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Basic methods for eigenproblems The Power method
The eigenvalue problem The Power method is the classical method to compute in
modulus largest eigenvalue and associated eigenvector of a
Av =)v .
matrix.
can not be solved in a direct way for problems of order > 4, since Multiplying with a matrix amplifies strongest the eigendirection
the eigenvalues are the roots of the characteristic equation corresponding to the in modulus largest eigenvalues.
det(A — \I) = 0. Successively multiplying and scaling (to avoid overflow or
underflow) yields a vector in which the direction of the largest
Today we will discuss two iterative methods for solving the eigenvector becomes more and more dominant.

eigenproblem.
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Algorithm Convergence (1)

The Power method for an n x n matrix A. Let the n eigenvalues \; with eigenvectors v;, Av; = \;v;, be
ordered such that |\i| > [X\a| > ... > |\l

e Assume the eigenvectors vi,...,v, form a basis.

e Assume |Aj| > |Aa].

Each arbitrary starting vector uy can be written as:

uy € C"is given
fork=1,2,...
u, = Auy_;
u = uy/|[ug)2
AR — Uy Uy = a1vy + agva + ... + ap vy
end for

and if a; # 0, then it follows that
If uy, is an eigenvector corresponding to \;, then

n ) )\ k
AF — k Y (A .
AR — wp Ay, = A ujuy = X [[uglf3 = ). T\ gz:; o (/\1> v
. Owebers,206 5 Odeber5,2016 e
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Convergence (2) Convergence (3)

e If the component oy vy in ug is small as compared to, say asvo,
i.e. |a| < |az|, then initially convergence may seem to be
k) & ) dominated by Xy (until |ao)k| < |y AF)).

— OO

Using this equality we conclude that

A
m—»m=0(%

1 o If the basis of eigenvectors is ill-conditioned, then some

and also that uy, directionally converges  to vi: eigenvector components in uyg may be large even if ug is modest

_ Ao | and initially convergence may seem to be dominated by
the angle between u; and v, is of order —1 non-dominant eigenvalues.
— — — T
If ‘)\1’>‘)\j| f0ra||]>1,thenweca|| [} uo—Va, where V:[V]_,...,Vn], ?.:(Oé]_,...,lan) .
Hence, |luol| < ||V |lall and [la]| = [V uo| < [[V™7[| o] : the

A1 the dominant eigenvalue and ) o
constant in the ‘O-term’ may depend on the conditioning of the

v; the dominant eigenvector basis of eigenvectors
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Convergence (4)

Note that there is a problem if |\;| = |A2|, which is the case for
instance if \; = \s.
A vector ug can be written as

n
Ug = a1vVy] + agvo + Zajvj .
j=3
The component in the direction of vs, ..., v, will vanish in the
Power method if | A\2| > |A3|, but u; will not tend to a limit if ug
has nonzero components in v and ve and |A1| = |2, A1 # Aa.

Shifting

Clearly, the (asymptotic) convergence depends on ]i—f].
To speed-up convergence the Power method can also be applied
to the shifted problem

(A—ocD)v=AN—-o0o)v
The asymptotic rate of convergence now becomes

)\2—0'

AN —0O

Moreover, by choosing a suitable shift o (how?) convergence
can be forced towards the smallest eigenvalue of A.
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Shift-and-invert

Another way to speed-up convergence is to apply the Power
method to the shifted and inverted problem

(A — o) v = pv, A= l—i—a.
i

This technique allows us to compute eigenvalues near the shift.

However, for this the solution of a system is required in every
iteration!

Assignment. Show that the shifted and inverted problem and
the original problem share the same eigenvectors.
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QR-factorisation, power method

Consider the QR-decomposition A = QR
with Q = [qy, ..., q,] unitary and R = (r;;) upper triangular.

Observations.

1) Ae; =711 4q;-

2) Since A*Q =R", we also have A*q,, = 7, €n.
The QR-decomposition incorporates one step of the power
method with A in the first column of Q and with (A*)~! in the
last column of Q (without inverting All).

