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Program Lecture 5

• Power Method & Richardson

• Filtering

• Shift-and-Invert & Preconditioning

• Polynomial Iteration

• Selecting Parameters

1) single parameter a) static
b) dynamic

2) Multiple parameters a) static (Chebyshev)
b) dynamic (GCR)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (A− σI)uk

Scale uk+1 = ũk/‖ũk‖2

Theorem.

The uk converge to (a multiple of) vj0 if

|λj0 − σ| > |λj − σ| all j 6= j0:

and u0 has a component in the direction of vj0

vj0 is the dominant eigenvector of A− σI,

and λj0 − σ is the dominant eigenvalue.

Eventual error reduction is ρ ≡ maxj 6=j0
|λj−σ|
|λj0
−σ|

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γℓA
ℓ = (I− α1A) . . . (I− αℓA)

f(A) = (A− σI)−1

Combination. Cayley transform:

f(A) = (A− I)−1(I + A)



A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements are based on the fact that

f(A)vj = f(λj)vj.

Examples. f(A) = (I− αA)

f(A) = I + γ1A + . . . + γℓA
ℓ = (I− α1A) . . . (I− αℓA)

f(A) = (A− σI)−1

Combination. Cayley transform:

f(A) = (A− σI)−1(I− αA)

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements. Apply power method with

f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Equivalent interpretations.

1. Diminish unwanted components. Filtering.

2. Amplify wanted components

3. Improve distribution eigenvalues. Preconditioning.

Preconditioning

Purpose. To improve the distribution of the eigenvalues

in order to speed up convergence.

For eigenvalue computation:

make the wanted eigenvector (strongly) dominant.

Shift & Invert can be a feasible strategy

For linear systems: cluster the eigenvalues round 1.

Precondition with a matrix M for which

• Λ(M−1A) clusters ‘better’ round 1 than Λ(A)

• the system Mu = r can efficiently be solved for u.

For eigenvalue computation:

A and M−1A generally do not have the same eigenvectors.

A is n× n, Avj = λjvj

Av = λv Shifted power: ũk = (I− αA)uk

Scale uk+1 = ũk/e∗1ũk

Improvements. Apply power method with

f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Ax = b Richardson: xk+1 = xk + α(b−Axk)

Polynomial version: Select αk per step.

Purpose: Diminish all components ‘equally’ well.



Richardson (with relax. par.)

Select x0, α, tol, kmax

Compute r0 = b−Ax0

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

uk = rk
ck = Auk

xk+1 = xk + αuk

rk+1 = rk − αck

end do

uk search direction (for the approximate)

Note. Update rk of the form Auk with uk update xk.

Richardson (with relax. par.)

Select x, α, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

x ← x + αu

r ← r− αc

end do

This is a ‘memory friendly’ version.

← : new value replaces old one.
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Polynomial iteration

Select x, α1, . . . , αℓ, tol, kmax

Compute r = b−Ax

for k = 0,1,2, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

u = r

c = Au

j = k mod ℓ, α = αj+1

x ← x + αu

r ← r− αc

end do
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General remarks for linear systems.

• The preconditioned system.

For ease of discussion assume no preconditioning:

if preconditioner replace A by M−1A and b by M−1b.

• Consistent updates.

We update r and x consistently:

update r by vectors −c of the form c = Au with u explicitly

avaliable and update x by u

xk+1 = xk + αkuk, ck = Auk, rk+1 = rk − αkck

• The shifted system.

Assume x0 = 0.

If x0 6= 0, solve Ax = r0 ≡ b−Ax0.

12



f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

How to select the αj and σ?

Static.

Select parameter(s) before starting the iteration.

Base selection on pre-knowledge of the spectrum.

Dynamic.

Let the computational process determine the parameter(s).

Computation based on information that becomes available

during the iteration.
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f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Static. Single parameter

Examples. Av0 = λ0v0, λ0 ∈ Λ(A) wanted eigenvalue.

• If |λ0 − µ| > |λ− µ| for all other λ ∈ Λ(A):

f(A) = A− µI.

Shifted power method.

• If λ0 closest to some target value τ is wanted:

f(A) = (A− σI)−1 with σ = τ .

Inverse iteration or Wielandt iteration.
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f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Static. Single parameter

Examples. Ax = b.

