Ax=Db {AeC|Av=)X}CECC

Construct iteratively rp, = b — Ax; with |[rg|l2 small
Utrecht, 8 november 2017

X gets a free ride: rp==~rp_1— akAuk—lr X = Xp—1 —+ apUp_ 1

O ptima| Iterative Methods Richardson: o € C, 1, = r,_; — aAr,_; = (I— aA)krg

Krylov subspace: Ki(A,rg) = span(rg, Arg,..., AF—1rg)
= {p(A)rg|p pol. degree < k}

Do €C, rp =11 — o Arg_1 = pi(A)rg

With pr(A) = (1 —agA) ... - (1 — ag))
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Gerard Sleijpen ({{4‘& Department of Mathematics @ = Qpmoar: With p(A) = (1 —a1A) - (1 —ag), pje =p’

and  max..e [p(¢)]  as small as possible.

e Chebyshev iteration: p,. =T}, r = aur. — BLAY, — A1l
http://www.staff.science.uu.nl/~sleij101/ Pk b TR &~ PeAlE ~ Ye-1Mk—1
e Local Minimal Residual: o = argmin,||r,_1—aAr,_1]||2

e Generalized Conjugate Residuals: Ry, = [rg,...,r;_1]
1 r,=r._1—ARya;_1 with &k,lEminarg&ecknrk,l—ARk&HQ <
Program Lecture 6 Orthonormal basis K,(A,rq)
e Krylov basis & Hessenberg matrices Recall V, = [v1,..., V.
e Arnoldi's decomposition Suppose Vi,...,V, is an orthonormal Krylov basis K5 (A, rg).
e Linear systems and Arnoldi’'s decomposition Compute v,y by orthogonalising Av,, against V;:
¢ GMRES and FOM e EXxpand: w = Av,,
e Convergence o Orthogonalize: V=w — V,h, with k) = Vw,
e Eigenvalues and Arnoldi's decomposition e Normalize: Vg1 = V/y with v = |[v]l2.
* Arnoldi’s method Note. With /iy, = (7{T, 1), we have
e Convergence . n o
AV, =W =\V.h, + Vv = [V, V k| =WVoi1h
e Stability issues in Arnoldi's decomposition K el + Vi1 = Ve Vit ] {V,J k17
H,_1 I
e Summary Assemble  A[V,_1,Vi] = [V, V1] O_k é k]
Vi
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Theorem.
Orthogonalising Avj against VJ for j=1,...,k leads to

AV, =V, 1 Hy,

with V,, orthonormal, spanning K,(A,vy),
Hy. is (k+ 1) x k upper Hessenberg.

Note. The matrix H;, comes for free
in the orthogonalisation process.

Application for solving AX =rg. Try X = V. 4.

Find ¢} such that AV, 4. ~ rg = pg V. e1 with pg = ||roll2
~ Find ¢, such that V41 Hy 4 =~ poVi+1e1 if poVvi =g
~ Find ¢}, such that H 4. =~ poe1 if pgvVi =g

Details later.

Orthogonalisation

Terminology.

If V is an n x k£ orthonormal matrix and w is an n vector,
then, with orthonormalise w against V, we mean:
construct an n-vector v and a (k + 1)-vector k such that

VLV, |vlo=1, w=[V,v]h
Notation. [v,2] = 0rth(V,w)
Use a stable variant of Gram—Schmidt.

Note that the last coordinate of k is 0 if w is in the span
of V: in such a case (and if k < n), we select v to be a
(random) normalized vector orthogonal to V (we insist on
expanding to avoid stagnation in subsequential steps).
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Hessenberg and Krylov

Hessenberg matrices and Krylov subspaces are intimately
related.

Theorem. Consider the relation AV, = V1 H,

where Vi1 = [V, Viy1] is nx (k+ 1),
and H is (k+1) x k.

Then, vq,...,v, form a Krylov basis for K,(A,vy)
i.e., Vj spans KC;(A,rg) for all j=1,...,k,
& Hj is Hessenberg.

In Arnoldi’'s decomposition, V, is selected to be ortho-
normal (to ease computations and to enhance stability).

