Utrecht, 3 oktober 2017

Matrix factorizations

A

B :'7; &) % Universiteit Utrecht
Gerard Sleijpen /‘{{4‘!\%’ Department of Mathematics

http://www.staff.science.uu.nl/~sleij101/

Factorizations

A =PQR,

where
— A is a given matrix

— P, Q and R are to be constructed and
have attractive properties

e LU-decomposition: A=LU, PA=LU,
Cholesky decomposition: (if A is PD) A= CC*

¢ QR-factorization: A = QR

e Eigenvalue decomposition: A = vDV—1

e Schur decomposition: A = QSQ*

e Singular value decomposition: A = VDQ*

Program Lecture 3

e Factorizations

e Factorizations for linear problems
LU-decomposition

e Intermezzo: orthonormal matrices

e Factorizations for linear problems

QR-decomposition

LU-decomposition

A is a non-singular n x n matrix.
Assigment. Solve AXx = b for Xx.

Strategy.
e Use Gaussian elimination to obtain

A=LU

with L lower-A with diag(L) =1, and
U upper-A.

e Solve Ly =0Db fory,
e Solve Ux =y for X.

LU-decomposition, costs
A isnxn. Solve Ax=b: A=LU,Ly=b, Ux=y

Costs (i.e., # flops) depend on the sparsity structure.

If A is full: 2n3 flop
If A has bandwidth p (i.e., a;; = 0 if |i—j| > p): 2p?n flop.

Costs may be much less if A has an ‘arrowhead’ structure.

Use a pivoting strategy to improve A's structure, i.e.,
find a row permutation P, and a column permutation P,

such that P,AP. has a more favourable structure (smaller
bandwidth, longer ‘arrows’, ...).
Solve Ax = b:

P,AP.=LU, Uy=P;b, Uz=y, x=P/z

LU-decomposition, stability
Aisnxn. Solve AXx=b: A=LU, Ly=b, Ux=y

Stability Gaussian elimination involves an “extra’ factor

p= (L[[OLD/IIA]
e Note that
_ LY oo _ L[(JY[1) [loo

2
poo = = < p?||L{[max
|Alloo |AL]|oo

U [max
1Al max

e Extra factor pso can be large (2"~ 1) even if ||L||max = 1.

Wilkinson’s Miracle [+1960]. In practice, almost always,

1Y [max <
[[A[[max

IL|lmax =1

LU-decomposition, stability
A isnxn. Solve Ax=b: A=LU,Ly=b, Ux=y

With L,U, ¥, and X the computed quantities:
Theorem. (A+ A)X=Db with

|A4l <3pu|L||U] = 3pulL||U].

A 4 is the backward error of Gaussian elimination.
This leads to following bound on the forward error:

LYl
————<u=puC(A)3p, where p=-—-——.
[l A

LU-decomposition, stability
Aisnxn. Solve Ax=b: A=LU, Ly=b, Ux=y

Stability Gaussian elimination involves an “extra’ factor

p= (L[[OLD/IIA]
e Note that
L||U L|(JU|1 U
o = LYl loe _ HLLQYID) oo 2y - (Y
|Alloo |AL]|oo | Allmax

With so-called Partial Pivoting, we find a row permuta-

LU-decomposition, stability
A isnxn. Solve Ax=b: A=LU,Ly=b, Ux=y

Stability Gaussian elimination involves an “extra’” factor

p = (L OLD/IIA]
e Note that
_ e[Y oo _ [HE[(JY]1) [loo

2
Poo = == <p |||—||ma><
A]loo [AL]oo

U [max
[[A[[max

Note. In practice, partial pivoting may spoil sparsity:
balans efficiency and stability.

For large n and sparse A, partial pivotting may even be
unfeasible and Gaussian elimination may not be sufficiently
stable.

Strategy for solving Ax=b for x (%) .

1) Apply row scaling to (x).

2) If feasible find appropriate permutations P, and P, and
LU-factors L and U: P-AP.= LU.

‘Feasible’, that is, if costs permit.

Notes. e For optimal stability, use partial pivoting.

This, however, may destroy a favourable structure that A
may have (sparsity or symmetry or ...).

e Feasibility may require another pivoting strategy.

e Computation of L and U may be unfeasible for any pi-
voting strategy (if A is dense, n is huge).

For ease of notation,
we assume A to be replaced by P, AP, and b by P;b,
we denote the computed L and U factors by L and U.

Strategy for solving Ax=b for x (*) .