To continu, ‘rotate’ the basis: instead of eq, ..., e,,

take qi,...,q, as new basis in domain and image space of A.
A1 = Q"AQ = RQ is the matrix of A w.r.t. this rotated basis.
In the new basis q; and q,, are represented by e; and e, resp..
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The QR method (1)

This leads to the QR method , a popular technique in particular
to solve small or dense eigenvalue problems.
The method repeatedly uses QR-factorisation.

The method starts with the matrix Ay = A,
factorsitinto Ay = Qg Ry,
and then reverses the factors: A; =Ry Q.

Assignment. Show that Ay and A, are similar (share the same
eigenvalues).

The QR method (2)

And repeats these steps:

factor A = Q,Ry;, multiply Axi; =RrQ;,.
Hence, A;Q,=Q;Ax; and

Ao (Q0Q1 e Q) = (Q0Q1 o Qo) Ay

U, =QyQ; - ...  Qp_; isunitary,
AgU, =U,A,: Agand Ay, are similar.
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The QR method (2)

And repeats these steps:
factor A = Q.Ry;, multiply Axi1 =RrQ;.
Hence, with U, = QyQ; - Qi_1,
AUy =U A = UpQ, Ry = Upy1 Ry
In particular, Au{® = ru{**V) with  the (1, 1)-entry of Ry

the first columns u§k> of the Uy, represent the power method.
Here, we used that Ry, is upper triangular.
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The QR method (2)

And repeats these steps:
factor A = Q.Ry;, multiply Axi1 =RrQ;.
Hence, U, =Q,Q; ... - Q;_; isunitary and
A* U, = Uy RL
In particular, A* ugf“) = Tuﬁlk), now with 7 the (n,n)-entry of

R;: the last column uﬁlk) of Uy incorporates the inverse power
method. Here, we used that R;; is lower triangular.
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The QR method (2)

And repeats these steps:
factor A = Q,Ry;, multiply Axi =RrQ;,.

Hence, U, =QyQ; ... - Qi_; is unitary,
U, converges to an unitary matrix U,
R, converges to an upper triangular matrix S, and

AU,=U,, R, — AU=US,

which is a so-called Schur decomposition of A.

The eigenvalues of A are on the main diagonal of S
(They appear on the main diagonal of A, and of Ry,).

The QR method (3)

Normally the algorithm is used with shifts

o Ay — o I = Q Ry, A =Ry Qg + ol
Check that A1 is similar to Ay.

e The process incorporates shift-and-invert iteration
(in the last column of U, =Qy-... - Qi_1)-

The shifted algorithm (with proper shift) converges quadratically.

An eigenvalue of the 2 x 2 right lower block of A, is such a
proper shift (Wilkinson’s shift ).
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The QR method (4)

Other ingredients of an effective algorithm of the QR method:

e Deflation is used, that is,
converged columns and rows (the last ones) are removed.

Theorem. Ay, is Hessenberg if Ay is Hessenberg:
e Select Ay = Uj AUy to be upper Hessenberg.

Costs to compute all eigenvalues (do not compute U)
of the n x n matrix A to full accuracy: = 12n3 flop.
Stability is optimal

(order of nux stability of the eigenvalue problem of A).

2
National Master Course TUDelft

The QR method for eigenvalues

Ingredients (summary):
1) Bring A to upper Hessenberg form

2) Select an appropriate shift strategy
3) Repeat: shift, factor, reverse factors & multiply, de-shift
4) Deflate upon convergence

Find all eigenvalues A; on the diagonal of S.

Costs ~ 12n3 flop.
Discard one of the ingredients ~ costs O(n*) or higher.

n = 103: Matlab needs a few seconds. What about n = 10%?
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The QR method: concluding remarks

e The QR method is the method of choice for dense systems of
size n with n up to a few thousend.

e Usually, for large values of n, one is only interested in a few
eigenpairs or a part of the spectrum. The QR-method computes
all eigenvalues. The order in which the method detects the
eigenvalues can not be pre-described. Therefore, all
eigenvalues are computed and the wanted ones are selected.

e For larger values of n, methods are used (to be discussed in a
following lectures) that project the eigenvalue problem onto low
dimensional spaces, where the QR method is used.

e The method of choice for computing zeros of polynomials is
also the QR method (applied to the companion system).

Iterative methods for linear systems

Iterative methods construct successive approximations xy to the
solution of the linear systems Ax = b. Here & is the iteration
number, and the approximation xy, is also called the iterate .
The vector e, = x;, — x is the error,

rp =b — Ax; (= —Ae;) is the residual .

