Utrecht, 30 november 2016

Eigenvalues and Subspace methods
eigenveCtorS Iterate until sufficiently accurate:

e EXxpansion. Expand the search subspace V;.
Restart if dim(V,,) is too large.

e Extraction. Extract an appropriate approximate

solution from the search subspace.
N
- :;;\.g% Universiteit Utrecht Example. Krylov subspace methods
Gerard Sleijpen {{ﬂ»\\\ Department of Mathematics as GMRES, CG, Arnoldi, Lanczos: expansion by t, = Av,

Goal.
Expansion. Z(X,Vj41) < Z(X,Vg)
Extraction. Find u eV s.t. Z(X,u) =~ Z(X, V1)

http://www.staff.science.uu.nl/~sleij101/

Program Lecture 12 Extraction strategies

Extracting eigenpairs Let V =span(V) be a search subspace.
e Extraction

e Ritz values and harmonic Ritz values Find u = Vy €V such that

e (Ritz—)Galerkin. Au—Ju LV Ritz values
Perturbed eigenproblems

e Errors and perturbations e Petrov—Galerkin. Au —Ju L AV harmonic Ritz values.
e Miscellenuous results

e Accuracy eigenvalues versus eigenvectors

e Perturbed eigenpairs

e Forward error and residual e Refined Ritz. For a given approximate eigenvalue 4,

e Pseudo spectra u = minargg y||Au — Jul|2



Selection

Ritz—Galerkin and Petrov—Galerkin lead to
k Ritz pairs (9;, u;), Petrov pairs, respectively (i = 1,...,k).

Select the most ‘promising’ one as approximate eigenpair.

‘Most promising’:
1) Formulate a property that, among all eigenpairs,
characterizes the wanted eigenpair

Example. A = max(Re(};)), A = min|\;[, A =min[\; — 7], ....

2) Select among all Ritz pairs the one with this property.

Example. 9 = max(Re(¥;)), 9 = min|y;|, 9 = min|d; — 7|, ....

Warning. May lead to a ‘wrong’ selection

One wrong selection = one ‘useless’ iteration step.
One wrong selection at restart may spoil convergence.

Ritz values

For ease of discussion,
assume AX = XA with X*X =1,

where X =[X1,...,Xn], A =diag(\1,...,2\n):

o AX;, =\ X; (i=1,...,n),
e the eigenvectors x; form an orthonormal basis of C".

Terminology. A has an orthonormal basis X of eigenvectors.

Note. A is normal iff A*A = AA*.
Hermitian and unitary matrices are normal.

A is normal <
A has an orthonormal basis of eigenvectors.

Ritz values

Proposition. u = Vy. Ritz values are Rayleigh quotients:
Au—-dulV = 9=p(u)="AU

Proposition. For a given approximate eigenvector u,
the Rayleigh quotient is best approximate eigenvalue, i.e.,
gives the smallest residual:

|Au—dull < [Au—dul, (FeC) = &=pu).

Proof.
Au—J9ulV = Au—-9Jd9ulVy=u & 9=pu).

|[Au —dulj> < [[Au—duls (W €C) < Au—du lu.

Ritz values

For ease of discussion,
assume AX = XA with X*X =1.

u approximate eigenvector, ||ull =1, 4 = p(u).
u=3Y8x; with ¥;|5° =1,
9= p(u) = ;1811\

Proposition. If A is normal, then any Ritz value is
a convex mean (i.e., weighted averages) of eigenvalues.

Proposition. Ritz values form
e a safe selection for finding extremal eigenvalues,

e an unsafe selection for interior eigenvalues.



Harmonic Ritz values

For ease of discussion,
assume AX = XA  with X*X =1.

Assume e we are interested in eigenvalue \ closest to O,
e O is in the interior of the spectrum, e A # 0.

Note that A~lx ={x and { extremal in {A%-}
With respect to W, find X =Wy st A 1x—ux L W:
largest p forms a safe selection ( = A = % X & X)

Select W = AV. Then, with u = Vy, we have X = Au
AlX—uXx LW & %u—AuJ_AV
Proposition. Harmonic Ritz values form a safe selection

for finding eigenvalues in the interior (close to 0).

A given n X n matrix, AX=AX

In practice: Only approximate eigenpairs (1¥,u) can be
computed, ¥ € C, u a non-trivial n-vector.

A—19 forward error in the appr. eigenvalue
Z(x,u) forward error in the appr. eigenvector

with residual r = Au — Ju.

