Program Lecture 3

http://www.staff.science.uu.nl/~sleij101/

- Factorizations
- Factorizations for linear problems

LU-decomposition

- Intermezzo: orthonormal matrices
- Factorizations for linear problems

QR-decomposition

Factorizations

 $\mathbf{A} = \mathbf{PQR},$

where

- ${\bf A}$ is a given matrix
- P, Q and R are to be constructed and have attractive properties
- LU-decomposition: A = LU, PA = LU,
 Cholesky decomposition: (if A is PD) A = CC*
- QR-factorization: A = QR
- Eigenvalue decomposition: $A = VDV^{-1}$
- Schur decomposition: $A = QSQ^*$
- Singular value decomposition: A = VDQ*

LU-decomposition

A is a non-singular $n \times n$ matrix. **Assigment.** Solve Ax = b for x.

Strategy.

• Use Gaussian elimination to obtain

$\mathbf{A} = \mathbf{L}\mathbf{U}$

- with L lower- Δ with diag(L) = I, and U upper- Δ .
- Solve Ly = b for y,
- Solve $\mathbf{U}\mathbf{x} = \mathbf{y}$ for \mathbf{x} .

LU-decomposition, costs

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Costs (i.e., # flops) depend on the sparsity structure.

If **A** is full: $\frac{2}{3}n^3$ flop If **A** has bandwidth p (i.e., $a_{ij} = 0$ if |i - j| > p): $2p^2 n$ flop.

Costs may be much less if $\boldsymbol{\mathsf{A}}$ has an 'arrowhead' structure.

Use a **pivoting** strategy to improve **A**'s structure, i.e., find a row permutation \mathbf{P}_r and a column permutation \mathbf{P}_c such that $\mathbf{P}_r \mathbf{A} \mathbf{P}_c$ has a more favourable structure (smaller bandwidth, longer 'arrows', ...).

Solve Ax = b:

 $\mathbf{P}_r \mathbf{A} \mathbf{P}_c = \mathbf{L} \mathbf{U}, \quad \mathbf{U} \mathbf{y} = \mathbf{P}_r \mathbf{b}, \quad \mathbf{U} \mathbf{z} = \mathbf{y}, \quad \mathbf{x} = \mathbf{P}_c^\top \mathbf{z}.$

LU-decomposition, stability

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

With $\widehat{L}, \widehat{U}, \widehat{y}$, and \widehat{x} the computed quantities:

Theorem. $(\mathbf{A} + \Delta_A)\hat{\mathbf{x}} = \mathbf{b}$ with

$$|\Delta_A| \leq 3 p \mathbf{u} |\widehat{\mathbf{L}}| |\widehat{\mathbf{U}}| \approx 3 p \mathbf{u} |\mathbf{L}| |\mathbf{U}|.$$

Here $|\cdot|$ and \leq matrix-entry-wise, p bandwidth of **A**.

 Δ_A is the **backward error** of Gaussian elimination. This leads to following bound on the **forward error**:

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \mu \equiv p \, \mathbf{u} \, \mathcal{C}(\mathbf{A}) \, \Im \, \rho, \quad \text{where} \quad \rho \equiv \frac{\| \|\mathbf{L}\| \|\mathbf{U}\|}{\|\mathbf{A}\|}.$$

Here $\|\cdot\|$ is a vector norm.

Recall:
$$fl(\mathbf{A}\mathbf{x}) = (\mathbf{A} + \Delta_A)\mathbf{x}$$
 with $|\Delta_A| \le p \mathbf{u} |\mathbf{A}|$.

LU-decomposition, stability

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

$$\Im
ho \equiv \Im (\| \left| \mathsf{L} \right| \left| \mathsf{U} \right| \|) / \| \mathsf{A} \|$$

Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \mathbf{1} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}$$

• Extra factor ρ_{∞} can be large (2^{n-1}) even if $\|\mathbf{L}\|_{\max} = 1$.