The iterative methods are composed of only a few different basic
operations:

* Products with the matrix A

® \ector operations (updates and inner product operations)

* Preconditioning operations

2
National Master Course TUDelft

Preconditioning

Usually iterative methods are applied not to the original system
Ax = Db,
but to the preconditioned system
M 'Ax = M b,
where the preconditioner M is chosen such that:

* Preconditioning operations (operations with M !, i.e.,
solves Mw = r for w) are cheap;

* The iterative method converges much faster for the
preconditioned system with appropriate preconditioner.
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Basic iterative methods

The first iterative methods we will discuss are the basic iterative
methods . Basic iterative methods only use information of the
previous iteration.

Until the 70’s they were quite popular. Some are still used but as
preconditioners in combination with an acceleration technique.
They also still play a role in multigrid techniques where they are
used as smoothers.
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Basic iterative methods (2) Richardson’s method

The choice M =1, R =1 — A gives Richardson’s method ,
which is the most simple iterative method possible.

Basic iterative methods are usually constructed using
a splitting of A:
A=M-R. The iterative process becomes

Successive approximations are then computed using the Xpp1 =X, + (b — Axz) = b+ (I— A)xy,
iterative process
MXk-+1 = RXk- + b

which is equivalent too
Xg+1 = Xk + M_l(b — Axp) = xp + M_lrk

The next few slides we look at M = 1.
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Richardson’s method (2) Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for

This process yields the following iterates:
(I —Z)~! with Z = I — A. If this series converges we have

Initial guess xo = 0

X1 = b [ee)
I-A)=A""
xs=b+(I-A)xi=b+(I-A)b g( )
o N _ - o 2
x3=b+(I—-A)x;=b+(I-A)b+(I-A)D The series expansion for ;1 (z € C) converges if |z| < 1.

Repeating this gives The series >.(I— A)" converges if
k

Xer1 =Y _(I-A)'b

1=0

|1 — Al <1 alleigenvalues X of A.
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Richardson’s method (3)

So Richardson’s method ‘generates’ the series expansion for
(I—Z)~! with Z =1 — A. If this series converges we have

Y @-Ay=A""

i=0
The series expansion for -1~ (z € C) converges if |z| < 1.
The series >.(I— A)" converges if

Ae{(eC|]1-¢| <1} alleigenvalues X of A.

For X real this means that 0 < A < 2.

Richardson’s method (4)

In order to increase the radius of convergence and to speed up
the convergence, one can introduce a parameter «:

Xit+1 = Xk + a(b — Axy) = ab + (I — cA)xy,
It is easy to verify that if all eigenvalues are real and positive the
optimal « is given by

2
o = -
ont )\max + )\min

If all eigenvalues are in right half of the complex plane, i.e.,
Re(\) > 0 all eigs. X of A, then, for some «

|1 —a)| <1 alleigenvalues X of A.
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Richardson’s method (4)

0a=0.64

15 T T
Complex plane ® )

0.5

-1+

-15 I I I I I I
-0.5 0 0.5 1 15 2 25 3

2
National Master Course TUDelft

2
National Master Course TUDelft

Initial guess

Before, we assumed for the initial guess xo = 0.
Starting with another initial guess x( only
means that we have to solve a “shifted” system

Aly+x9)=b < Ay=b-Axi=rg

So the results obtained before remain valid, irrespective of the
initial guess.
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Stopping criterion
We want to stop once the error ||x; — x|| < ¢, with e some
prescribed tolerance. Unfortunately we do not know x, so this
criterion does not work in practice.
Alternatives are:
* frull = [b — Axg| = [Ax — Axyl| <€
Disadvantage: criterion not scaling invariant

® |lexll/llroll < e
Disadvantage: good initial guess does not reduce the

number of iterations

® |lrxll/[bl] <
Seems best (fits the idea of a small backward error).

Convergence

To investigate the convergence of Basic Iterative Methods in
general, we look again at the formula

Mxy+1 = Rx; + b.

