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Ax = b Ax = λx

Subspace methods

Iterate until sufficiently accurate:

• Expansion. Expand the search subspace Vk.
Restart if dim(Vk) is too large.

• Extraction. Extract an appropriate approximate
solution (ϑ,u) from the search subspace.

Example. Krylov subspace methods

as GMRES, CG, Arnoldi, Lanczos: expansion by tk = Avk

Goal.

Expansion. ∠(x,Vk+1) ≪ ∠(x,Vk)

Extraction. Find u = Vk yk s.t. ∠(x,u) ≈ ∠(x,Vk+1)

Program Lecture 13

• Expansion

◦ Krylov subspace approach

Lanczos, Arnoldi, Shift and Invert Arnoldi

◦ Convergence

◦ Accelerated Rayleigh Quotient Iteration

Rational Krylov Sequence method

◦ Optimal expansion

Jacobi-Davidson

• Restart

LOCG, Implicitly Restarted Arnoldi Method

• Deflation

Lanczos

A = A∗ ⇒ AVk = Vk+1Tk,

Vk = [v1, . . . ,vk] orthonormal, Tk is (k + 1)× k tridiagonal.

If only eigenvalues of A are to be computed (no eigenvec-

tors), then there is no need to store the “old” vj. Mo-

reover, eigenvalues of symmetric tridiagonal matrices as

Tk can fairly efficiently be computed (QR-alg., Sylvester’s

law, Sturm sequences, Divide and Conquer). This makes

Lanczos very suitable for searching very high dimensional

Krylov subspaces (low costs in flops and in storage) and

finding many eigenvalues.

Eigenvectors can also be computed with one (or a few)

steps of Shift and Invert with a detected eigenvalue as

shift.



Lanczos in floating point arithmetic

Sensitive to errors Unstability is stable

The Lanczos vectors vj loose orthogonality upon conver-

gence:

Theorem. If sin∠(x,uk) is of order machine precision (mp),

then ∠(vk, span(v1, . . . ,vk−1)) is of order mp.

Effect: This leads to ghost eigenvalues (eigenvalues of

Tk that result from floating point errors).

Surprise. Ghost eigenvalues converge to eigenvalues of A.

Due to rounding errors Lanczos produces clusters of ap-

proximate eigenvalues around true eigenvalues.

Detecting ghost eigenvalues. Let T ′
k be Tk from which

the first row and first column have been removed. If ϑ is an

eigenvalue of both Tk and T ′
k, then ϑ is a ghost eigenvalue.

Lanczos in floating point arithmetic

Strategies to deal with the sensitivity to errors

1) Detect ghost eigenvalues.

For the other strategies the vj have to be stored.

2) Full reorthogonalisation.

(Like Arnoldi, but use Tk for computing eigenvalues)
(expensive expans., expensive stor., cheap extrac.)

3) Selective reorthogonalisation:

Orthogonalise vk and vk+1 against all v1, . . . ,vk−1
iff the loss of orthogonality is of order

√
u

with u machine precision.

There are cheap recurrences to estimate
Ek ≡ Ik −V∗

k Vk, i.e., the loss of ortogonality.

(cheaper expans., expensive stor., cheap extrac.)

Krylov subspace expansion

The columns of Vk = [v1, . . . ,vk] form a (orthonormal)

Krylov basis: then t = Avk is an expansion vector.

Examples. For Ax = b

• GMRES (minimal residual extraction),

• CG for Ax = b if A∗ = A (Galerkin extraction).

For Ax = λx

• Arnoldi ((harmonic) Ritz extraction).

Lanczos in case A is Hermitian.

• Shift and Invert Arnoldi ((harmonic) Ritz extraction):

t = (A− τ I)−1vk to generate a basis

for the search subspace Kk((A − τ I)−1,v1).

Recall that SI expansion amplifies components of
eigenvectors with eigenvalue close to the target τ .

Convergence without subspace accelaration

Shift & Invert uk+1 = (A − τ I)−1uk. (s&i)

Then tan∠(x,uk) ∼
(

λ − τ

λj − τ

)k

,

where λ = λj0, x = xj0, and |λj0 − τ | < |λj − τ | all j 6= j0.

