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Av = )\v  Shifted power: u, = (A -oDu,

Scale ugy1 = ug/|[ug2

Theorem.
The uy, converge to (a multiple of) v, if

|)\j0—0'| > |>\j—0'| a||j75joi

Vo is the dominant eigenvector of A — oI,
and >‘j0 — o is the dominant eigenvalue.

oo _ 1A=l
Eventual error reduction is p = maxj#OW

Program Lecture 5

e Power Method & Richardson

e Filtering

e Shift-and-Invert & Preconditioning
e Polynomial Iteration

e Seclecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

Av = )\v  Shifted power: u, = (I-aA)u,

Scale Up41 = ﬁk/e’{ﬁk

Improvements are based on the fact that
f(A)V] = f()\j)Vj
Examples. f(A) = (I—aA)
FA) =14+~ A+ ... +yA =T-a1A)...(I-aA)
F(A) = (A o) !

Combination. Cayley transform:

f(A)=(A-Dta+A)



Av = )\v  Shifted power: u,=-aA)u,

Scale Uk_|_1 = ﬁk/e*iﬁk

Improvements are based on the fact that
FCAWV; = fF(A)V;.
Examples. f(A) = (I—-aA)
FA) =T+~ A+ ...+ A = A —-a1A)...(I-aA)
f(A) = (A—oD)!
Combination.

f(A) = (A —oD) " LI-aA)

Preconditioning

Purpose. To improve the distribution of the eigenvalues
in order to speed up convergence.

For eigenvalue computation:
make the wanted eigenvector (strongly) dominant.
Shift & Invert can be a feasible strategy

For linear systems: cluster the eigenvalues round 1.
Precondition with a matrix M for which
e A(M~1A) clusters ‘better’ round 1 than A(A)

e the system Mu = r can efficiently be solved for u.

For eigenvalue computation:
A and M—1A generally do not have the same eigenvectors.

Av = )\v  Shifted power: u,=0-aA)u,

Scale Uk_|_1 = ﬁk/e*iﬁk
Improvements. Apply power method with

f(A) = (T—a1A)...A—ayA) or f(A) = (A —-oI)"1(I-aA)

Equivalent interpretations.
1. Diminish unwanted components. Filtering.
2. Amplify wanted components

3. Improve distribution eigenvalues. Preconditioning.

Av = )\v  Shifted power: u, = (I-aA)u,

Scale Up41 = ﬁk/e’{ﬁk

Improvements. Apply power method with
f(A) =T —a1A)...(I—aA) or f(A) = (A —-oD)"H(I-aA)

Ax=Db Richardson: Xp41 = X + a(b — Axy,)

Polynomial version: Select oy per step.

Purpose: Diminish all components ‘equally’ well.



Richardson (with relax. par.)

Richardson (with relax. par.)

Select Xg, «, tol, kmax
Compute rg = b — AXg
for k=0,1,2,...,kmax do

1t ||r|| < tol, break, end if

Select X, «, tol, kmax
Compute r = b — AX
for k=0,1,2,...,kmax do

1t ||r|| < tol, break, end if

U, =rg u=r
C, = Aug c=Au
Xp4+1 = Xi + auy X «— X+ au
rk_H:rk—ack r —r—acC
end do end do
u,, search direction (for the approximate) This is a ‘memory friendly' version.
Note. Update r; of the form Aug with u, update Xx. «— © new value replaces old one.
Polynomial iteration General remarks for linear systems.

e The preconditioned system.
Select X, ai,...,ay, tol, kmax For ease of discussion assume no preconditioning:
Compute r = b — AX

for k=0,1,2,...,kmax do e Consistent updates.
If ||[r]| < tol, break, end if We update r and x consistently:
u=r update r by vectors —c of the form ¢ = Au with u explicitly
c=Au avaliable and update x by u

j =kmod/, a=aj41
X «— X+ au
r —r—aoacC

e The shifted system.

Assume Xg = 0.
end do




How to select the a; and o?

Static.
Select parameter(s) before starting the iteration.
Base selection on pre-knowledge of the spectrum.

Dynamic.

Let the computational process determine the parameter(s).
Computation based on information that becomes available
during the iteration.