Wilkinson's Miracle [± 1960]. In practice, almost always,

$$\|\mathbf{L}\|_{\max} = 1 \quad \Rightarrow \quad \frac{\|\mathbf{U}\|_{\max}}{\|\mathbf{A}\|_{\max}} \leq 16.$$

LU-decomposition, stability

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

$$\exists \rho \equiv \exists (\| |\mathbf{L}| |\mathbf{U}| \|) / \|\mathbf{A}\|$$

Note that

$$\rho_{\infty} \equiv \frac{\| |\mathbf{L}| |\mathbf{U}| \|_{\infty}}{\|\mathbf{A}\|_{\infty}} = \frac{\| |\mathbf{L}| (|\mathbf{U}|\mathbf{1}) \|_{\infty}}{\|\mathbf{A}\mathbf{1}\|_{\infty}} \le p^2 \|\mathbf{L}\|_{\max} \frac{\|\mathbf{U}\|_{\max}}{\|\mathbf{A}\|_{\max}}$$

With so-called **Partial Pivoting**, we find a row permutation **P** such that $\|\mathbf{L}\|_{max} = 1$ (i.e., $\mathbf{P}_r = \mathbf{P}$ and $\mathbf{P}_c = \mathbf{I}$).

LU-decomposition, stability

A is $n \times n$. Solve Ax = b: A = LU, Ly = b, Ux = y

Stability Gaussian elimination involves an "extra" factor

$$\exists \rho \equiv \exists (\| |\mathbf{L}| |\mathbf{U}| \|) / \|\mathbf{A}\|$$

Note that

$$\rho_{\infty} \equiv \frac{\| \left| \mathbf{L} \right| \left| \mathbf{U} \right| \|_{\infty}}{\| \mathbf{A} \|_{\infty}} = \frac{\| \left| \mathbf{L} \right| \left(\left| \mathbf{U} \right| \mathbf{1} \right) \|_{\infty}}{\| \mathbf{A} \|_{\infty}} \le p^2 \| \mathbf{L} \|_{\max} \frac{\| \mathbf{U} \|_{\max}}{\| \mathbf{A} \|_{\max}}.$$

Note. In practice, partial pivoting may spoil sparsity:

balans efficiency and stability.

For large n and sparse **A**, partial pivotting may even be unfeasible and Gaussian elimination may not be sufficiently stable.

Strategy for solving Ax = b for x (*).

1) Apply row scaling to (*).

2) If feasible find appropriate permutations P_r and P_c and LU-factors L and U: $P_r A P_c = LU$.

'Feasible', that is, if costs permit.

Notes. • For optimal stability, use partial pivoting. This, however, may destroy a favourable structure that **A** may have (sparsity or symmetry or . . .).

- Feasibility may require another pivoting strategy.
- Computation of L and U may be unfeasible for any pivoting strategy (if A is dense, n is huge).

For ease of notation, we assume **A** to be replaced by $\mathbf{P}_r \mathbf{A} \mathbf{P}_c$ and **b** by $\mathbf{P}_r \mathbf{b}$, we denote the computed L and U factors by L and U. **Strategy for solving** Ax = b for x (*).

1) Apply row scaling to (*) (to reduce $C(\mathbf{A})$, that is, try to reduce the forward error of (*)), i.e., solve

$$(D^{-1}A)x = D^{-1}b$$
 for x (**)

Here $\mathbf{D} = \mathbf{D}_r = (d_{ij})$ is a diagonal matrix with $d_{ii} = \|\mathbf{A}^* \mathbf{e}_i\|$, the norm of the *i*th row of \mathbf{A} .

Notes. • Is cheap, preserves sparsity, destroys symmetry.

- Column scaling reduces the error on $D_c x$ (rather than on x).
- Row scaling changes may lead to larger errors on **b**.

• (**) is an instance of a more general strategy to improve the conditioning, called **preconditioning**: $M^{-1}Ax = \tilde{b} \equiv M^{-1}b$ where systems as $M\tilde{b} = b$ are easy to solve and $C(M^{-1}A)$ is smaller than C(A).

For ease of notation, we assume **A** to be replaced by $\mathbf{D}^{-1}\mathbf{A}$ and **b** by $\mathbf{D}^{-1}\mathbf{b}$.

Strategy for solving Ax = b for x (*).

1) Apply **row scaling** to (*).