A perturbation A of A such that

(A — A)u=9Ju
is called a backward error of the appr. eigenpair.
Proposition. With [jul|> =1 and A = ru*, we have

(A-Du=du & [Al2<]r2

Harmonic Ritz values

For ease of discussion,
assume AX = XA  with X*X =1.

Assume e we are interested in eigenvalue \ closest to O,
e O is in the interior of the spectrum, e A % 0.
Strategy using harmonic Ritz values

1) Solve Au —du L AV
2) Select ¥ closest to 0.

Proposition. If A is normal, then harmonic Ritz values are
harmonic means of the eigenvalues.

Backward error

(¥,u) with ¥ € C, u a non-trivial n-vector is an approximate
eigenpair if the residual r = Au — Ju is small.

Proposition. With |u|lo =1 and A = ru*, we have

(A-AMu=du & [Alz2<]r]2

For a given approximate eigenvector u,

we have the smallest residual

u*Au
u*u

¥ =argmin,||Au—pully & Au—duLlu & 9=

p(u) = uljﬁ‘u is the Rayleigh quotient (of u wrt A).

Note. If ¥ is the Rayleigh quotient, then r L u.



Backward error

(¥,u) with 9 € C, u a non-trivial n-vector is an approximate
eigenpair if the residual r = Au — Ju is small.

Proposition. With |jul|z =1 and A = ru*, we have

(A-Du=du & [Alz2<]r2

e How do eigenpairs respond to perturbations?
e How to find (approximate) eigenpairs
(with small residuals).

Note. A may be structured.

Here, we will pay special attention only to A = ru*,
i.e., structure from backward error.

Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate
then the eigenvector.

If A is Hermitian, then the error in the eigenvalue is of
order square of the error of the eigenvector.

Let A be Hermitian: A* = A.
Theorem. [p(u) — )| < sin? Z(x,u) - max; |\; — A|.
Theorem. If A= X; <)\; alli>1, then

p(u) — A1

02
sin© Z(x1,u) < .
(xg,u) < —

Proofs. Write u = cx+ sz, where z L x and ||z|> = 1.

p(u) = XA =u*(A - \Du = s’z (A — \)z

and p(z) = z*Az is in the convex hull of {)\; | j # jo}.
In case x = x1 we have that p(z) > X\» (Courant—Fischer).

Useful results, A* = A

Theorem [Courant—Fischer] If \{ <... <)\, then
A; = minmax p(w o =1,...
i = min max p(w) (i=1,...,n),

where the maximum is taken over all non-zero w € W
and the minimum over all -dimensional subspaces W.

Theorem [Cauchy interlace] The eigenvalues of A,
a} , and H interlace:
A1(A) < A1(H) < 2(A) < Xo(H) <o <A m1(H) < M (A)

Useful result for Hermitian problems using subspace methods, where,
per step, the projected matrix is extended with one row and one co-
lumn.

Examples

[sel o)

If A = );(0) is a non-simple eigenvalue of A(7) at 7 =0,
then \;(7) can be expressed as a Puiseux series
OO .
/\i+m(7)=)\+2ajwmnj, (m=0,1,...,p— 1,7 = 0),
j=1

where n = r1/Pei®/P if 1 = rei®, and w = e2™/P, p < mult(N).



Smooth perturbations

For 7 € C, consider A(r)=A —TE.
Then A(0) =A and 7~ A(r) is smooth.

Theorem.
e There are continuous functions 7 ~ X;(7) such that

A1(7), ..., (1) are the eigenvalues of A(7)
counted according to multiplicity (7 € C).
e If A;(0) is a simple eigenvalue of A(0), then
T~ \j(7) is analytic for 7 =~ 0.

If, for some vector w, the associated eigenvector xj(r) is
scaled st w*x;(7) = 1, then 7 ~ x;(7) is also analytic.

e If A(7) is Hermitian (7 € R), then there are eigenvalues
A;(T) and eigenvectors x;(7) that depend analytically on 7
(j=1,...,n),7~0.

The conditioning of an eigenvector

Ax = XX, X simple, ||X|[ =1

With A= (I-xx*)AI— xx*)

and taking the inverse of A — I on xt

, we have
Theorem. For some (¥,u) with (A—A)u =Y u, we have

tanZ(x,u) < [[(A=AD)7L2 Al

~

Condx(A) = [|(A = D7 1»

Interpretation. xi,...,Xx, orthonormal (i.e., A normal) =
— 1 1
IR~ D)), = max{— A # A} _!
A=A ¥

Y= miny oy |Aj — Al is the spectral gap for \.

Analysis strategy

To avoid technical details, we focuss on simple eigenvalues:

A = X(0) is an eigenvalue of A = A(0) of multiplicity 1.
x = x(0) is the associated normalised eigenvector.