Static. Single parameter

Examples. AX = b.

e Ifall \j eigenvalues Ain [A_, Ay ] = [u—p,pu+p] C (0,00):

f(A) =1I- OéoptA W|th Qlopt = 1/'LL,

Q-

Ay — A 1- 2 A
max|f(\;)] < + = C <eC, where C= o+
MpFAS T 142 A

Therefore, for Richardson with a = agpt,

. 2 .
PR S exp (=2) IFE<r & targe.

Static. Single parameter

Examples. Avg = M\gVg, Mg € A(A) wanted eigenvalue.

o If [N\g— u| > |\ — u| for all other X\ € A(A):

f(A) =A—uL
Shifted power method.

e If \g closest to some target value 7 is wanted:
f(A) = (A o)1 with 0 = 7.
Inverse iteration or Wielandt iteration.

Dynamic. Single parameter

Examples. Avg = A\gvg, Ag € A(A) wanted eigenvalue.

o F(A)=(A—oD) 1, with o= o), = p(uy) = AL
) ad

Rayleigh Quotient Iteration

The Rayleigh quotient p(uy) is the ‘best’ available approxi-
mate eigenvalue at step k.

If RQI converges, it converges quadratically eventually.

For Hermitian A, the asymptotic convergence is even cubic.

“If converges”: Example. A = {(1) (1)

. Vg =e1.



RQI:

+ Fast convergence (if convergence).
-+ Can detect eigenvalues in the interior of the spectrum.
— No controle on what eigenvalue is going to be detected.

The linear systems to be solved require
a new LU-decompostion in each step.

Wielandt Iteration:

— Linear convergence.

+ Can detect eigenvalues in the interior of the spectrum.
-+ Finds eigenvalue close to the shift.

+ The same LU-decomposition can used in each step.

Note. The fact that linear systems have to be solved may
make the methods not feasible for huge n.

Static. Multiple parameter

Examples. AX = b.
Suppose we have a set £ C C that contains all };.

Select f(A) = (I —-a1A)-...-I—-aA), i.e.,, aj, such that
v=max{[f(O)|=[(1-a1Q)-...- (T — Q)| | € E}

is as small as possible.

Notation.
Py is the set of all polynomials of degree at most /.

PP ={peP;Ip(0)=1}

Observation. p € P,
p(0)=1 & pQO=>0Q-ai)-...- (T — Q).

Dynamic. Single parameter

Examples. AX =Db.
Select f(A) =1— oy A with a5 to minimize:
e Minimal Residual: |[rg41ll2 = |[ry — o Cll2 minimal

e If A is positive definite
Steepest descent: X — Xp41[[4 minimal

Convergence if Re()\;) > 0 for all eigenvalues \; of A.

Static. Multiple parameter

Examples. AxX = b.
Suppose we have a set £ C C that contains all };.

Select f(A) = (I —-a1A)-...-I—-aA), i.e.,, aj, such that

v=max{|f(Ol=11-a1)-...- (T -] | (€ E}

is as small as possible.

This is a problem from approximation theory:

Find a polynomial in 73? that is as small as possible on £.

Solutions for £ = [A_, 4] C (0,00) (Chebyshev pols)

Approximate solutions for ellipses (Cheb.), polygons (Faber pols).



Static. Multiple parameter

Examples. Av = )\v.
Suppose we have a set £ C C that contains all \;,
except for the wanted eigenvalue A\g € A(A).

Select f(A) = (I —a1A)-...- (I—ayA) such that with
VEr?ggq(l—alC)'n-'(l—aéCN

v/|f(Ag)| is as small as possible.

Chebyshev polynomials

1

L) = S+ ¢, where 2=+ (0.

N |

Exercise. For all z € C we have

{ To(z) =1, Ti(z) ==,
Tk+1(w) = Qka(w) — kal(w) for k=1,2,....

