

http://www.staff.science.uu.nl/~sleij101/

Subspace methods

Iterate until sufficiently accurate:

- Expansion. Expand the search subspace V_k.
 Restart if dim(V_k) is too large.
- Extraction. Extract an appropriate approximate solution from the search subspace.

Example. Krylov subspace methods as GMRES, CG, Arnoldi, Lanczos: expansion by $\mathbf{t}_k = \mathbf{A}\mathbf{v}_k$

Goal.

Expansion. $\angle(\mathbf{x}, \mathcal{V}_{k+1}) \ll \angle(\mathbf{x}, \mathcal{V}_k)$ **Extraction.** Find $\mathbf{u} \in \mathcal{V}_k$ s.t. $\angle(\mathbf{x}, \mathbf{u}) \approx \angle(\mathbf{x}, \mathcal{V}_{k+1})$

Program Lecture 12

Extracting eigenpairs

- Extraction
- Ritz values and harmonic Ritz values

Perturbed eigenproblems

- Errors and perturbations
- Miscellenuous results
- Accuracy eigenvalues versus eigenvectors
- Perturbed eigenpairs
- Forward error and residual
- Pseudo spectra

Extraction strategies

Let $\mathcal{V} \equiv \text{span}(\mathbf{V})$ be a search subspace.

Find $\mathbf{u} \equiv \mathbf{V} y \in \mathcal{V}$ such that

- (Ritz–)Galerkin. $Au \vartheta u \perp V$ Ritz values Orthogonal residuals $Au - b \perp V$ for solving Ax = b
- Petrov–Galerkin. Au ϑu ⊥ AV harmonic Ritz values.
 Minimal residuals for solving Ax = b: u = minarg_Z ||Az - b||₂ ⇔ Au - b ⊥ AV
- Refined Ritz. For a given approximate eigenvalue ϑ ,

 $\mathbf{u} \equiv \text{minarg}_{\widetilde{\mathbf{u}} \in \mathcal{V}} \|\mathbf{A}\widetilde{\mathbf{u}} - \vartheta\widetilde{\mathbf{u}}\|_2$

Selection

Ritz–Galerkin and Petrov–Galerkin lead to k Ritz pairs (ϑ_i , \mathbf{u}_i), Petrov pairs, respectively (i = 1, ..., k).

Select the most 'promising' one as approximate eigenpair.

'Most promising':

Formulate a property that, among all eigenpairs, characterizes the wanted eigenpair
 Example. λ = max(Re(λ_j)), λ = min|λ_j|, λ = min|λ_j - τ|,
 Select among all Ritz pairs the one with this property.
 Example. ϑ = max(Re(ϑ_i)), ϑ = min|ϑ_i|, ϑ = min|ϑ_i - τ|,

Warning. May lead to a 'wrong' selection

One wrong selection = one 'useless' iteration step. One wrong selection at restart may spoil convergence.

Ritz values

Proposition. $\mathbf{u} = \mathbf{V}y$. Ritz values are Rayleigh quotients:

$$\mathbf{A}\mathbf{u} - \vartheta\mathbf{u} \perp \mathbf{V} \quad \Rightarrow \quad \vartheta = \rho(\mathbf{u}) \equiv \frac{\mathbf{u}^* \mathbf{A} \mathbf{u}}{\mathbf{u}^* \mathbf{u}}.$$

Proposition. For a given approximate eigenvector \mathbf{u} , the Rayleigh quotient is best approximate eigenvalue, i.e., gives the smallest residual:

$$\|\mathbf{A}\mathbf{u} - \vartheta \mathbf{u}\|_2 \leq \|\mathbf{A}\mathbf{u} - \widetilde{\vartheta}\mathbf{u}\|_2 \quad (\widetilde{\vartheta} \in \mathbb{C}) \quad \Rightarrow \quad \vartheta = \rho(\mathbf{u}).$$

Proof.