Rayleigh Quotient Iteration

uk+1 = (A − ρk I)−1uk, where ρk ≡ ρ(uk).

A∗ = A, γ ≡ minλj 6=λ |λ − λj|,

αk ≡ |ρk − λ|
γ − |ρk − λ|, ζk ≡ tan∠(uk,x).

Then, ζk+1 ≤ αk ζk, αk+1 ≤ (αk ζk)
2.

⇒ asymptotic cubic convergence (as soon as αk0
ζk0

< 1).



Accelerated RQI.

Expand the search subspace V = span(V) with

t = (A− ρ I)−1u, (rqi)

where ρ = u∗Au and u approximate eigenvector in V.

+ Fast convergence (RQI)

Search subspace is not a Krylov subspace.

[Ruhe 82]Rational Krylov Sequence method allows

efficient computations.

Computational costs

S& I: Solving (A− τ I)uk = uk+1 at one LU-dec. in total.

RQI: Solving (A− ρk I)uk = uk+1 at one LU-dec. each step.

May not be feasible if n large.

Optimal expansion

Ax = b.

If xk = Vky is an approximate solution, then the

solution t of At = rk ≡ b−Axk is the correction of xk.

Expansion: solve (approximately) At = rk for t

 flexible version of GCR

Ax = λx.

If (ϑ ≡ ρ(u),u) is an approximate eigenpair, r ≡ Au− ϑu,

then the solution t ⊥ u of

(I− uu∗)(A− ϑI)(I − uu∗)t = −r

is the (first order wrt ‖r‖2) correction of u.

[Sleijpen vd Vorst 95] Jacobi-Davidson
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(Approximately) solving for t ⊥ u

(I− uu∗)(A − ϑI)(I − uu∗)t = −r (jd)

If solved exactly ⇒ asymptotic quadratic convergence

Note. If ϑ ≈ λ,

then the system (A− ϑI)t = u is ill conditioned.

Whereas, if λ is simple and (ϑ,u) ≈ (λ, x), then the system

(jd) as a system in the space u⊥ is well-conditioned.

Krylov subspace solvers with initial guess x0 = 0 are suit-

able for solving in u⊥.

Better conditioning  

• faster convergence of the linear solver
(deflation of small eigenvalue),

• more stability. 11

(Approximately) solving for t ⊥ u

(I− uu∗)(A − ϑI)(I − uu∗)t = −r (jd)

If solved exactly ⇒ asymptotic quadratic convergence

Solve approximately with preconditioned iterative linear sol-

ver as GMRES (or MINRES of A∗ = A).

Often a fixed modest number of steps already lead to fast

convergence.

Issue. How many steps are optimal?

Many steps in the inner loop (to solve (jd))  

high quality search subspace of low dimension.

Optimal strategy is available in case A = A∗.

Effective strategy (optimal?) is available for the general

case.
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(Approximately) solving for t ⊥ u

(I− uu∗)(A − ϑI)(I − uu∗)t = −r (jd)

If solved exactly ⇒ asymptotic quadratic convergence

Approximate solves. M ≈ A− ϑI

t ⊥ u such that (I− uu∗)M(I− uu∗)t = −r

⇔ t = −
(
I− wu∗

u∗w

)
M−1r, where w ≡ M−1u.

Expansion by t = −M−1r (d) Davidson ’75

Expansion by t = −
(
I− wu∗

u∗w

)
M−1r (o) Olsen ’93
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(Approximately) solving for t ⊥ u

(I− uu∗)(A − ϑI)(I − uu∗)t = −r (jd)

If solved exactly ⇒ asymptotic quadratic convergence

Approximate solves. M ≈ A− ϑI

t ⊥ u such that (I− uu∗)M(I− uu∗)t = −r

⇔ t = −
(
I− wu∗

u∗w

)
M−1r, where w ≡ M−1u.

Interpretation. If M = A− ϑI, then u = M−1r. Hence,

effective expansion with w = M−1u: RQI expansion.