Arnoldi’s method:
orthonormalise Av, against Vj, to obtain v, all k.

Arnoldi’'s decomposition

AVj_1 =V, H_1,
with V, n x k orthonormal, H,_1 k x (k — 1) Hessenberg.

Expand the decomposition to AV, = V1 H;.

Notation. [V, Hy] = ArnStep(A,V;, Hy,_1)

w = Av,
[Vjt1, hi] = Orth(V, w)
Vg1 = [V, Vi1l

H, , B
Hy, = [gf ], Hy, < [Hy, hy)
k—1
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Generalized Minimal Residuals

Proposition. With X, =W, 4. and r, =b — AXy,
Uy, solves Hj 4. = ppe1 in least square sense

< |[rg]| minimizes ||b — AX||> over all X € K;(A,b).

Select kmax and tol
Set po = [|bll2, Vi = [b/po], Ho =[]
for k: 1,...,kma>< do
Break if pp < tol
[Vk+17ﬂk:] = ArnStep(A, Vk7ﬂk:fl)
Solve Hj Y. = poe1 in least square sense

pr = llpoe1 — Hy §ll2

end for
X = V-
9
GMRES
Notes.

e '"Solve H ¥ = ppe1 in the least square sense”

are problems in k-space, where k < n: costs are ‘negligible’

e There is no need to compute the residuals ry:
computing residual-norm does not require computing ry,

pr = lIrell2 = llpo e1r — Hy g2

e Computation of the approximate solution
only if residual accuracy has been reached.

Full Orthogonalisation Method

Proposition. With X, =W, 4. and r, =b — AXy,

Uy solves Hi g, =poe1 < rp L Ki(A,b).

Select kmax and tol
Set pg = ||bll2, V1 = [b/po], Ho =[]
for k= 1,...,kmax do
Break if pp < tol
(Mi41, Hi] = ArnStep(A, Vy, Hi,_1)
Solve H; yp. = pge1 for Ui
pr = llpoe1 — Hy g ll2
end for
X = Vg 4.

GMRES

Let Fe41 = (1,72, ;% e+1) " = (7, v+1)" such that
Yetr1Hy = O
Note that ,7k+1 can be computed by recursive updating.

Proposition.

GMRES||  __ PO
g o=z
1Vk+1ll2
Note.
e Even the k-dimensional system has to be solved
only (once) at reaching residual accuracy.



GMRES versus GCR

Both methods are mathematically equivalent, that is, in
exact arithmetic, they have the same residuals (residual
norms) at step k and the same approximate solutions.

GMRES is the most efficient method that gives the ap-
proximate solution from K,(A,b) with smallest residual
| - [[o-norm. GCR needs =~ twice as many AXPYs as GM-
RES.

GCR trivially extends to a flexible variant (injecting an
u;, # r;, does not hamper convergence). A flexible variant
of GMRES lacks the efficiency advantage.

Both methods suffer from growing computational costs
per step and growing memory requirements with in-
creasing step numbers.

Convergence

With the same ro:  [[FEMRES||5 = |[rSCR|l5 < |Ir2?||5

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

Proposition. If eigs A in [A_,A4] C (0,00), then

2k
IFEMRES |5 < [rE0)15 < (25 roll2) exp (—

)

where C = A+ and Cg is the condition number of the ei-

genvectors (i.e, Cp = |V|2|[V~L|2 if AV =VA).

Note. It is easy to construct sophisticated examples with
Cp extremely large (as 10100). Actually, even for small ;\\—J_F
convergence can be arbitrarily slow.

GMRES versus GCR

In contrast to GCR,
GMRES exploits the Krylov—Hessenberg structure.

Advantage. More efficiency.

Disadvantage. Sensitive to perturbations that affect the
Krylov structure.

Example. If at step £ in GCR “u = r;"” is replaced by
“Select a random u."”, then convergence is delayed by 1
step. If at step k in GMRES Av,, is replaced by a random
vector then GMRES stagnates forever.

Pertubations may come from inexact MVs, variable pre-
conditioners, etc.