$$\begin{aligned} \mathbf{A}\mathbf{u} - \vartheta \mathbf{u} \perp \mathbf{V} &\Rightarrow \mathbf{A}\mathbf{u} - \vartheta \mathbf{u} \perp \mathbf{V}y = \mathbf{u} \iff \vartheta = \rho(\mathbf{u}). \\ \|\mathbf{A}\mathbf{u} - \vartheta \mathbf{u}\|_2 \leq \|\mathbf{A}\mathbf{u} - \widetilde{\vartheta}\mathbf{u}\|_2 \ (\widetilde{\vartheta} \in \mathbb{C}) \iff \mathbf{A}\mathbf{u} - \vartheta \mathbf{u} \perp \mathbf{u}. \end{aligned}$$

Ritz values

For ease of discussion,

assume $AX = X\Lambda$ with $X^*X = I$,

where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n], \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_n):$

- $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$ $(i = 1, \dots, n),$
- the eigenvectors \mathbf{x}_i form an orthonormal basis of \mathbb{C}^n .

Terminology. A has an orthonormal basis X of eigenvectors.

Note. A is normal iff $A^*A = AA^*$.

Hermitian and unitary matrices are normal.

A is normal ⇔

A has an orthonormal basis of eigenvectors.

Ritz values

For ease of discussion,

assume $\mathbf{A}\mathbf{X} = \mathbf{X}\Lambda$ with $\mathbf{X}^*\mathbf{X} = \mathbf{I}$. **u** approximate eigenvector, $\|\mathbf{u}\|_2 = 1$, $\vartheta = \rho(\mathbf{u})$. $\mathbf{u} = \sum \beta_i \mathbf{x}_i$ with $\sum_i |\beta_i|^2 = 1$, $\vartheta = \rho(\mathbf{u}) = \sum_i |\beta_i|^2 \lambda_i$.

Proposition. If **A** is normal, then any Ritz value is a convex mean (i.e., weighted averages) of eigenvalues.

Proposition. Ritz values form

- a safe selection for finding extremal eigenvalues,
- an unsafe selection for interior eigenvalues.

Harmonic Ritz values

For ease of discussion,

assume $AX = X\Lambda$ with $X^*X = I$.

Assume • we are interested in eigenvalue λ closest to 0, • 0 is in the interior of the spectrum, • $\lambda \neq 0$.

Note that $\mathbf{A}^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$ and $\frac{1}{\lambda}$ extremal in $\{\frac{1}{\lambda_i}\}$

With respect to W, find $\tilde{\mathbf{x}} \equiv \mathbf{W}y$ st $\mathbf{A}^{-1}\tilde{\mathbf{x}} - \mu\tilde{\mathbf{x}} \perp \mathbf{W}$:

largest μ forms a safe selection ($\Rightarrow \lambda \approx \frac{1}{\mu}, \ \tilde{\mathbf{x}} \approx \mathbf{x}$)

Select W = AV. Then, with $u \equiv Vy$, we have $\tilde{x} = Au$

 $\mathbf{A}^{-1}\widetilde{\mathbf{x}} - \mu\widetilde{\mathbf{x}} \perp \mathbf{W} \quad \Leftrightarrow \quad \frac{1}{\mu}\mathbf{u} - \mathbf{A}\mathbf{u} \perp \mathbf{A}\mathbf{V}$

Proposition. Harmonic Ritz values form a safe selection for finding eigenvalues in the interior (close to 0).

Harmonic Ritz values

For ease of discussion,

assume $AX = X \land$ with $X^*X = I$.

Assume • we are interested in eigenvalue λ closest to 0, • 0 is in the interior of the spectrum, • $\lambda \neq 0$.

Strategy using harmonic Ritz values

1) Solve $\mathbf{A}\mathbf{u} - \vartheta \mathbf{u} \perp \mathbf{A}\mathbf{V}$

2) Select ϑ closest to 0.

Proposition. If **A** is normal, then harmonic Ritz values are **harmonic** means of the eigenvalues.

Backward error

 (ϑ, \mathbf{u}) with $\vartheta \in \mathbb{C}$, \mathbf{u} a non-trivial *n*-vector is an approximate eigenpair if the **residual** $\mathbf{r} \equiv \mathbf{A}\mathbf{u} - \vartheta\mathbf{u}$ is small.