+ expansion equation (jd) better conditioned then (rqi).
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(Approximately) solving for t ⊥ u

(I− uu∗)(A − ϑI)(I − uu∗)t = −r (jd)

If solved exactly ⇒ asymptotic quadratic convergence

Approximate solves. M ≈ A− ϑI

Preconditioned Krylov requires mult. by
(
I− wu∗

u∗w

)
M−1(A− ϑI)

with righthand side vector
(
I− wu∗

u∗w

)
M−1r.

Additional costs for solving (jd).

(additional to RQI for solving (A− ϑI)t = u)

Per step mult. by I− wu∗
u∗w : 1 AXPY, 1 DOT per step.

Per Krylov run for solving (jd): 1 solve of Mw = u.

15

Jacobi–Davidson

• Subspace method

+ Accelerated convergence

+ Steering possibilities

+ variety of selection methods

More costly steps

• Expansion vectors from JD equation

+ Locally optimal expansion (with exact solves)

+ Asymptotic quadratic convergence possible
(with exact solves)

+ Well-conditioned (when λ is simple)

+ Fast convergence with moderate accurate solves

+ Preconditioners can be exploited

Additional costs per step
16



For ease of discussion . . .

Recall that harmonic Ritz vectors are better suited for se-

lecting approximate eigenpairs than Ritz vectors. In our

discussion below, we refer to Ritz pairs, but the discussion

can be extended to harmonic Ritz pairs.

For stability we need a well-conditioned bases of the search

subspace. To ease discussion, we assume the basis v1, . . . ,vk

to be orthonormal and the expansion vector t is to be or-

thonormalised against v1, . . . ,vk to obtain the next basis

vector vk+1. However, it may be more efficient to have

orthonormality with respect to other non-standard inner

product (as the A-, or M-inner product, . . . ) or to have

bi-orthogonality.

17

The most promising Ritz vectors

If Vk = [v1, . . . , vk] spans the search subspace Vk,

then we can compute k Ritz pairs (ϑ1,u1), . . . , (ϑk,uk),

i.e., uj ∈ Vk and ϑj ∈ C such that

Auj − ϑj uj ⊥ Vk (j = 1, . . . , k)

or, equivalently, with Hk ≡ V∗
k AVk,

uj = Vk yj such that Hk yk = ϑj yk (j = 1, . . . , k).

The ℓ most promising Ritz vectors u1, . . . ,uℓ are the ones

with Ritz value that ‘best’ have the property that we want

our wanted eigenvalue of A to have.

Examples. • Re(ϑj) ≥ Re(ϑj+1) (j = 1, . . . , k − 1)

if the eigenvalue of A with largest real part is wanted.

• |ϑj − τ | ≤ |ϑj+1 − τ | (j = 1, . . . , k − 1)

if the eigenvalue of A closest to some target τ ∈ C is wanted.
18

The most promising Ritz vectors

If Vk = [v1, . . . , vk] spans the search subspace Vk,

then we can compute k Ritz pairs (ϑ1,u1), . . . , (ϑk,uk).

For stability, we rather compute the Schur decomposition

Hk = USU∗

of Hk rather than the eigenvector decomposition:

here U is k × k unitary and S is k × k upper triangular.

A Schur decomposition can be re-ordered (using unitary

transforms, Givens rotations) such that the most promising

Ritz values are the top diagonal entries of ‘new’ S:

Theorem. There is a Schur decomposition of Hk such

that the diagonal elements of S appear in prescribed order.

Assumption. u1, . . . ,uℓ are the most promising Ritz vec-

tors and span(u1, . . . ,uℓ) = span(Vk U( : ,1:ℓ)). 19

Restart

dim(V) = k is too high, k = kmax ⇒ restart to limit

• high memory demands (to store Vk+1 = [v1, . . . ,vk,vk+1]),

• high computational costs (to orthonormalise t against Vk).

Simple restart. Take Ṽ = span(u1), i.e., Ṽ1 = [u1].

Thick resart. Take Ṽ = span(u1, . . . ,uℓ) with ℓ = kmin,

i.e., Ṽℓ = Vk U( : ,1:ℓ).

Why thick restart? i.e., why ℓ = kmin > 1?

• to (partially) maintain super linear convergence

• to maintain a space that provids a good initial guess when
the search to a next eigenpair is started.