Convergence

With the same ro:  [[rEMRES||5 = [[rSCR|l5 < ||r2?|5

‘Basic convergence conditions’ are:
1) the eigenvalues of A cluster away from 0, and
2) the eigenvector basis is not very ill conditioned.

A modification of the above examples shows that any mo-
notonic convergence curve is possible with unitary matrices
and also with any eigenvalue distribution:

Proposition. For pg>p12>...2pp_1>pn =0,
with Xg = 0 and A is n x n, consider the statement

() for a b and Ax = b, we have [[rgMRES||; = p;. all k.
Then a) (x) holds for some unitary matrix A, and

b) given A1,..., A, in C, (x) holds
for some matrix A with eigenvalues \q,...,\n.



Eigenvalues and Arnoldi’'s decomposition

AX = AX.
Find a normalized x; € Ki(A,rg) such that
re = 2AFx, — Ax,  with 2K = XJ AX,

is small in some sense and \(¥) ‘almost’ has the desired
properties

Arnoldi's decomposition: AV, = V11 Hj,.

r, = Vk+1(>\(k)z7k — Hy, 1), A = gxHy g
Note

Irell2 = [IX® G, — Hy gl

(Harmonic) Ritz values and
(GMRES) FOM residuals

Consider the linear system Ax =r. Take vi = rg/||roll2.

On the next transparencies a one-one relation is given bet-
ween Ritz values and FOM residuals and between harmo-
nic Ritz values and GMRES residuals. This relation provi-
des theoretical insight: it allows to relate convergence of
(harmonic) Ritz values towards eigenvalues to convergence
of FOM (GMRES). More details on consequences for the
convergence will be discussed next lecture.

Arnoldi’'s method

Proposition. With X = Vk: 17/{: and rp, = ﬂkxk — AXk,

gjk solves Hk gjk = 19]@37]@ - I 1L ICk(A, b)

Select kmax and tol
Set po =1, V1 = [b/|bll2], Ho =]
for k=1,...,kmax do
Break if pj < tol
[Vi+1, Hy] = ArnStep(A, Vi, Hy. 1)
Solve H} 4, = ¥}, Y for k eigenpairs (19](3),37,(;)).
Select a pair, say, (9 dk)> i — u/lliil2
Pk = |Pgt1 k! €7kl
end for
X = ngk’ >\=’l9k.

Ritz values and FOM residuals
Consider the linear system Ax =r. Take vi = rg/|ro|l2.

If rj, is the FOM residual,
then r;, = pi.(A)rg for some polynomial p, of degree k:
pi. is the so-called kth residual FOM polynomial.

Theorem. For a ¥ € C we have that
9 is a Ritz value &  pL(9) =0.

Proof. If p.(9) =0,
then pr(A) = (A —9)q(N\) for some polynomial q of degree < k.

r, = (A —9Dg(A)ro = (A —9Du, L
where uy = ¢(A)rg € span(V;). Hence, (¢,u) is a Ritz pair.

A counting argument completes the proof (there are k Ritz values and
pr has k zeros).



Convergence

The space K,(A,b) = span(V,) contains all vectors that
can be computed with k — 1 steps of (shifted) power me-
thod, and also the vectors computed with a k£ — 1-degree
polynomial filter.

= faster convergence than any polynomial filter method.
A shifted power method, with appropriate shift, is effective
in computing eigenpairs with ‘extremal’, ‘isolated’ eigen-

values. Arnoldi (without shift) is even more successful in
detecting such eigenpairs.

Achieving better convergence also depends on how the ap-

proximate eigenpairs are extracted from the search sub-
spaces span(V,,).

Gram—Schmidt orthogonalisation

[v,h] = Orth(V,w)

Classical Gram—Schmidt

h=V'Ww, v=w—Vh
v=|Vl2, h<+ (RT,1)T, v« v/

Loss of stability.

e Sensitive to perturbations on V.
e DOTs and AXPYs introduce roundig errors.
e Scaling by v amplifies rounding errors if

tan(Z(span(V),w) = v/||h|s < 1.