We will identify convenient non-singular matrices V
(i.e., basis transforms) such that

1 _ A a* 1 |V i
\V/ AV_{O Al} and V Ev_{F EJ
Special cases: ¢ cE=A and ek 1
e ¢cE =ru* (rank 1)
e A normal (V*V =1)
e A and E Hermitian

(V = X and V- 1AV diagonal)
e Combinations

The conditioning of an eigenvalue

Ax = X, Y*A =\y*, Asimple, [[X|o=|ylo=1

Theorem. For some (J,u) with (A—A)u =Jdu, we have

ly*AX| 2y < A2
9 — +o(Al3) £
9 A= B oAl £
Cond,(A) = !
A T cos Z(x,Y)

Theorem [Weyl] If A = A* and A = A*, then
IN(A 4+ A) = X(A)] < A2
(v*x =1, O(r2)-term is 0.) In this case, we even have

AM(A) SAA+ D) = X(A) < (D)

Proof. Apply Courant—Fischer.



The conditioning of an eigenvalue

AXx =X, Y*A =)y*, Xsimple, [[X]l2=]y|2=1

Theorem. For some (¢,u) with (A—A)u =Jdu, we have

ly*A x| 2y < 142
9 — N = +0o(Aal3) < =02
9 A =B o T oA £
Cond,(A) = 1
A T cosZ(Xx,Y)

A = ru”. Theorem [Bauer-Fike]. If A is normal, then
[9 — Al < ||| for some X € A(A).

A = ru*. Theorem. If A is normal and ¥ = p(u), then
I3

v = [Irll

(with ~ the spectral gap for \; y"Ax = u'ruu = 0).

Irl2 <3v = [p(u) =A<

Quantifying perturbations

({3 21] T {? ;D [zl] = (") [Zl] ()

with  A(0) =X and zg=0.

In our application, m = ¢, eE = A, and we can take

e V = X, the basis of eigenvectors ~~» Bauer—Fike,

e V =[X,Vo,...,Vvs] wWith (vo,...,v,) orthonormal basis x..

eV =[X,Vo,...,Vs] With (Vo,...,v,) orthonormal basis y-.

Here y is the normalised left eigenvector for A.

Estimates based on the asymptotic expression from the
preceding transparencies have to be multiplied by C5(V).

Quantifying perturbations

({3 f\l] 7 {? ;D [zl] = (") [Zl] ()

with  A(0) =X and zg=0.

Note. |z;||2 is the tangent of the angle between the ei-
genvector (1,07)T and the perturbed eigenvector (1,z1)T.

A—Tv+a*z; — 7z = \(7)
{ (A —7E; = AX(")Dz; = 7F
Hence, for 7 — 0O,
zr =7 (A1 — XD 4+ O(r2)
{ A= A1) =7[v—a* (A1 — A1 4+ O(r2)

If a=0, then
A= A7) =1v 4 2 (A1 = XD Ir + 0(3)

Perturbed eigenvalues and pseudo-spectra

C>(X) is an bound for the conditioning of the eigenvalues.

However, e it assumes a basis of eigenvectors,
e it does not discriminate between well
conditioned and ill conditioned eigenvalues,
e it usually is not feasible to compute C5(X).

The condition number 1/ cos Z(y,x) of a simple eigenvalue
depends on the angle between its left and right eigenvector.
This number can be (accurately) computed for one or for

a few eigenvalues.

However, in general it is not feasible to compute these
numbers for all eigenvalues (for non-normal A).

Moreover, for n large, the collection of all these numbers is
too large to provide global information on the sensitivity of
all eigenvalues to perturbations.

The pseudo-spectrum offers a graphical way to access
the sensitivity of eigenvalues to perturbations. It gives
information on individual eigenvalues, regardless multiplicity.



Perturbed eigenvalues and pseudo-spectra

For e > 0, the e-pseudo-spectrum A((A) is

Ne(A) = UJINA+ D) [ |All2 < e}

Proposition. ¥ € A¢((A) < smallest singular value A — 91 < ¢
& I(A-vD7 3t <e

Observations.

e If A € A(A) and |A —¥| < e, then 9 € A(A).

e Often the pseudo-spectrum is much bigger than
the union of discs with radius ¢ around eigenvalues.

e Often the value of ¢ does not seem to play a significant role
1
(reason: €32 ~ 1 for any ¢ € [10~8,10718]).

e In floating point arithmetic ¢ = Au is exactly
c = (A + A)u for some small perturbation A.

eIf r=Au—3du = Y A(A) for e>|r|>.