Explanation. The second Ritz pair is likely to converge to the second
eigenpair (recall the convergence proof of the power method). The
main component of the error in u1 is probably in the direction of u2,
etc.

20



Restart

dim(V) = k is too high, k = kmax ⇒ restart to limit

• high memory demands (to store Vk+1 = [v1, . . . ,vk,vk+1]),

• high computational costs (to orthonormalise t against Vk).

Simple restart. Take Ṽ = span(u1), i.e., Ṽ1 = [u1].

Thick resart. Take Ṽ = span(u1, . . . ,uℓ) with ℓ = kmin,

i.e., Ṽℓ = Vk U( : ,1:ℓ).

Example. For the case where A∗ = A.

Locally Optimal CG takes kmax = 3 and kmin = 2 and

restarts with the two dimensional space spanned by the

best Ritz vector and the best Ritz vector from the prece-

ding step.
LOCG expands with a Davidson step, solve t from Mt = r. 21

Restarting Arnoldi

Arnoldi’s method requires a start with an Arnoldi relation.

If, with η ≡ hk+1,k,

AVk = Vk+1 Hk = Vk Hk + ηvk+1e∗k,

then, with Ũ ≡ U( : ,1:ℓ), S̃ ≡ S(1:ℓ,1:ℓ), and q∗ ≡ e∗kŨ ,

AVk Ũ = Vk Ũ S̃ + ηvk+1q∗. (∗)

The ℓ-vector q will not be a multiple of eℓ and (∗) is not

an Arnoldi relation (no Hessenberg matrix).

Th. [Arnoldi–Schur restart]. There is a unitary matrix

Q (product of Householder reflections) such that

H̃ℓ ≡
[

Q 0
0∗ 1

]∗ [
S̃

ηq∗

]
Q is (ℓ + 1) × ℓ upper Hessenberg.

Note. Except for vector updates for Ṽℓ+1 ≡ [Vk(ŨQ), vk+1],
this allows a restart at the cost of only low dim. operations.

22

Implicitly Restarted Arnoldi Method

Select µℓ+1, . . . , µk−1, µk in C. Let p be the polynomial

p(ζ) ≡ (ζ − µk) · . . . · (ζ − µℓ+1) (ζ ∈ C).

Let ṽ1 ≡ p(A)v1. Consider the Arnoldi relation

AṼℓ = Ṽℓ+1 H̃ℓ with Ṽℓ e1 = ṽ1.

Theorem. This Arnoldi relation can be obtained by ap-

plying k − ℓ steps of the shifted QR-algorithm to Hk with

shifts µj finding Hk U = U H̃k and then use the first ℓ

columns of U to form Ṽℓ ≡ Vk U( : ,1:ℓ).

IRAM selects µj = ϑj (the less ‘best’ Ritz values). This

gives the desired Arnoldi relation: the columns of Ṽℓ form

an orthonormal basis of the space spanned by u1, . . . ,uℓ.

The eigenvalues of H̃ℓ are precisely ϑ1, . . . , ϑℓ.
23

Implicitly Restarted Arnoldi Method

eigs.m in Matlab is IRAM (with deflation)

eigs.m is based on ARPACK, a collection of FORTRAN

routines that implements IRAM

Lehoucq, Sorensen and Yang 1998
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Towards the next eigenpair

Suppose an eigenpair (λ, x) has been detected in search

subspace V, i.e., x ∈ V up to the required accuracy.

How to continue the search for the next eigenpair?

1) Deflate the search subspace:

– Deflate x form the search subspace V,
that is, remove x-components from V:

normalize x, Ṽ ≡ (I− xx∗)V.

– Continue the search, with initial search subspace Ṽ.
– Select Ritz pairs for the next eigenpair.

2) Deflate the matrix as well: As 1), but
continue the search with the deflated matrix:

(I− xx∗)A(I− xx∗)

rather than with A. 25

Eigenvectors or Schur vectors

Assume the wanted λ1, . . . , λℓ, λℓ+1, . . . are simple.

Eigenvectors. Let (λi,xi,yi) be an eigen triple:

Axi = λixi and y∗iA = λiy
∗.