1) Apply row scaling to (x) (to reduce C(A),
that is, to reduce the forward error of (%)), i.e., solve

(DA =D"1b for x (%)

Here D = D, = (d;;) is a diagonal matrix with d;; = ||A*e;]|,
the norm of the ith row of A.

Notes. e Is cheap, preserves sparsity, destroys symmetry.

e Column scaling reduces the error on D.Xx (rather than on x).

e Row scaling changes may lead to larger errors on b.

e (xx) is an instance of a more general strategy to improve
the conditioning, called preconditioning: M-1Ax = b =
M~1b where systems as Mb = b are easy to solve and
C(M~—1A) is smaller than C(A).

For ease of notation,
we assume A to be replaced by DA and b by D~ 1b.

Strategy for solving Ax=b for x (%) .

1) Apply row scaling to (x).

2) If feasible find appropriate permutations P, and P, and
LU-factors L and U: P-AP.= LU.

3) Estimate pu=3puC(A)p by, say, .

If i is sufficient small, do 4) else do 5).

4) Solve Ly =b, Ux =Yy
5 Ifnk1
a) apply a few steps of iterative refinement
else
b) consider using a QR-decomposition to solve (x).

5.a) If <1 (e.g., p~102) apply a few steps of
iterative refinement

(on the row-scaled, permuted, system)

Xg=0

for 7=0,1,... do
break if X; is sufficiently accurate
compute the residual F; = b — ij s

solve Au; =r; for uj
using the L and U factors of A

update X: X431 =X;+ Gj

Theorem. 1%; — x|| < pd|Ix||:

the forward error is reduced by a factor u per step.

Note that the expensive part, row-scaling, pivoting, com-

puting L and U has to be done only once.

Intermezzo: orthonormal matrices
Suppose V = [vq,...,Vq] is orthonormal.
The column vector v; form an orthonormal basis of

V =span(V) = span{vy,...,Vg}.

P = VV* is an orthogonal projection onto V:
PxeV (xeC"), Px=x (xeV), x—Px1LPx (xeC")
I - VV* is an orthogonal projection onto YL,
Householder reflections. H =1 - 2VV* is unitary,

a reflection wrt the ‘mirror space’ V1:
if X =Xy + X,,1 then HX = =Xy + X),1. (xv €V, xp: € V1),

Exercise. Determine # flop to compute xy, X,,1, Hx

Iterative refinement is an instance of
the basic iterative scheme

Select Xg

X =Xg, r=Db — Ax

for j =1 jmax
break if ||r|| < tol

Compute an approximate solution U of

Au=r
X<—X-|—CI
r — r— Au

If X; is some approximate solution of AXx = b with error uj,
i.e., X= X; + uj, then u; satisfies

AUj=I’ij—AXj
If Xjt1 = X; + lAlj then ri41= b— AXj+1 =r;— AG]

QR-factorization

Let A =[ay,...,a;] be an n x k matrix.
A =QR

with Q orthonormal, R upper-A, matching dimensions:
— Q=Q;nxn (Unitary) & R=R; nxk
— Q=Qgnxk&R=Rqgkxk (economical form).

We may expect good stability properties since

RUIR[2 IQl2IRI2 _

n 1).
IAll2 1Al

Existence. Exists (unconditionally).
Proof: Gram—-Schmidt.

The columns dg,...,d; of Q form
an orthonormal basis of Range(A) = span(A).

Constructing a QR-factorization

(classical) Gram—Schmidt:
Orthogonalise: dz = a3 —di(dja3) — d2(a3az)
Normalise: d3 = qs/|las||2

modified Gram—Schmidt:
Orthogonalise: @ = a3z —qi(ajas), Az = a—ax(a3q)

Normalise: as = ds/||as||»

Householder-QR:
find vz such that [|vz|> =1, ejvz3 =0, e5v3 =0, and

(1- 2v3v§)ag2) =re3 AB) = (I-2vav}) A,

Then [a1,a5,a3] = QR, with Q unitary,
R=AGB), nx3upperA,
Q = ((1—2vav5) (T — 2vovy) (I - 2v1v’{))*, nx n.

Intermezzo: condition numbers

For a general (possibly non-square) matrix A, we define

AX AX
Tmax = Max I H, Omin = Min u, and c(A) = 7™
[1x]] (1| Tmin

where we take the max. and min. over all non-trival vectors
x (or, equivalently, over all x with ||x|| = 1).
C(A) is called the condition number if A.

Note. omax = ||A||. If A is square and non-singular, then

omin = 1/||A7Y| and C(A) = ||A]l||A7}].

In case of the 2-norm,
omin (omax) is the smallest (largest) singular value of A.