Proposition. With $||\mathbf{u}||_2 = 1$ and $\Delta \equiv \mathbf{r}\mathbf{u}^*$, we have

 $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u} \quad \& \quad \|\Delta\|_2 \le \|\mathbf{r}\|_2$

For a given approximate eigenvector **u**, we have the smallest residual

$$\vartheta = \operatorname{argmin}_{\mu} \|\mathbf{A}\mathbf{u} - \mu\mathbf{u}\|_2 \iff \mathbf{A}\mathbf{u} - \vartheta\mathbf{u} \perp \mathbf{u} \iff \vartheta = \frac{\mathbf{u}^*\mathbf{A}\mathbf{u}}{\mathbf{u}^*\mathbf{u}}$$

 $\rho(\mathbf{u}) \equiv \frac{\mathbf{u}^*\mathbf{A}\mathbf{u}}{\mathbf{u}^*\mathbf{u}}$ is the **Rayleigh quotient** (of \mathbf{u} wrt \mathbf{A}).

Note. If ϑ is the Rayleigh quotient, then $\mathbf{r} \perp \mathbf{u}$.

A given $n \times n$ matrix, $Ax = \lambda x$

In practice: Only *approximate* eigenpairs (ϑ, \mathbf{u}) can be computed, $\vartheta \in \mathbb{C}$, **u** a non-trivial *n*-vector.

 $\begin{cases} \lambda - \vartheta & \text{forward error in the appr. eigenvalue} \\ \angle (\mathbf{x}, \mathbf{u}) & \text{forward error in the appr. eigenvector} \end{cases}$

with residual $\mathbf{r} \equiv \mathbf{A}\mathbf{u} - \vartheta \mathbf{u}$.

A perturbation Δ of **A** such that

 $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u}$

is called a **backward error** of the appr. eigenpair.

Proposition. With $\|\mathbf{u}\|_2 = 1$ and $\Delta \equiv \mathbf{ru}^*$, we have

 $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u} \quad \& \quad \|\Delta\|_2 \le \|\mathbf{r}\|_2$

Backward error

 (ϑ, \mathbf{u}) with $\vartheta \in \mathbb{C}$, \mathbf{u} a non-trivial *n*-vector is an approximate eigenpair if the **residual** $\mathbf{r} \equiv \mathbf{A}\mathbf{u} - \vartheta\mathbf{u}$ is small.

Proposition. With $\|\mathbf{u}\|_2 = 1$ and $\Delta \equiv \mathbf{ru}^*$, we have

$$(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u} \quad \& \quad \|\Delta\|_2 \le \|\mathbf{r}\|_2$$

• How do eigenpairs respond to perturbations?

• How to find (approximate) eigenpairs

(with small residuals).

Note. Δ may be structured.

Here, we will pay special attention only to $\Delta = \mathbf{ru}^*$, i.e., structure from backward error.

Accuracy eigenvalues versus eigenvectors

The approximate eigenvalue is usually much more accurate then the eigenvector.

If \mathbf{A} is Hermitian, then the error in the eigenvalue is of order square of the error of the eigenvector.

Let **A** be Hermitian: $\mathbf{A}^* = \mathbf{A}$.

Theorem.
$$|\rho(\mathbf{u}) - \lambda| \leq \sin^2 \angle (\mathbf{x}, \mathbf{u}) \cdot \max_i |\lambda_i - \lambda|$$
.

Theorem. If $\lambda = \lambda_1 < \lambda_i$ all i > 1, then

$$\sin^2 \angle (\mathbf{x}_1, \mathbf{u}) \leq \frac{\rho(\mathbf{u}) - \lambda_1}{\lambda_2 - \lambda_1}$$

Proofs. Write $\mathbf{u} = c\mathbf{x} + s\mathbf{z}$, where $\mathbf{z} \perp \mathbf{x}$ and $\|\mathbf{z}\|_2 = 1$.

$$\rho(\mathbf{u}) - \lambda = \mathbf{u}^* (\mathbf{A} - \lambda \mathbf{I}) \mathbf{u} = s^2 \mathbf{z}^* (\mathbf{A} - \lambda) \mathbf{z}$$

and $\rho(\mathbf{z}) = \mathbf{z}^* \mathbf{A} \mathbf{z}$ is in the convex hull of $\{\lambda_j \mid j \neq j_0\}$. In case $\mathbf{x} = \mathbf{x}_1$ we have that $\rho(\mathbf{z}) \geq \lambda_2$ (Courant–Fischer).