• If all λj eigenvalues A in [λ−, λ+] = [µ−ρ, µ+ρ] ⊂ (0,∞):

µ = (λ+ + λ−)/2, ρ = (λ+ − λ−)/2.
f(A) = I− αopt A with αopt ≡ 1/µ,

max |f(λj)| ≤
λ+ − λ−
λ+ + λ−

=
1− 1

C
1 + 1

C
≤ e−

2
C , where C ≡ λ+

λ−

Therefore, for Richardson with α = αopt,

‖rRich
k+1‖ . exp

(
−2

C

)
‖rRich

k ‖ k large.
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f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Dynamic. Single parameter

Examples. Av0 = λ0v0, λ0 ∈ Λ(A) wanted eigenvalue.

• f(A) = (A− σI)−1, with σ = σk = ρ(uk) ≡
u∗kAuk
u∗kuk

.

Rayleigh Quotient Iteration

The Rayleigh quotient ρ(uk) is the ‘best’ available approxi-

mate eigenvalue at step k.

If RQI converges, it converges quadratically eventually.
For Hermitian A, the asymptotic convergence is even cubic.

“If converges”: Example. A =

[
0 1
1 0

]
. v0 = e1.
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RQI:

+ Fast convergence (if convergence).

+ Can detect eigenvalues in the interior of the spectrum.

No controle on what eigenvalue is going to be detected.

Remedy: First a few steps of Wielandt iteration.

The linear systems to be solved require

a new LU-decompostion in each step.

Wielandt Iteration:

Linear convergence.

+ Can detect eigenvalues in the interior of the spectrum.

+ Finds eigenvalue close to the shift.

+ The same LU-decomposition can used in each step.

Note. The fact that linear systems have to be solved may

make the methods not feasible for huge n.
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f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Dynamic. Single parameter

Examples. Ax = b.

Select f(A) = I− αk A with αk to minimize:

• Minimal Residual: ‖rk+1‖2 = ‖rk − αk ck‖2 minimal

• If A is positive definite

Steepest descent: ‖x− xk+1‖A minimal

Convergence if Re(λj) > 0 for all eigenvalues λj of A.
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f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− αℓA), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− αℓζ)| | ζ ∈ E}

is as small as possible.

Notation.
Pℓ is the set of all polynomials of degree at most ℓ.

P0
ℓ ≡ {p ∈ Pℓ | p(0) = 1}

Observation. p ∈ Pℓ

p(0) = 1 ⇔ p(ζ) = (1− α1ζ) · . . . · (1− αℓζ). 19

f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Ax = b.

Suppose we have a set E ⊂ C that contains all λi.

Select f(A) = (I− α1A) · . . . · (I− αℓA), i.e., αj, such that

ν ≡ max{|f(ζ)| = |(1− α1ζ) · . . . · (1− αℓζ)| | ζ ∈ E}

is as small as possible.

This is a problem from approximation theory:

Find a polynomial in P0
ℓ that is as small as possible on E.

Solutions for E = [λ−, λ+] ⊂ (0,∞) (Chebyshev pols)

Approximate solutions for ellipses (Cheb.), polygons (Faber pols).
20



f(A) = (I− α1A) . . . (I− αℓA) or f(A) = (A− σI)−1(I− αA)

Static. Multiple parameter

Examples. Av = λv.

Suppose we have a set E ⊂ C that contains all λi,

except for the wanted eigenvalue λ0 ∈ Λ(A).

Select f(A) = (I− α1A) · . . . · (I− αℓA) such that with

ν ≡ max
ζ∈E
|(1− α1ζ) · . . . · (1− αℓζ)|

ν/|f(λ0)| is as small as possible.
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Chebyshev polynomials

Tℓ(x) ≡
1

2
(ζℓ + ζ−ℓ), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2 x Tk(x)− Tk−1(x) for k = 1,2, . . . .

Assume [λ−, λ+] = [µ− ρ, µ + ρ] ⊂ (0,∞).

Theorem. With x ≡ (µ− λ)/ρ and pCheb(λ) ≡ Tℓ(x)

Tℓ(µ/ρ)
,

we have that pCheb ∈ P0
ℓ and for any q ∈ P0

ℓ ,

max |pCheb(λ)| ≤ max |q(λ)|,

where the maxima are taken over all λ ∈ [λ−, λ+].

22

Chebyshev polynomials

Tℓ(x) ≡
1

2
(ζℓ + ζ−ℓ), where x ≡ 1

2
(ζ + ζ−1) (ζ ∈ C).

Exercise. For all x ∈ C we have
{

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2 x Tk(x)− Tk−1(x) for k = 1,2, . . . .

Assume [λ−, λ+] = [µ− ρ, µ + ρ] ⊂ (0,∞).