2) If feasible find appropriate permutations \mathbf{P}_r and \mathbf{P}_c and LU-factors L and U: $\mathbf{P}_r \mathbf{A} \mathbf{P}_c = \mathbf{L} \mathbf{U}$.

3) Estimate $\mu \equiv 3p \mathbf{U} C(\mathbf{A}) \rho$ by, say, $\hat{\mu}$. Recall that $\|\hat{\mathbf{x}} - \mathbf{x}\| \le \mu \|\mathbf{x}\|$ and $\rho \equiv (\||\mathbf{L}||\mathbf{U}|\|)/\||\mathbf{A}|\|$. If $\hat{\mu}$ is sufficient small, do 4) else do 5).

4) Solve Ly = b, Ux = y and undo the row permutation on x.

5) If $\hat{\mu} \ll 1$

a) apply a few steps of iterative refinement

else

b) consider using a QR-decomposition to solve (*).

5.a) If $\mu \ll 1$ (e.g., $\mu \approx 10^{-2})$ apply a few steps of

iterative refinement

(on the row-scaled, permuted, system)

$$\begin{split} \mathbf{x}_0 &= \mathbf{0} \\ \text{for } j &= 0, 1, \dots \text{ do} \\ \text{break if } \mathbf{x}_j \text{ is sufficiently accurate} \\ \text{compute the residual } \mathbf{r}_j &\equiv \mathbf{b} - \mathbf{A}\mathbf{x}_j, \\ \text{solve } \mathbf{A}\mathbf{u}_j &= \mathbf{r}_j \text{ for } \mathbf{u}_j \\ \text{ using the } \mathbf{L} \text{ and } \mathbf{U} \text{ factors of } \mathbf{A} \\ \text{update } \mathbf{x} \colon \mathbf{x}_{j+1} &= \mathbf{x}_j + \hat{\mathbf{u}}_j \end{split}$$

Theorem. $\|\mathbf{x}_j - \mathbf{x}\| \lesssim \mu^j \|\mathbf{x}\|$:

the forward error is reduced by a factor μ per step.

Note that the expensive part, row-scaling, pivoting, computing \mathbf{L} and \mathbf{U} has to be done only once.

Iterative refinement is an instance of the **basic iterative scheme**

Select \mathbf{x}_0 $\mathbf{x} = \mathbf{x}_0$, $\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$ for $j = 1 : j_{max}$ break if $\|\mathbf{r}\| \le tol$ Compute an approximate solution $\hat{\mathbf{u}}$ of $\mathbf{A}\mathbf{u} = \mathbf{r}$ $\mathbf{x} \leftarrow \mathbf{x} + \hat{\mathbf{u}}$ $\mathbf{r} \leftarrow \mathbf{r} - \mathbf{A}\hat{\mathbf{u}}$

If \mathbf{x}_j is some approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ with error \mathbf{u}_j , i.e., $\mathbf{x} = \mathbf{x}_j + \mathbf{u}_j$, then \mathbf{u}_j satisfies

$$\begin{aligned} \mathbf{A}\mathbf{u}_j = \mathbf{r}_j \equiv \mathbf{b} - \mathbf{A}\mathbf{x}_j \\ \text{If } \mathbf{x}_{j+1} = \mathbf{x}_j + \hat{\mathbf{u}}_j \text{ then } \mathbf{r}_{j+1} = \mathbf{b} - \mathbf{A}\mathbf{x}_{j+1} = \mathbf{r}_j - \mathbf{A}\hat{\mathbf{u}}_j. \end{aligned}$$

Intermezzo: orthonormal matrices

Suppose $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_q]$ is orthonormal. The column vector \mathbf{v}_i form an orthonormal basis of

$$\mathcal{V} \equiv \operatorname{span}(\mathbf{V}) = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_q\}.$$

 $\mathbf{P} \equiv \mathbf{V}\mathbf{V}^* \text{ is an orthogonal projection onto } \mathcal{V}:$ $\mathbf{P}\mathbf{x} \in \mathcal{V} \ (\mathbf{x} \in \mathbb{C}^n), \ \mathbf{P}\mathbf{x} = \mathbf{x} \ (\mathbf{x} \in \mathcal{V}), \ \mathbf{x} - \mathbf{P}\mathbf{x} \perp \mathbf{P}\mathbf{x} \ (\mathbf{x} \in \mathbb{C}^n)$ [Ex.3]

 $\mathbf{I} - \mathbf{V}\mathbf{V}^*$ is an orthogonal projection onto \mathcal{V}^{\perp} .