Useful results, $A^* = A$

Theorem [Courant–Fischer] If $\lambda_1 \leq \ldots \leq \lambda_n$, then

$$\lambda_i = \min_{\mathcal{W}} \max_{\mathbf{W}} \rho(\mathbf{W}) \qquad (i = 1, \dots, n),$$

where the maximum is taken over all non-zero $\mathbf{w} \in \mathcal{W}$ and the minimum over all *i*-dimensional subspaces \mathcal{W} .

Theorem [Cauchy interlace] The eigenvalues of **A**, if $\mathbf{A} = \begin{bmatrix} \mathbf{H} & \mathbf{b} \\ \mathbf{b}^* & \alpha \end{bmatrix}$, and **H** interlace: $\lambda_1(\mathbf{A}) \le \lambda_1(\mathbf{H}) \le \lambda_2(\mathbf{A}) \le \lambda_2(\mathbf{H}) \le \ldots \le \lambda_{n-1}(\mathbf{H}) \le \lambda_n(\mathbf{A})$

Useful result for Hermitian problems using subspace methods, where, per step, the projected matrix is extended with one row and one column.

Examples

$$\begin{bmatrix} 0 & \tau \\ \tau & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ \tau & 0 \end{bmatrix}, \begin{bmatrix} 1 & \tau \\ \tau & -1 \end{bmatrix}, \begin{bmatrix} 0 & \tau \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \tau & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & \tau \\ \tau & 0 & 0 \end{bmatrix}$$

If $\lambda = \lambda_i(0)$ is a non-simple eigenvalue of $\mathbf{A}(\tau)$ at $\tau = 0$, then $\lambda_i(\tau)$ can be expressed as a **Puiseux** series

$$\begin{split} \lambda_{i+m}(\tau) &= \lambda + \sum_{j=1}^{\infty} \alpha_j \, \omega^m \, \eta^j, \quad (m = 0, 1, \dots, p-1, \tau \approx 0), \\ \text{where } \eta &\equiv r^{1/p} \, e^{i\phi/p} \text{ if } \tau = r \, e^{i\phi}, \text{ and } \omega \equiv e^{2\pi i/p}, \ p \leq \text{mult}(\lambda) \end{split}$$

Smooth perturbations

For $\tau \in \mathbb{C}$, consider $\mathbf{A}(\tau) \equiv \mathbf{A} - \tau \mathbf{E}$.

Then $\mathbf{A}(0) = \mathbf{A}$ and $\tau \rightsquigarrow \mathbf{A}(\tau)$ is smooth.

Theorem.

• There are continuous functions $\tau \rightsquigarrow \lambda_i(\tau)$ such that

 $\lambda_1(\tau), \ldots, \lambda_n(\tau)$ are the eigenvalues of $\mathbf{A}(\tau)$

counted according to multiplicity $(\tau \in \mathbb{C})$.

• If $\lambda_i(0)$ is a simple eigenvalue of **A**(0), then

 $\tau \rightsquigarrow \lambda_i(\tau)$ is analytic for $\tau \approx 0$.

If, for some vector **w**, the associated eigenvector $\mathbf{x}_i(\tau)$ is scaled st $\mathbf{w}^* \mathbf{x}_j(\tau) = 1$, then $\tau \rightsquigarrow \mathbf{x}_j(\tau)$ is also analytic.

