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Ax = b {λ ∈ C | Av = λv} ⊂ E ⊂ C

Construct iteratively rk = b−Axk with ‖rk‖2 small

xk gets a free ride: rk = rk−1 − αkAuk−1, xk = xk−1 + αkuk−1
Richardson: α ∈ C, rk = rk−1 − αArk−1 = (I− αA)kr0

Krylov subspace: Kk(A, r0) = span(r0,Ar0, . . . ,A
k−1r0)

= {p(A)r0 | p pol. degree < k}
Richardson: αk ∈ C, rk = rk−1 − αkArk−1 = pk(A)r0

with pk(λ) = (1− α1λ) · . . . · (1− αkλ)

Selection αk: static, dynamic

•αk = αkmodℓ: with p(λ) = (1− α1 λ) · · · (1− αℓ λ), pjℓ = pj

and maxζ∈E |p(ζ)| as small as possible.

• Chebyshev iteration: pk = T̃k, rk+1 = α̃krk − β̃kArk − γ̃k−1rk−1
• Local Minimal Residual: αk = argminα‖rk−1−αArk−1‖2

• Generalized Conjugate Residuals: Rk ≡ [r0, . . . , rk−1]
rk=rk−1−ARk~αk−1 with ~αk−1≡minarg

~α∈Ck‖rk−1−ARk~α‖2 2
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Orthonormal basis Kk(A, r0)

Recall Vk ≡ [v1, . . . ,vk].

Suppose v1, . . . ,vk is an orthonormal Krylov basis Kk(A, r0).

Compute vk+1 by orthogonalising Avk against Vk:

• Expand: w = Avk,

• Orthogonalize: ṽ = w−Vk
~h′k with ~h′k = V∗kw,

• Normalize: vk+1 = ṽ/νk with νk = ‖ṽ‖2.

Note. With ~hk ≡ (~h′Tk , νk)
T, we have

Avk = w = Vk
~h′k + vk+1νk = [Vk,vk+1]

[
~h′k
νk

]
= Vk+1

~hk

Assemble A[Vk−1,vk] = [Vk,vk+1]


 Hk−1 ~h′k
0 . . .0 νk
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Theorem.

Orthogonalising Avj against Vj for j = 1, . . . , k leads to

AVk = Vk+1Hk,

with Vk orthonormal, spanning Kk(A,v1),

Hk is (k +1)× k upper Hessenberg.

Note. The matrix Hk comes for free
in the orthogonalisation process.

Application for solving Ax = r0. Try xk = Vk ~yk.

Find ~yk such that AVk ~yk ≈ r0 = ρ0Vk e1 with ρ0 ≡ ‖r0‖2
 Find ~yk such that Vk+1Hk ~yk ≈ ρ0Vk+1 e1 if ρ0 v1 = r0

 Find ~yk such that Hk ~yk ≈ ρ0 e1 if ρ0 v1 = r0

Details later. 5

Hessenberg and Krylov

Hessenberg matrices and Krylov subspaces are intimately

related.

Theorem. Consider the relation AVk = Vk+1Hk,

where Vk+1 = [Vk,vk+1] is n× (k +1),

and Hk is (k +1)× k.

Then, v1, . . . ,vk form a Krylov basis for Kk(A,v1)

i.e., Vj spans Kj(A, r0) for all j = 1, . . . , k,

⇔ Hk is Hessenberg.

In Arnoldi’s decomposition, Vk is selected to be ortho-

normal (to ease computations and to enhance stability).

Arnoldi’s method:
orthonormalise Avk against Vk to obtain vk+1 all k.
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Orthogonalisation

Terminology.

If V is an n× k orthonormal matrix and w is an n vector,

then, with orthonormalise w against V, we mean:

construct an n-vector v and a (k +1)-vector ~h such that

v ⊥ V, ‖v‖2 = 1, w = [V,v]~h

Notation. [v,~h ] = Orth(V,w)

Use a stable variant of Gram–Schmidt.

Note that the last coordinate of ~h is 0 if w is in the span

of V: in such a case (and if k < n), we select v to be a

(random) normalized vector orthogonal to V (we insist on

expanding to avoid stagnation in subsequential steps).

7

Arnoldi’s decomposition

AVk−1 = VkHk−1,

with Vk n× k orthonormal, Hk−1 k × (k − 1) Hessenberg.

Expand the decomposition to AVk = Vk+1Hk.