Note. Costs of computing ||k, are negligible
(wrt costs computing ||v]2).

Using Ritz-Galerkin, for extremal eigenvalues
(selecting extremal Ritz values)

Arnoldi:shifted power ~ GMRES:Richardson

Gram—Schmidt orthogonalisation

[v,h] = Orth(V,w)
Modified Gram—Schmidt

V=W
for j=1,...,k do
J— * . 3
hj_vjv, v<—v—v]hj
end for
v=Vl2, B=(haho. )T, Vo v/

Loss of stability.

e Sensitive to perturbations on V
e Smaller rounding errors from AXPYs.

e Scaling by v amplifies rounding errors if v/||h|j» < 1

-+ More stable. — Harder to parallelise.



Gram—Schmidt orthogonalisation

[v, k] = Orth(V,w)
Repeated Gram—Schmidt with DGKS criterion

h=V*w, v=w— Vh
v=1Vll2, u= |l
while v < 7p
g=V*V, v < v—-Vg
v=1|Nlo, p=Igl2, k< Fi+g
end while
h« (RT,0)7, v « v/v

Loss of stability.

e Not sensitive to perturbations on V
e Smaller rounding errors from AXPYs.

e Scaling by v amplifies rounding errors if u/||ﬁ||2 <1 =

Gram—Schmidt and Arnoldi

Theorem. Modified Gram—-Schmidt is suffciently stable
for solving linear systems.

Proof. In Arnoldi, the n x (k4 1) matrix W is

W = [vq,AvVq,...,Av,] and R:{(l) ﬂk}.

Hence, when solving AX = rg with X, = V.75, we have
Wzl _ irell2 »
min < (take z = (—|Iroll2, 7)) ™).
zll2 ~ lIroll2

Therefore, we have the (sharp) estimate

Iroll2

Co(W) 2 [[All2 2

Prop. Eigenvalue computations requires more stability. 26

Stability of the Gram—Schmidt variants

Orthogonalisation recursively applied to the columns of an
n X k matrix W leads to computed V and R such that
W+A=VR
for some n x k perturbation matrix A with
e Riskxk upper triangular,
o |A|lF <4K2u||W|p,
e Loss of orthogonality: ||V V —TI;|» < ku(Ca(W))*

with k, ¢ depend on orth. method:

ClassGS: « of order Vkn, ¢ =2 (conjecture).

ModGS: k of order vkn, ¢=1.

RepGS: k may depend on T—lk (rarely), ¢=0.

Householder QR: k= O(vkn), ¢=0. 25

Arnoldi’'s decomposition based methods

1) Expansion. Use recursive expansion for building a
Krylov basis V, (involves high dimensional operations)
2) Extraction.
consider a projected problem as:
b-AV.y. LV, b—-—AV,y. L AV,
ﬂvkﬁk—AngkJ_Vk, or 0ngk—Ang’kLAVk

2.a) Form a projected matrix, as Hy, = V;FAV,,. (high dim)

2.b) Use the projected matrix to solve the projected pro-
blem for ¢}, in k-space (only k-dimensional operations)

2.c) Assemble X, = V, .. (high dim)
Note. When recursively using Gram-Schmidt to compute

the component of Av, that is orthonormal to V;, the pro- 27
jected matrix H;, comes for free.



Krylov subspace methods

Krylov subspace methods search for approximate soluti-
ons in a krylov subspace: the search subspace is a Krylov
subspace.

Stages.

e EXxpansion.
Expand a Krylov basis v, ...,V recursively

e Extraction.
Extract an approximate solution from span(\,,)

Subspace methods
Why searching for approximations in general subspaces?

To allow detection of more effective expansion vectors (as
in Flexible GCR, ).

Krylov subspace methods
Why searching for approximations in Krylov subspaces?

1) Convergence based on polynomial approximation theory
(better than Richardson, Power method, etc.)

2) Krylov structure can be exploited to enhance efficiency.

For instance,
e with Arnoldi's method, the Hessenberg matrix
(projected matrix) comes for free.

e if A is Hermitian then expansion vectors can
efficiently be computed (as in CR, CG, ...)