• If $\mathbf{A}(\tau)$ is Hermitian $(\tau \in \mathbb{R})$, then there are eigenvalues $\lambda_i(\tau)$ and eigenvectors $\mathbf{x}_i(\tau)$ that depend analytically on τ $(j = 1, \ldots, n), \tau \approx 0.$

The conditioning of an eigenvector

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \ \lambda \text{ simple}, \ \|\mathbf{x}\|_2 = 1$

With

and taking the inverse of $\widetilde{\mathbf{A}} - \lambda \mathbf{I}$ on \mathbf{x}^{\perp} , we have

Theorem. For some (ϑ, \mathbf{u}) with $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u}$, we have

 $\widetilde{\mathbf{A}} \equiv (\mathbf{I} - \mathbf{x} \, \mathbf{x}^*) \mathbf{A} (\mathbf{I} - \mathbf{x} \, \mathbf{x}^*)$

$$\tan \angle (\mathbf{x}, \mathbf{u}) \lesssim \| (\widetilde{\mathbf{A}} - \lambda \mathbf{I})^{-1} \|_2 \| \Delta \|_2$$
$$Cond_{\mathbf{X}}(\mathbf{A}) \equiv \| (\widetilde{\mathbf{A}} - \lambda \mathbf{I})^{-1} \|_2$$

Interpretation. $\mathbf{x}_1, \ldots, \mathbf{x}_n$ orthonormal (i.e., **A** normal) \Rightarrow

$$\|(\widetilde{\mathbf{A}} - \lambda \mathbf{I})^{-1}\|_2 = \max\left\{\frac{1}{|\lambda_j - \lambda|} \mid \lambda_j \neq \lambda\right\} = \frac{1}{\gamma}$$

 $\gamma \equiv \min_{\lambda_i \neq \lambda} |\lambda_i - \lambda|$ is the **spectral gap** for λ .

Analysis strategy

To avoid technical details, we focuse on **simple** eigenvalues: $\lambda = \lambda(0)$ is an eigenvalue of $\mathbf{A} = \mathbf{A}(0)$ of multiplicity 1. $\mathbf{x} = \mathbf{x}(0)$ is the associated normalised eigenvector.

We will identify convenient non-singular matrices V(i.e., basis transforms) such that

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} \lambda & \mathbf{a}^* \\ \mathbf{0} & \mathbf{A}_1 \end{bmatrix} \text{ and } \mathbf{V}^{-1}\mathbf{E}\mathbf{V} = \begin{bmatrix} \nu & \mathbf{f}^* \\ \tilde{\mathbf{r}} & \mathbf{E}_1 \end{bmatrix}$$

Special cases:

$$\bullet \ \epsilon \, {\bf E} = \Delta \mbox{ and } \epsilon \ll 1$$

• A and E Hermitian

$$(\mathbf{V} = \mathbf{X} \text{ and } \mathbf{V}^{-1}\mathbf{A}\mathbf{V} \text{ diagonal})$$

• Combinations

The conditioning of an eigenvalue

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \ \mathbf{y}^* \mathbf{A} = \lambda \mathbf{y}^*, \ \lambda \text{ simple, } \|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$$

Theorem. For some (ϑ, \mathbf{u}) with $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u}$, we have

$$|\vartheta - \lambda| = \frac{|\mathbf{y}^* \Delta \mathbf{x}|}{|\mathbf{y}^* \mathbf{x}|} + \mathcal{O}(\|\Delta\|_2^2) \lesssim \frac{\|\Delta\|_2}{|\mathbf{y}^* \mathbf{x}|}$$
$$Cond_{\lambda}(\mathbf{A}) \equiv \frac{1}{\cos \angle(\mathbf{x}, \mathbf{y})}$$

Theorem [Weyl] If $\mathbf{A} = \mathbf{A}^*$ and $\Delta = \Delta^*$, then $|\lambda_i(\mathbf{A} + \Delta) - \lambda_i(\mathbf{A})| < \|\Delta\|_2.$

 $(\mathbf{y}^*\mathbf{x} = 1, \mathcal{O}(\tau^2)$ -term is 0.) In this case, we even have

$$\lambda_1(\Delta) \leq \lambda_i(\mathbf{A} + \Delta) - \lambda_i(\mathbf{A}) \leq \lambda_n(\Delta)$$

Proof. Apply Courant–Fischer.