Theorem. With x ≡ (µ− λ)/ρ and pCheb(λ) ≡ Tℓ(x)

Tℓ(µ/ρ)
,

we have that pCheb ∈ P0
ℓ and

max |pCheb(λ)| = 1

|Tℓ(µ/ρ)| ≤ 2exp

(
− 2ℓ√
C

)
,

where the max. is taken over all λ ∈ [λ−, λ+] and C ≡ λ+
λ− .
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Chebyshev versus Richardson

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ℓ Chebychev.

‖rCheb(ℓ)
k+ℓ ‖2 . 2 exp

(
− 2ℓ√
C

)
‖rCheb(ℓ)

k ‖2 k large

• Richardson with optimal α.

‖rRich
k+ℓ‖2 . exp

(
−2ℓ

C

)
‖rRich

k ‖2 k large

Note. Chebyshev iteration is designed for spectra in in-

tervals, but works well also for (narrow) ellipses around an

interval. 24



Chebyshev

With µ ≡ λ++λ−
2 and ρ ≡ λ+−λ−

2 we have that

rk =
r̃k
γk

with r̃k ≡ Tk(
1
ρ(µI−A))r0, γk ≡ Tk(

µ
ρ)

Tk+1(x) = 2xTk(x)− Tk−1(x) implies that

γk+1 = 2µ
ργk − γk−1 and r̃k+1 = 2µ

ρ r̃k − 2
ρAr̃k − r̃k−1.

Hence,

rk+1 =
2µγk
ργk+1

rk − 2γk
ρ γk+1

Ark −
γk−1
γk+1

rk−1

xk+1 =
2µγk
νγk+1

xk +
2γk

ργk+1
rk −

γk−1
γk+1

xk−1

Note that the update of the residual also uses an additional

‘older’ residual. 25

Chebyshev

Select x0, tol, kmax, µ, ρ

Compute r0 = b−Ax0

Set ν0 = µ, r1 = r0 − 1
µAr0, x1 = x0 + 1

µr0

for k = 1, . . . , kmax do

If ‖r‖ ≤ tol, break, end if

νk = 2µ− ρ2/νk−1

αk = 2µ
νk
, βk = 2

νk
, γk = ρ2

νk−1νk
,

rk+1 = αk rk − βk Ark − γk rk−1

xk+1 = αk xk + βk rk − γk xk−1

end for

With µ, ρ ∈ R, ρ > 0 such that

Λ(A) ⊂ [µ− ρ, µ + ρ] ⊂ (0,∞).
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Degree ℓ Chebyshev versus Chebyshev

Error reduction for spectrum in [λ−, λ+] ⊂ (0,∞).

Put C ≡ λ+
λ− .

• Degree ℓ Chebychev.

‖rCheb(ℓ)
jℓ ‖2 ≤ CE 2j exp

(
−2jℓ√
C

)
‖r0‖2 k large

• Chebyshev

‖rCheb
jℓ ‖2 ≤ CE 2 exp

(
−2jℓ√
C

)
‖r0‖2 k large

Here, CE some constant like CE = ‖V‖2‖V−1|‖2,
the conditioning of the basis of eigenvectors.
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Ax = b

Summary.

• rk is of the form pk(A)r0 with pk ∈ P0
k .

Examples. pk(x) = (1− αx)k Richardson,

pmℓ(x) = (
∏ℓ

j=1(1− αjx))
m Polynomial,

pk(x) = Tk(
µ−x

ρ )/Tk(
µ
ρ) Chebyshev,. . .

• Since pk(0) = 1 we have that pk(x) = 1 − xqk−1(x) for

some polynomial qk−1 of degree k − 1 and

rk = r0 −Aqk−1(A)r0, xk = x0 + qk−1(A)r0.

• Consistent update of rk and xk,

xk+1 = xk + αkuk, ck = Auk, rk+1 = rk − αkck

i.e., no need to gather explicit information on qk−1.

28



Ax = b

Summary.

Let Kk(A, r0) be the Krylov subspace of order k

generated by A and r0:

Kk(A, r0) ≡ span(r0,Ar0, . . . ,Ak−1r0)

= {q(A)r0 | q ∈ Pk−1}.
.

Then

rk ∈ r0 + AKk(A, r0) ⊂ Kk+1(A, r0),

xk ∈ Kk(A, r0).

Dynamic. Multiple parameter

Find the residual in the Krylov subspace Kk+1(A, r0) with

‘smallest’ norm. Use also ’older’ residuals in the update

process.
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Generalized Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

for j = 0, . . . , k − 1 do

βj = c∗jck/σj

uk ← uk − βjuj

ck ← ck − βjcj

end for

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for
30

Generalized Conjugate Residuals

GCR is an optimal Krylov subspace solver:

Theorem. Assume x0 = 0: r0 = b.