QR-factorization, stability

For the computed factors Q and R, we have
A+A,=QR

for some n x k A4 with

e R upper triangular,

o ||[A4llp £ kUJA| R, with kK modest,

e |Q'Q—I|2~ru(Ca(A))i with k of order vkn and

1 > 2 for clasGS (conjecture: : = 2)
i =1 for modGS
1 = 0 for Householder-QR

QR-factorization, costs

Costs in case k < n (neglecting lower order terms)

2k2n for clasGS, modGS as well as Householder QR
For Householder-QR it is assumed that Q is used and
stored in factorized form as a product of the Householder
reflections (store the v;). Forming the Q by explicitly
performing the product, will make Householder-QR

twice as expensive and less stable. (Recall that in LU-
factorization, forming L from the factors 1—-{;€} is trivial).

e Hence, if the vectors q; are required, clasGS or modGS,
are preferred over Householder QR.

e classGS allows parallelisation.

Costs in case k = n (neglecting lower order terms)
for Housholder QR: %n3 (twice the costs of LU fact.).
for clasGS and modGS: 2n3 (thrice LU).

Loss of orthogonality: Householder-QR

Householder-QR gives a unitary matrix since the Househol-
der reflections are unitary regardless the accuracy of the
vectors v;:

keep Q in factorized form and work with its factors.

Loss of orthogonality: Gram-Schmidt

The strategy of GS for orthonormalizing a vector ajyq
against dq,...,q; relies on the assumption that qq,...,q;
is an orthonormal system. If this assumption is not correct,
then the loss of orthognality is amplified in the next vector.

Remedy. Repeat the orthogonalisation against all dq,...,dy.

When to repeat?
DGKS: If £ a4 and span(dy,...,dy) is < 45°.

Is twice enough?
In practise, Repeated GS as stable as Householder QR.

modGS can be viewed (also in rounded arithmetic) as
Householder-QR on a matrix extended at the top with a
k x k block of zeros, where A is n x k. This insight can be
exploited to prove that modGS has a better orthonormali-
sation property than classGS

Loss of orthogonality: GS

GS can lose orthogonality already in orthonormalizing one
vector against another, say a, against qy:
a> =ap —qi(ajaz), do=daz/|azl2.

Let do = ds + Ay be the computed gp. If § is the error in
ajap then A, =46qi/||az|l2 (plus other error terms):
nullazlla nu

llazll2 sin Z(as,dy)
Conclusion. Orthogonality is (likely to be) lost if the angle
between the two vectors is small.

[Agll2 <

Remedy. If g, is not numerically O (q; and as are not nu-
merically orthogonal), then repeat the orthogonalisation:

a2 =dz2 —a1(aidz2), 42 = az/|az|l2.

Theorem. Twice is enough.

Effects of loss of orthogonality

Consider the case where A is square.
Let Q and R be the computed QR factors.
Put E=Q Q-1 and assume |E|» < 1.

Using the QR factors, Ax =Db will be solved as
y=Q'b, solve Rx=y for x.

whereas y should be y = aflb (given the QR factors).

Since I+ E)"1Q"Q =1, we see that
Q'=a+B)Q ~1-B)Q"

Hence,

—~ —~_1 —~
QP —Q "bllz~ |[EQ b2 < |E|2|bll2.

QR-factorisation, least square

Application. If k < n, then generally

solution x of AX = b does not exists!!

Alternative:

X = argmin||b — Ay||2,

minimising over all y € Ck.

Lemma. V k-dim subspace C".

bg =argminyey|b—-vl2 & s=b-bglV

Normal equations.

X = argminy||b — Ay|| & A*Ax = A'b.

QR versus LU

For small (n < 10000), dense systems:

LU.

QR.

-+ easy and cheap to compute
-+ easy and cheap to work with
— stability requires permutation (and scaling)

0 easy and cheap to compute, but 2x the costs LU
0 easy and cheap to work with, but 1.5x the costs LU
-+ stable

For large n, sparse systems

both factorizations destroy sparsity structure. However,
LU: 4+ 3 effective incomplete LU with sparsity structure,
QR: — no effective incomplete QR with sparsity structure.

Least square, stability

A is non-square, X solves AX = b in least square sense.

(A+A))Xx+A)=b+4+ A, least square

=
[PA| P ﬁ(llAbllz + [[Aall2 (IX][2) + 021, A all2]sll2
min
Normal eq. (AA+ A)X+ Ay) =Ab+ A,
1 _ 1
- Umin(A*A) o Jmin(A)Q

1Azll2 S 2—IAll2 + 1A all2 [IX]12)

min