Exercise. Determine # flop to compute $\mathbf{x}_{\mathcal{V}}$, $\mathbf{x}_{\mathcal{V}^{\perp}}$, **H** \mathbf{x}

QR-factorization

Let
$$\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$$
 be an $n \times k$ matrix.

$\mathbf{A} = \mathbf{Q}\mathbf{R}$

with **Q** orthonormal, **R** upper- Δ , matching dimensions: — **Q** \equiv **Q**₁ $n \times n$ (Unitary) & **R** \equiv **R**₁ $n \times k$ — **Q** \equiv **Q**₀ $n \times k$ & **R** \equiv $R_0 k \times k$ (economical form).

We may expect good stability properties since

$$\frac{\| \, |\mathbf{Q}| \, |\mathbf{R}| \, \|_2}{\|\mathbf{A}\|_2} \le n \qquad (\, \frac{\|\mathbf{Q}\|_2 \, \|\mathbf{R}\|_2}{\|\mathbf{A}\|_2} = 1).$$

Existence. Exists (unconditionally). *Proof: Gram–Schmidt.*

The columns $\mathbf{q}_1, \dots, \mathbf{q}_k$ of \mathbf{Q} form an orthonormal basis of Range(\mathbf{A}) = span(\mathbf{A}). [Ass.3

Constructing a QR-factorization

(classical) Gram–Schmidt:

 $\begin{array}{ll} \text{Orthogonalise:} & \tilde{\textbf{q}}_3 = \textbf{a}_3 - \textbf{q}_1(\textbf{q}_1^*\textbf{a}_3) - \textbf{q}_2(\textbf{q}_2^*\textbf{a}_3) \\ \text{Normalise:} & \textbf{q}_3 = \tilde{\textbf{q}}_3 / \|\tilde{\textbf{q}}_3\|_2 \end{array}$

modified Gram-Schmidt:

 $\begin{array}{ll} \text{Orthogonalise:} & \tilde{\textbf{q}} = \textbf{a}_3 - \textbf{q}_1(\textbf{q}_1^*\textbf{a}_3), \ \tilde{\textbf{q}}_3 = \tilde{\textbf{q}} - \textbf{q}_2(\textbf{q}_2^*\tilde{\textbf{q}}) \\ \text{Normalise:} & \textbf{q}_3 = \tilde{\textbf{q}}_3 / \|\tilde{\textbf{q}}_3\|_2 \end{array}$

Householder-QR:

find
$$\mathbf{v}_3$$
 such that $\|\mathbf{v}_3\|_2 = 1$, $\mathbf{e}_1^* \mathbf{v}_3 = 0$, $\mathbf{e}_2^* \mathbf{v}_3 = 0$, and
 $(\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{a}_3^{(2)} = \tau_3\mathbf{e}_3$, $\mathbf{A}^{(3)} = (\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)\mathbf{A}^{(2)}$.

Then
$$[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \mathbf{Q}\mathbf{R}$$
, with \mathbf{Q} unitary,
 $\mathbf{R} \equiv \mathbf{A}^{(3)}, \quad n \times 3 \text{ upper-}\Delta,$
 $\mathbf{Q} \equiv \left((\mathbf{I} - 2\mathbf{v}_3\mathbf{v}_3^*)(\mathbf{I} - 2\mathbf{v}_2\mathbf{v}_2^*)(\mathbf{I} - 2\mathbf{v}_1\mathbf{v}_1^*) \right)^*, \quad n \times n.$

Intermezzo: condition numbers

For a general (possibly non-square) matrix **A**, we define

$$\sigma_{\max} \equiv \max \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}, \ \sigma_{\min} \equiv \min \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}, \ \text{ and } \ \mathcal{C}(\mathbf{A}) \equiv \frac{\sigma_{\max}}{\sigma_{\min}}$$

where we take the max. and min. over all non-trival vectors **x** (or, equivalently, over all **x** with $||\mathbf{x}|| = 1$). $C(\mathbf{A})$ is called the **condition number** if **A**.