The conditioning of an eigenvalue

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \ \mathbf{y}^* \mathbf{A} = \lambda \mathbf{y}^*, \ \lambda \text{ simple, } \|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$$

Theorem. For some (ϑ, \mathbf{u}) with $(\mathbf{A} - \Delta)\mathbf{u} = \vartheta \mathbf{u}$, we have

$$|\vartheta - \lambda| = \frac{|\mathbf{y}^* \Delta \mathbf{x}|}{|\mathbf{y}^* \mathbf{x}|} + \mathcal{O}(||\Delta||_2^2) \lesssim \frac{||\Delta||_2}{|\mathbf{y}^* \mathbf{x}|}$$
$$\boxed{\operatorname{Cond}_{\lambda}(\mathbf{A}) \equiv \frac{1}{\cos \angle(\mathbf{x}, \mathbf{y})}}$$

 $\Delta = \mathbf{ru}^*. \text{$ **Theorem [Bauer-Fike].**If**A** $is normal, then <math display="block">|\vartheta - \lambda| \leq ||\mathbf{r}||_2 \text{ for some } \lambda \in \Lambda(\mathbf{A}).$

 $\triangle = \mathbf{r}\mathbf{u}^*$. Theorem. If **A** is normal and $\vartheta = \rho(\mathbf{u})$, then

$$\|\mathbf{r}\|_2 \leq \frac{1}{2}\gamma \quad \Rightarrow \quad |\rho(\mathbf{u}) - \lambda| \leq \frac{\|\mathbf{r}\|_2^2}{\gamma - \|\mathbf{r}\|}$$

(with γ the spectral gap for λ ; $\mathbf{y}^* \Delta \mathbf{x} = \mathbf{u}^* \mathbf{r} \mathbf{u}^* \mathbf{u} = 0$).

Quantifying perturbations

$$\left(\begin{bmatrix} \lambda & \mathbf{a}^* \\ \mathbf{0} & \mathbf{A}_1 \end{bmatrix} - \tau \begin{bmatrix} \nu & \mathbf{f}^* \\ \tilde{\mathbf{r}} & \mathbf{E}_1 \end{bmatrix} \right) \begin{bmatrix} 1 \\ \mathbf{z}_\tau \end{bmatrix} = \lambda(\tau) \begin{bmatrix} 1 \\ \mathbf{z}_\tau \end{bmatrix}, \quad (*)$$

with $\lambda(0) = \lambda$ and $\mathbf{z}_0 = \mathbf{0}$.

In our application, $\tau = \epsilon$, $\epsilon \mathbf{E} = \Delta$, and we can take

• V = X, the basis of eigenvectors \rightsquigarrow Bauer–Fike,

- $\mathbf{V} = [\mathbf{x}, \mathbf{v}_2, \dots, \mathbf{v}_n]$ with $(\mathbf{v}_2, \dots, \mathbf{v}_n)$ orthonormal basis \mathbf{x}^{\perp} .
- $\mathbf{V} = [\mathbf{x}, \mathbf{v}_2, \dots, \mathbf{v}_n]$ with $(\mathbf{v}_2, \dots, \mathbf{v}_n)$ orthonormal basis \mathbf{y}^{\perp} . Here \mathbf{y} is the normalised left eigenvector for λ .

Estimates based on the asymptotic expression from the preceding transparencies have to be multiplied by $C_2(\mathbf{V})$.

Quantifying perturbations

$$\left(\begin{bmatrix} \lambda & \mathbf{a}^* \\ \mathbf{0} & \mathbf{A}_1 \end{bmatrix} - \tau \begin{bmatrix} \nu & \mathbf{f}^* \\ \tilde{\mathbf{r}} & \mathbf{E}_1 \end{bmatrix} \right) \begin{bmatrix} \mathbf{1} \\ \mathbf{z}_\tau \end{bmatrix} = \lambda(\tau) \begin{bmatrix} \mathbf{1} \\ \mathbf{z}_\tau \end{bmatrix}, \quad (*)$$

with $\lambda(0) = \lambda$ and $\mathbf{z}_0 = \mathbf{0}$.

