• V = [x,v2, . . . ,vn] with (v2, . . . ,vn) orthonormal basis y⊥.

Here y is the normalised left eigenvector for λ.

Estimates based on the asymptotic expression from the

preceding transparencies have to be multiplied by C2(V).
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Perturbed eigenvalues and pseudo-spectra

C2(X) is an bound for the conditioning of the eigenvalues.

However, • it assumes a basis of eigenvectors,
• it does not discriminate between well
conditioned and ill conditioned eigenvalues,
• it usually is not feasible to compute C2(X).

The condition number 1/ cos∠(y,x) of a simple eigenvalue
depends on the angle between its left and right eigenvector.
This number can be (accurately) computed for one or for
a few eigenvalues.
However, in general it is not feasible to compute these
numbers for all eigenvalues (for non-normal A).
Moreover, for n large, the collection of all these numbers is
too large to provide global information on the sensitivity of
all eigenvalues to perturbations.

The pseudo-spectrum offers a graphical way to access
the sensitivity of eigenvalues to perturbations. It gives
information on individual eigenvalues, regardless multiplicity. 24



Perturbed eigenvalues and pseudo-spectra

For ǫ ≥ 0, the ǫ-pseudo-spectrum Λǫ(A) is

Λǫ(A) ≡
⋃
{Λ(A + ∆) | ‖∆‖2 ≤ ǫ}

Proposition. ϑ ∈ Λǫ(A) ⇔ smallest singular value A− ϑI ≤ ǫ

⇔ ‖(A − ϑI)−1‖−1
2 ≤ ǫ.

Observations.

• If λ ∈ Λ(A) and |λ − ϑ| ≤ ǫ, then ϑ ∈ Λǫ(A).

• Often the pseudo-spectrum is much bigger than
the union of discs with radius ǫ around eigenvalues.

• Often the value of ǫ does not seem to play a significant role

(reason: ǫ
1
32 ≈ 1 for any ǫ ∈ [10−8,10+8]).

• In floating point arithmetic c ≡ Au is exactly
c = (A + ∆)u for some small perturbation ∆.

• If r = Au− ϑu ⇒ ϑ ∈ Λǫ(A) for ǫ ≥ ‖r‖2.
25