Remember that A = M — R. If we subtract Mx = Rx + b from
this equation we get a recursion for the error e, = x;, — x:

Mek+1 = Rek

2
National Master Course TUDelft

Convergence (2)

We can also write this as

er+1 = M 'Rey,

This is a power iteration and hence the error will ultimately point

in the direction of the dominant eigenvector of M~ 'R.
The rate of convergence is determined by
the spectral radius p(M~'R) of MR (=1-M'A):
p(M™'R) = max{|)\| |\ eigenvalue M~'R}
= max{|l — )| | A eigenvalue M~'A}
For convergence we must have that
p(M™R) < 1.
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Linear convergence

Ultimately, we have |[le;.1|| = p(M~'R) |lex||, which means that
we have linear convergence.

Convergence history
T T T
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The vertical axis displays the size ||ej||2 of the error on log-scale.
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Classical Basic Iterative Methods

We will now briefly discuss the three best known basic iterative
methods

¢ Jacobi’'s method
® The method of Gauss-Seidel
® Successive overrelaxation
These methods can be seen as Richardson’s method applied to

the preconditioned system

M 'Ax=M"'b.

Jacobi’s method

We first write A =L + D + U, with

L the strictly lower triangular part of A,
D the main diagonal, and
U the strictly upper triangular part.

Jacobi's method is defined by the choice
M=D = R=-L-U.
The process is given by
Dxp1 = (=L —U)x; + b,

or, equivalently, by
Xp+1 = X+ D_l(b — AXk)
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The Gauss-Seidel method

We write again A=L+ D + U.

The Gauss-Seidel method is defined by the choice
M=L+D = R=-U.
The process is given by

(L + D)xp11 = —Uxy, + b,

or, equivalently, by
Xpr1 =Xk + (L+ D)7 (b — Axy).
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Successive overrelaxation (SOR)
We write again A =L+ D + U.

The SOR method is defined by the choice
1 1
=-D+L = R=(—-1)D-UTU.
w w
The parameter w is called the relaxation parameter .
The process is given by
(ID+L)xpy1 = (2 —1)D-U)xz+b

or as
Xpp1 =Xk + (ZD + L) (b — Axy)

With w =1 we get the method of Gauss-Seidel back.
In general the optimal value of w is not known.
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Ilterative refinement

Two weeks ago, we saw direct methods. For numerical stability it
is necessary to perform partial pivoting. However, this goes at
the expense of the efficiency.

If the LU-factors are inaccurate, such that A = LU — A 4, they
might still be usable as preconditioner for the process

X1 = Xx + (LU) (b — Axy)

This is called iterative refinement and is used to improve the
accuracy of the direct solution.

One-step projection methods

The convergence of Richardson’s method is not guaranteed and
if the method converges, convergence is often very slow.

We now introduce two methods that are guaranteed to converge
for wide classes of matrices. The two methods take special
linear combinations of the vectors r;, and Ar to construct a new
iterate xj; that satisfies a local optimality property.

2
National Master Course TUDelft

Steepest descent

Let A be Hermitian positive definite. Define the function
Flxr) = llx = x|% = (x — %)  A(xy, — x)

Let xx11 = X + axrg. Then the choice
r;ry

. —
ry Ary,

minimizes f(xx11) (given x; and ry).

Theorem. Steepest decent converges
if A is Hermitian positive definite.

Convergence is still usually very slow.
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(Local) Minimal residual

Let A be general square. Define the function
9(xx) = [Ib — Axy 3 = riry

Let xx11 = X + axrg. Then the choice
r;Ary
r; A*Ary,

minimizes g(xxy1) (given x; and rg).

A —

Theorem. The local minimal residual method converges
if Re(A) > 0 for all eigenvalues \ of A.

Convergence is still usually very slow.
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Orthogonality properties Concluding remarks

The optimality properties of the steepest descent method and During the next lessons, the steepest decent method and the
the minimal residual method are equivalent with the following minimal residual method will be generalised.

orthogonality properties:
This will ultimately give rise to a class of optimal iterative

For steepest descent methods.

rZrk

ap = A < Tpyl 1L rg.
T ATk Moreover, we will see that these methods are closely linked to

y
For the (local) minimal residual method eigenvalue method (as the simple iterative methods are to the

r;Ary Power method).

= r]*;A*—Ark & T L Ar; .

&7

) % ) %
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