Note. $\|\mathbf{z}_{\tau}\|_2$ is the tangent of the angle between the eigenvector $(1, \mathbf{0}^{\mathsf{T}})^{\mathsf{T}}$ and the perturbed eigenvector $(1, \mathbf{z}_{\tau}^{\mathsf{T}})^{\mathsf{T}}$.

$$\begin{cases} \lambda - \tau \nu + \mathbf{a}^* \mathbf{z}_{\tau} - \tau \mathbf{f}^* \mathbf{z}_{\tau} = \lambda(\tau) \\ (\mathbf{A}_1 - \tau \mathbf{E}_1 - \lambda(\tau) \mathbf{I}) \mathbf{z}_{\tau} = \tau \tilde{\mathbf{r}} \end{cases}$$

Hence, for
$$\tau \rightarrow 0$$

$$\begin{cases} \mathbf{z}_{\tau} = \tau \left(\mathbf{A}_{1} - \lambda \mathbf{I} \right)^{-1} \tilde{\mathbf{r}} + \mathcal{O}(\tau^{2}) \\ \lambda - \lambda(\tau) = \tau \left[\nu - \mathbf{a}^{*} (\mathbf{A}_{1} - \lambda \mathbf{I})^{-1} \tilde{\mathbf{r}} \right] + \mathcal{O}(\tau^{2}) \end{cases}$$

If
$$\mathbf{a} = \mathbf{0}$$
, then
 $\lambda - \lambda(\tau) = \tau \nu + \tau^2 \mathbf{f}^* (\mathbf{A}_1 - \lambda \mathbf{I})^{-1} \tilde{\mathbf{r}} + \mathcal{O}(\tau^3)$

Perturbed eigenvalues and pseudo-spectra

 $\mathcal{C}_2(\mathbf{X})$ is an bound for the conditioning of the eigenvalues.

- However, it assumes a basis of eigenvectors,
 - it does not discriminate between well conditioned and ill conditioned eigenvalues,
 - it usually is not feasible to compute $C_2(\mathbf{X})$.

The condition number $1/\cos \angle(\mathbf{y}, \mathbf{x})$ of a simple eigenvalue depends on the angle between its left and right eigenvector. This number can be (accurately) computed for one or for a few eigenvalues.

However, in general it is not feasible to compute these numbers for all eigenvalues (for non-normal \mathbf{A}). Moreover, for *n* large, the collection of all these numbers is too large to provide global information on the sensitivity of all eigenvalues to perturbations.

The **pseudo-spectrum** offers a graphical way to access the sensitivity of eigenvalues to perturbations. It gives information on individual eigenvalues, regardless multiplicity.

Perturbed eigenvalues and pseudo-spectra

For $\epsilon \geq 0$, the ϵ -**pseudo-spectrum** $\Lambda_{\epsilon}(\mathbf{A})$ is

$$\Lambda_{\epsilon}(\mathbf{A}) \equiv \bigcup \{ \Lambda(\mathbf{A} + \Delta) \mid \|\Delta\|_2 \leq \epsilon \}$$

Proposition. $\vartheta \in \Lambda_{\epsilon}(\mathbf{A}) \Leftrightarrow$ smallest singular value $\mathbf{A} - \vartheta \mathbf{I} \leq \epsilon$ $\Leftrightarrow \|(\mathbf{A} - \vartheta \mathbf{I})^{-1}\|_2^{-1} \leq \epsilon.$

Observations.

- If $\lambda \in \Lambda(\mathbf{A})$ and $|\lambda \vartheta| \leq \epsilon$, then $\vartheta \in \Lambda_{\epsilon}(\mathbf{A})$.
- Often the pseudo-spectrum is much bigger than the union of discs with radius ϵ around eigenvalues.
- Often the value of ϵ does not seem to play a significant role (reason: $\epsilon^{\frac{1}{32}} \approx 1$ for any $\epsilon \in [10^{-8}, 10^{+8}]).$
- In floating point arithmetic $\mathbf{c} \equiv \mathbf{A}\mathbf{u}$ is exactly $\mathbf{c} = (\mathbf{A} + \Delta)\mathbf{u}$ for some small perturbation Δ .
- If $\mathbf{r} = \mathbf{A}\mathbf{u} \vartheta \mathbf{u} \Rightarrow \vartheta \in \Lambda_{\epsilon}(\mathbf{A})$ for $\epsilon \geq \|\mathbf{r}\|_2$.