Note. $\sigma_{\max} = \|\mathbf{A}\|$. If **A** is square and non-singular, then

$$\sigma_{\min} = 1/\|\mathbf{A}^{-1}\|$$
 and $\mathcal{C}(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$

In case of the 2-norm,

 σ_{\min} (σ_{\max}) is the smallest (largest) singular value of **A**.

QR-factorization, stability

For the computed factors $\widehat{\mathbf{Q}}$ and $\widehat{\mathbf{R}},$ we have

 $\mathbf{A} + \Delta_A = \widehat{\mathbf{Q}} \,\widehat{\mathbf{R}}$

for some $n \times k \Delta_A$ with

- $\widehat{\mathbf{R}}$ upper triangular,
- $\|\Delta_A\|_F \leq \kappa \mathbf{u} \|\mathbf{A}\|_F$, with κ modest,
- $\|\widehat{\mathbf{Q}}^*\widehat{\mathbf{Q}} I\|_2 \approx \kappa \, \mathbf{u} \, (\mathcal{C}_2(\mathbf{A}))^i$ with κ of order \sqrt{kn} and
 - $i \ge 2$ for clasGS (conjecture: i = 2)
 - i = 1 for modGS
 - i = 0 for Householder-QR

QR-factorization, costs

Costs in case $k \ll n$ (neglecting lower order terms)

 $2k^2n$ for clasGS, modGS as well as Householder QR

For Householder-QR it is assumed that **Q** is used and stored in factorized form as a product of the Householder reflections (store the v_i). Forming the Q by explicitly performing the product, will make Householder-QR twice as expensive and less stable. (*Recall that in LUfactorization, forming* **L** *from the factors* $I - \ell_i e_i^*$ *is trivial*).

• Hence, if the vectors \mathbf{q}_i are required, clasGS or modGS, are preferred over Householder QR.

• classGS allows parallelisation.

Costs in case k = n (neglecting lower order terms) for Housholder QR: $\frac{4}{3}n^3$ (twice the costs of LU fact.). for clasGS and modGS: $2n^3$ (thrice LU).

Loss of orthogonality: Householder-QR

Householder-QR gives a unitary matrix since the Householder reflections are unitary regardless the accuracy of the vectors \mathbf{v}_i :

keep Q in factorized form and work with its factors.

Loss of orthogonality: GS

GS can lose orthogonality already in orthonormalizing one vector against another, say \mathbf{a}_2 against \mathbf{q}_1 :

$$\widetilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1(\mathbf{q}_1^*\mathbf{a}_2), \quad \mathbf{q}_2 = \widetilde{\mathbf{q}}_2/\|\widetilde{\mathbf{q}}_2\|_2.$$

Let $\hat{\mathbf{q}}_2 = \mathbf{q}_2 + \Delta_q$ be the computed \mathbf{q}_2 . If δ is the error in $\mathbf{q}_1^* \mathbf{a}_2$ then $\Delta_q = \delta \mathbf{q}_1 / \|\tilde{\mathbf{q}}_2\|_2$ (plus other error terms):

$$\|\Delta_q\|_2 \leq \frac{n \mathbf{u} \|\mathbf{a}_2\|_2}{\|\widetilde{\mathbf{q}}_2\|_2} \approx \frac{n \mathbf{u}}{\sin \angle (\mathbf{a}_2, \mathbf{q}_1)}$$

Conclusion. Orthogonality is (likely to be) lost if the angle between the two vectors is small.

Remedy. If $\tilde{\mathbf{q}}_2$ is not numerically **0** (\mathbf{q}_1 and \mathbf{a}_2 are not numerically orthogonal), then repeat the orthogonalisation:

$$\tilde{q}_2 = \hat{q}_2 - q_1(q_1^* \hat{q}_2), \quad q_2 = \tilde{q}_2 / \|\tilde{q}_2\|_2.$$

Theorem. Twice is enough.