Scale such that ‖xi‖2 = 1, y∗ixi = 1. Note y∗jxi = 0 (i 6= j):

AXℓ = XℓΛℓ, Y∗
ℓA = ΛℓY

∗
ℓ , and Y∗

ℓXℓ = Iℓ.

Use I−XℓY
∗
ℓ for deflation.

Note that (λℓ+1,xℓ+1,yℓ+1) is an eigen triple of the de-

flated matrix

(I−XℓY
∗
ℓ)A(I−XℓY

∗
ℓ)

26

Eigenvectors or Schur vectors

Assume the wanted λ1, . . . , λℓ, λℓ+1, . . . are simple.

Eigenvectors. Let (λi,xi,yi) be an eigen triple:

Axi = λixi and y∗iA = λiy
∗.

Scale such that ‖xi‖2 = 1, y∗ixi = 1. Note y∗jxi = 0 (i 6= j):

AXℓ = XℓΛℓ, Y∗
ℓA = ΛℓY

∗
ℓ , and Y∗

ℓXℓ = Iℓ.

Disadvantage.

– Xℓ, Yℓ may be ill-conditioned
– each step requires two search subspaces:

• V for forming xi

• W for forming yi.

Stopping criterion checks for convergence of both xi and yi.

Advantage.
– Information on the conditioning of the eigenvalues is

available.

27

Eigenvectors or Schur vectors

AQℓ = Qℓ Sℓ

Is a partial Schur decomposition if Qℓ is n×ℓ orthonormal

and Sℓ is ℓ × ℓ upper triangular. Assume diag(Sℓ) = Λℓ.

Theorem. If SℓXℓ = XℓΛℓ then Xℓ = QℓXℓ.

Use I−QℓQ
∗
ℓ for deflation.

Note that q1 is an eigenvector of A with eigenvalue λ1,

and qℓ+1 is an eigenvector with eigenvalue λℓ+1 of the

deflated matrix

(I−QℓQ
∗
ℓ)A(I−QℓQ

∗
ℓ).

28



Eigenvectors or Schur vectors

AQℓ = Qℓ Sℓ

Is a partial Schur decomposition if Qℓ is n×ℓ orthonormal

and Sℓ is ℓ × ℓ upper triangular. Assume diag(Sℓ) = Λℓ.

Theorem. If SℓXℓ = XℓΛℓ then Xℓ = QℓXℓ.

Advantage.

– Qℓ is well-conditioned.
– per step only one search subspace V is needed.

Disadvantage. Generally span(Qℓ) 6= span(Yℓ).

– Only “weak” information on the left eigenvector available
(i.p. “weak” information on conditioning eigenvalues):
xi may be in V (sufficiently accurate), while yi is not in V.
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Deflation with Schur vectors

De approach based on Schur vectors (for deflation and

computing Schur vectors) is the most popular one.

In JD, this leads to the following JD correction equation:

(I− [Qℓ,u][Qℓ,u]∗)(A− ϑI)(I − [Qℓ,u][Qℓ,u]∗)t = −r

for determing the expansion for the search space for searching

for qℓ+1: u ≈ qℓ+1.

Recall that enhancing the conditioning is one of the benifits

of including a projection in the ‘Shift and Invert’ equation.

Including Qℓ in the projections amplifies this effect. Note

that the solution t is orthogonal to Qℓ and the search

subspace gets automatically expanded with vectors ⊥ Qℓ.
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Deflation with Schur vectors

De approach based on Schur vectors (for deflation and

computing Schur vectors) is the most popular one.

IRA uses the deflated matrix

(I−QℓQ
∗
ℓ)A(I−QℓQ

∗
ℓ)

in an implicit way:

It keeps the columns of Qℓ in the search subspace (V is not

deflated), putting these columns as first vectors in the or-

thonormal matrix for the search subspace: Vk+j = [Qℓ, Ṽ].

Since vk+j ⊥ Qℓ and Avk+j is orthogonalized also against

Qℓ to obtain vk+j+1, the same vector vk+j+1 would have

been obtained by expansion using the deflated matrix.

For extraction, IRA uses H ≡ Ṽ
∗
AṼ. This interaction ma-

trix equals the interaction matrix for the deflated matrix.
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