The GCR approximate solution xk at step k is the vector

in Kk(A, r0) with smallest residual norm:

‖rk‖2 = ‖r0 −Axk‖2 ≤ ‖r0 −Ax̃‖2 (x̃ ∈ Kk(A, r0)).

In particular, ‖rGCR
k ‖2 ≤ ‖rCheb

k ‖2.

Hence, if Λ(A) ⊂ [λ−, λ+] ⊂ (0,∞), then, with C ≡ λ+
λ− ,

‖rGCR
k ‖2 ≤ CE 2 exp

(
− 2k√
C

)
‖r0‖2.

Here, CE some constant like CE = ‖V‖2‖V−1|‖2,

the conditioning of the basis of eigenvectors. 31

Chebyshev versus GCR

Chebyshev.
+ No inner products
+ Short recurrences (three term recurrences)

Not the smallest residuals with appr. sol. from Kk(A, r0).
Sensitive to the estimate of the hull of the spectrum.
Only effective if spectrum in

a narrow ellipse in a half plane as C
+.

GCR.
+ Smallest residual with appr. sol. from Kk(A, r0).
+ Flexible (any information can be used for uk)
+ Stable

Growing recurrences with increasing
step number k: increasing computational costs,
increasing storage demands.
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Flexible GCR

In the preceding transparancies, GCR has been constructed

as an optimal Krylov subspace solver.

However, GCR can be turned into a supspace solver!:

If

uk = rk

is replaced by

Solve approximately Auk = rk for uk

then we search for an approximate solution in the search

subspace span(u0, . . . ,uk−1) and GCR finds the one with

smallest residual.

Exercise. Exact solve of Auk = rk leads to xk+1 = x.
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Flexible GCR

Solve approximately Auk = rk for uk

Examples.

• uk = rk: standard GCR searches Kk(A, r0)

• Solve Muk = rk for uk: preconditioned GCR

searches the Krylov subspace M−1Kk(AM−1, r0).

• Use ℓ steps of GCR to solve Auk = rk : nested GCR

solution in Kℓk(A, r0)

• Use GCR to solve Auk = rk to rel. res. acc. 0.1

• At step k = 0,1, . . . , ℓ use information on the solution

(as uk representing singularities, etc.)

• At step k = 0, . . . , ℓ use a ‘uj’ from GCR run for Ax = b̃.
...
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GCR and Krylov subspace solvers

GCR is a subspace solver

Pros

• Flexible (any information can be exploited)

Cons

• Higher computational costs per step

Krylov subspace solvers

Pros

• Krylov subspace structure can be exploited to save com-

putational costs per step [to be implemented ∗)].
• Polynomial approximation theory provides insight in con-

vergence behaviour

Cons

• Sensitive to rounding errors [if ∗)].
• Not flexible (only fixed preconditioners are allowed).
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A∗ = A Conjugate Residuals

Select x0, kmax, tol

Compute r0 = b−Ax0

for k = 0,1, . . . , kmax do

break if ‖rk‖2 ≤ tol

uk = rk, ck = Auk

βk−1 = c∗k−1ck/σk−1

uk ← uk − βk−1uk−1

ck ← ck − βk−1ck−1

σk = c∗kck, αk = c∗krk/σk

xk+1 = xk + αkuk

rk+1 = rk − αkck

end for
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A∗ = A Conjugate Residuals

3 DOTs:

βk−1 =
c∗k−1Ark

σk−1
, σk = c∗kck, ρk ≡ c∗krk, αk =

ρk
σk

Save 1 DOT:

βk−1 =
c∗k−1Ark

c∗k−1ck−1
=

[rk − rk−1]
∗Ark

[rk − rk−1]
∗ck−1

= − r∗kArk

r∗k−1ck−1
= − ρk

ρk−1

Here we used that αk−1ck−1 = rk − rk−1

rk ⊥ ck−1, rk ⊥ Ark−1

ck = Ark − βk−1ck−1

ck ⊥ ck−1

Exercise. σk = c∗kArk, ρk = r∗kArk ∈ R.
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A∗ = A > 0 Conjugate Gradient

Suppose A is positive definite, i.e., A∗ = A > 0.

Property. (x,y) ≡ y∗A−1x is an inner product:

the A−1 inner product.

Replace standard inner product by the A−1 inner product.

r∗c1  r∗A−1c1 = r∗r = ‖r‖22 Norm r comes for free!

c∗c c∗A−1c = c∗u No A−1 needed!

rk ⊥ Arj  rk ⊥A−1 Arj ⇔ rk ⊥ rj: orthogonal residuals.

Additional saving of

1 DOT (norm r for free) and 1 AXPY  CG
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