Loss of orthogonality: Gram-Schmidt

The strategy of GS for orthonormalizing a vector \mathbf{a}_{k+1} against $\mathbf{q}_1, \ldots, \mathbf{q}_k$ relies on the assumption that $\mathbf{q}_1, \ldots, \mathbf{q}_k$ is an orthonormal system. If this assumption is not correct, then the loss of orthognality is amplified in the next vector.

Remedy. Repeat the orthogonalisation against all $\mathbf{q}_1, \ldots, \mathbf{q}_k$.

When to repeat?

DGKS: If $\angle \mathbf{a}_{k+1}$ and span $(\mathbf{q}_1, \ldots, \mathbf{q}_k)$ is $< 45^{\circ}$.

Is twice enough?

In practise, Repeated GS as stable as Householder QR.

modGS can be viewed (also in rounded arithmetic) as Householder-QR on a matrix extended at the top with a $k \times k$ block of zeros, where **A** is $n \times k$. This insight can be exploited to prove that modGS has a better orthonormalisation property than classGS

Effects of loss of orthogonality

Consider the case where **A** is square. Let $\widehat{\mathbf{Q}}$ and $\widehat{\mathbf{R}}$ be the computed QR factors. Put $\mathbf{E} \equiv \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} - \mathbf{I}$ and assume $\|\mathbf{E}\|_2 < 1$. Using the QR factors, $\mathbf{A}\mathbf{x} = \mathbf{b}$ will be solved as $\mathbf{y} = \widehat{\mathbf{Q}}^* \mathbf{b}$, solve $\widehat{\mathbf{R}}\mathbf{x} = \mathbf{y}$ for \mathbf{x} . whereas \mathbf{y} should be $\mathbf{y} = \widehat{\mathbf{Q}}^{-1} \mathbf{b}$ (given the QR factors). Since $(\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \widehat{\mathbf{Q}} = \mathbf{I}$, we see that

$$\widehat{\mathbf{Q}}^{-1} = (\mathbf{I} + \mathbf{E})^{-1} \widehat{\mathbf{Q}}^* \approx (\mathbf{I} - \mathbf{E}) \widehat{\mathbf{Q}}^*.$$

Hence,

$$\|\widehat{\mathbf{Q}}^*\mathbf{b} - \widehat{\mathbf{Q}}^{-1}\mathbf{b}\|_2 \approx \|\mathbf{E}\widehat{\mathbf{Q}}^*\mathbf{b}\|_2 \le \|\mathbf{E}\|_2\|\mathbf{b}\|_2.$$

E could be computed, but would make the methods more expensive!

QR-factorisation, least square

Application. If k < n, then generally

solution x of Ax = b does not exists!! [Ex.3.

Alternative:

 $\mathbf{x} = \operatorname{argmin} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|_2,$

minimising over all $\mathbf{y} \in \mathbb{C}^k$.

Lemma. \mathcal{V} *k*-dim subspace \mathbb{C}^n .

 $\mathbf{b}_0 = \operatorname{argmin}_{\mathbf{V} \in \mathcal{V}} \|\mathbf{b} - \mathbf{v}\|_2 \quad \Leftrightarrow \quad \mathbf{s} \equiv \mathbf{b} - \mathbf{b}_0 \perp \mathcal{V}$

Normal equations.

 $\mathbf{x} = \operatorname{argmin}_{\mathbf{V}} \|\mathbf{b} - \mathbf{A}\mathbf{y}\| \quad \Leftrightarrow \quad \mathbf{A}^* \mathbf{A}\mathbf{x} = \mathbf{A}^* \mathbf{b}.$

Least square, stability

QR versus LU

For small (n < 10000), dense systems:

- **LU.** + easy and cheap to compute
 - + easy and cheap to work with
 - stability requires permutation (and scaling)
- QR. o easy and cheap to compute, but 2× the costs LU
 o easy and cheap to work with, but 1.5× the costs LU
 + stable

For large n, sparse systems

both factorizations destroy sparsity structure. However,

LU: $+ \exists$ effective incomplete LU with sparsity structure,

 QR : — no effective incomplete QR with sparsity structure.