Assume [)‘—7>‘—|—] = [,U, - PaN+P] C (O)OO)

Ty(x)

Theorem. With z=(u—)\)/p and pcher(A) = ——"—,
Ty(1/p)

we have that pcher € P9 and

max |pcheb(N)| = m < 2exp (—\2/—2) ,

where the max. is taken over all A€ [A_,A\y] and C = :\\—f

Chebyshev polynomials

(@) = 5 +¢7, where z=S(C+¢h (€O

N | =

Exercise. For all x € C we have

To(z) =1, Ti(z) ==,

Tk+1(m) = QZ‘Tk(JJ) — Tk_l(a:) for k=1,2,....
Assume [A_, 4] = [ —p,u+ p] C (0, 00).

Ty(x)

Theorem. With == (u—X)/p and pcrer(N) = ,
Ty(1/p)

we have that pcren € PP and for any g € P2,

max [pchen(A)] < max|g(A)],

where the maxima are taken over all A € [A_, A\4].

Chebyshev versus Richardson

Error reduction for spectrum in [A_, ;] C (0, 00).
Put C= //\\—‘f

e Degree ¢/ Chebychev.

2/
Cheb(?) < Cheb(¢)
r S2exp|——]||Ir k large

e Richardson with optimal «.

; 2/ )
PRI < exp (—5) PRk large

Note. Chebyshev iteration is designed for spectra in in-
tervals, but works well also for (narrow) ellipses around an
interval.



Chebyshev

with p=24F2 and p=242- we have that

rp = - with = Tk(%(ul —A)ro, v =Ti(H)

Tk+1($) = QQZTk(.T) — kal(x) implies that

_ S _2uz  2p%
Vep1 =286 —W—1 and  Fpq = — SAR — 1.

Hence,
— 2pvg 29 V-1
r = r. — Ar;, — r._
k1 = oy R T o TR T g k1
_ 2u 29y V-1
X = X r. —
k+1 = vy +P’Yk+1 Vet1 k-1

Note that the update of the residual also uses an additional
‘older’ residual.

Degree ¢ Chebyshev versus Chebyshev

Error reduction for spectrum in [A_, 4] C (0, 0).
_ A4
Put =1
e Degree ¢/ Chebychev.
. 2454
Cheb(¢ J
5=l < cp2exn (<25 ) Irola K targe
e Chebyshev
240

K51l < Cr2exn (<25 ) Irola K targe

Here, Cp some constant

Chebyshev

Select Xg, tol, kmax, u, p
Compute rg = b — AXq
Set vg =, rlzro—%Aro, xlzxo—l—%ro
for k=1,...,kmax do
If ||r|| < tol, break, end if
v = 20— p? V1
Oékz%f, /Bkz,,%,s ’szﬁ,
M1 = oV — B Al — Y M1

Xp41 = X+ B Ve — Ve Xp—1
end for

With wu,p € R,p > 0 such that

A(A) C [u—p, =+ pl C (0, 00).

AX=Db

Summary.
e 1y is of the form py(A)rg with py, € PP.

e Since p;(0) = 1 we have that pp(z) = 1 — zq_1(z) for
some polynomial gq,_q of degree k — 1 and

r, =ro— Aqr_1(A)ro, Xj, = qr—1(A)ro.

e Consistent update of r; and Xy,

i.e., no need to gather explicit information on g;_1.



AXx=Db

Summary.
Let K£,(A,rg) be the Krylov subspace of order k

generated by A and rq:
Kp(A,rg) = span(rg,Arg,..., A1)
= {q(A)ro | g€ Pir_1}. '
Then
I, € ro+ AKCL(A,ro) C Kgt1(A,r0),
X € KL(A,rg).

Dynamic. Multiple parameter

Find the residual in the Krylov subspace Kj41(A,rg) with
‘smallest’ norm. Use also 'older’ residuals in the update

process.

Generalized Conjugate Residuals

GCR is an optimal Krylov subspace solver:

Theorem. Assume Xg = 0: rg=Db.
The GCR approximate solution X; at step k is the vector
in K(A,rg) with smallest residual norm:

[Irellz = liro — Axgll2 < [lro — AX[l2 (X € Kx(A,r0)).
In particular,  [[rg<R|lo < [[rE"e®()o.
Hence, if A(A) C [A-,A4] C (0,00), then, with C= 3%,

2k
[reRll2 < Cp2exp <_\/E> lIroll2-

Here, Cp some constant

Generalized Conjugate Residuals

Select Xg, kmax, tol
Compute rg = b — AXq
for k=0,1,...,kmax do
break if ||rgl|o < tol
U, =rg, C, = Auy
for j=0,...,k—1 do
ﬁj = C;Ck/O'j
Up < Ug — ﬂjUj
Cp «— Cp — ﬁjCj
end for
o = CiCk, oy = Ciri/oy
Xp41 = X + agUy
Fe+1 = Fp — oCy
end for

Chebyshev versus GCR

Chebyshev.

No inner products
Short recurrences (three term recurrences)
Not the smallest residuals with appr. sol. from K (A, rg).
Sensitive to the estimate of the hull of the spectrum.
Only effective if spectrum in

a narrow ellipse in a half plane as Cct.

R.
Smallest residual with appr. sol. from K,(A,rg).
Flexible (any information can be used for uy)
Stable

Growing recurrences with increasing

step number k: increasing computational costs,
increasing storage demands.



Flexible GCR

In the preceding transparancies, GCR has been constructed
as an optimal Krylov subspace solver.

However, GCR can be turned into a supspace solver!:

If
u,=r;
is replaced by
Solve approximately AUg = for U
then we search for an approximate solution in the search

subspace span(ug,...,u;_1) and GCR finds the one with
smallest residual.

Exercise. Exact solve of Auy, =y leads to X;41 = X.

GCR and Krylov subspace solvers

GCR is a subspace solver

Pros
e Flexible (any information can be exploited)

Cons
e Higher computational costs per step

Krylov subspace solvers

Pros
e Krylov subspace structure can be exploited to save com-
putational costs per step

e Polynomial approximation theory provides insight in con-
vergence behaviour

Cons
e Sensitive to rounding errors

e Not flexible (only fixed preconditioners are allowed).

Flexible GCR

Solve approximately AU = for U

Examples.
e u; =r;: standard GCR searches Ky (A,rg)

e Solve Mu; =r; for uy: preconditioned GCR
searches the Krylov subspace M~1K,(AM~1, rp).

e Use ¢ steps of GCR to solve AU =1r; @ nested GCR
solution in Kp.(A,rg)

e Use GCR to solve AU =T} to rel. res. acc. 0.1

e At step k£ = 0,1,...,¢ use information on the solution
(as uy, representing singularities, etc.)

e Atstep k=0,...,f use a ‘u;’ from GCR run for Ax = b.

A=A Conjugate Residuals

Select Xg, kmax, tol

Compute rg = b — AXg

for k=0,1,...,kmax do
break if ||rgl|o < tol
U, =rg, Cp= Aug
Br—1=C}_1Ck/0k_1
Up — U — B 1Ug_1
Cp < Cp— Br_1Ck_1
o = CiCk, oy = Ciri/oy
X+1 = X + Uy
Fi41 = — oCy

end for




A=A Conjugate Residuals

3 DOTs:

c: . Ar

— “k—-1TYE _ _ _
Br—1 - T o1 ! Uk—C;;Ck, pk:CZrk, ak_%
Save 1 DOT:
*

Br_q1 = Ck—lArk _ [I‘k — "k71]*A|‘k — rZArk _ Pk

Ci-1€k-1 [ —rp-al"Cr e _1Ck—1 Pk—1

Here we used that Qp_1Cp_1 =Vr, —Fp_1
rpLlcp 1, g LArg 3
Cp = Argp — B_1Ck—1
Ci 1 Cr_1

Exercise. o, = C Ar,, p, =TI Ar,cR.

Af=A>0 Conjugate Gradient

Suppose A is positive definite, i.e., A*= A > 0.

Property. (x,y) =y*A1x is an inner product:
the A1 inner product.

Replace standard inner product by the A1 inner product.

rscy ~ r*A~lcy = rr = ||r|3 Norm r comes for free!

c*c ~ c*A lc = c*u No Al needed!

ry L Arj~rp L1 Ar; < rp Lr;: orthogonal residuals.

A

Additional saving of
1 DOT (norm r for free) and 1 AXPY ~ CG