Notation. [Vk+1, Hk] = ArnStep(A,Vk, Hk−1)

w = Avk

[vk+1,~hk] = Orth(Vk,w)

Vk+1 = [Vk,vk+1]

Hk =


Hk−1
~0∗k−1


, Hk ← [Hk,

~hk]
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[Saad and Schultz ’86]

Generalized Minimal Residuals

Proposition. With xk ≡ Vk ~yk and rk ≡ b−Axk,

~yk solves Hk ~yk = ρ0 e1 in least square sense

⇔ ‖rk‖ minimizes ‖b−Ax̃‖2 over all x̃ ∈ Kk(A,b).

Select kmax and tol

Set ρ0 = ‖b‖2, V1 = [b/ρ0], H0 = [ ]

for k = 1, . . . , kmax do

Break if ρk < tol

[Vk+1, Hk] = ArnStep(A,Vk, Hk−1)
Solve Hk ~yk = ρ0 e1 in least square sense

ρk = ‖ρ0 e1 −Hk ~yk‖2
end for

x = Vk ~yk.
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[Saad and Schultz ’86]

Full Orthogonalisation Method

Proposition. With xk ≡ Vk ~yk and rk ≡ b−Axk,

~yk solves Hk ~yk = ρ0 e1 ⇔ rk ⊥ Kk(A,b).

Select kmax and tol

Set ρ0 = ‖b‖2, V1 = [b/ρ0], H0 = [ ]

for k = 1, . . . , kmax do

Break if ρk < tol

[Vk+1, Hk] = ArnStep(A,Vk, Hk−1)
Solve Hk ~yk = ρ0 e1 for ~yk
ρk = ‖ρ0 e1 −Hk ~yk‖2

end for

x = Vk ~yk.
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GMRES & FOM

Notes.

• “Solve Hk ~yk = ρ0 e1 in the least square sense”

and “solve Hk ~yk = ρ0 e1”

are problems in k-space, where k ≪ n: costs are ‘negligible’

• There is no need to compute the residuals rk:

computing residual-norm does not require computing rk

ρk = ‖rk‖2 = ‖ρ0 e1 −Hk ~yk‖2

• Computation of the approximate solution

only if residual accuracy has been reached.

11

GMRES & FOM

Let ~γk+1 = (1, γ2, . . . , γk, γk+1)
T = (~γT

k , γk+1)
T such that

~γ∗k+1Hk = ~0∗k

Note that ~γk+1 can be computed by recursive updating.

Proposition.

‖rGMRES
k ‖2 =

ρ0
‖~γk+1‖2

‖rFOM
k ‖2 =

ρ0
|γk+1|

[Sleijpen vd Eshof ’04]Note.

• Even the k-dimensional system has to be solved

only (once) at reaching residual accuracy.
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GMRES versus GCR

Both methods are mathematically equivalent, that is, in

exact arithmetic, they have the same residuals (residual

norms) at step k and the same approximate solutions.

GMRES is the most efficient method that gives the ap-

proximate solution from Kk(A,b) with smallest residual

‖ · ‖2-norm. GCR needs ≈ twice as many AXPYs as GM-

RES. Assuming the same form of Gram-Schmidt is used.

GCR trivially extends to a flexible variant (injecting an

uk 6= rk does not hamper convergence). A flexible variant

of GMRES lacks the efficiency advantage.

Both methods suffer from growing computational costs

per step and growing memory requirements with in-

creasing step numbers.
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GMRES versus GCR

In contrast to GCR,

GMRES exploits the Krylov–Hessenberg structure.

Advantage. More efficiency.

If for mathematical reasons an inner product is zero, then

there is no need to compute it: thus, saving flops.

Disadvantage. Sensitive to perturbations that affect the

Krylov structure.

Due to perturbations, the actual value of such an inner

product may not be zero

Example. If at step k in GCR “uk = rk” is replaced by

“Select a random uk”, then convergence is delayed by 1

step. If at step k in GMRES Avk is replaced by a random

vector then GMRES stagnates forever.

Pertubations may come from inexact MVs, variable pre-

conditioners, etc.
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Convergence

With the same r0: ‖rGMRES
k ‖2 = ‖rGCR

k ‖2 ≤ ‖rpolk ‖2
‘Basic convergence conditions’ are:

1) the eigenvalues of A cluster away from 0, and

2) the eigenvector basis is not very ill conditioned.

Proposition. If eigs A in [λ−, λ+] ⊂ (0,∞), then

‖rGMRES
k ‖2 ≤ ‖rCheb

k ‖2 ≤ (2 CE ‖r0‖2) exp
(
− 2k√
C

)
,

where C ≡ λ+
λ−

and CE is the condition number of the ei-

genvectors (i.e, CE ≡ ‖V‖2 ‖V−1‖2 if AV = VΛ).

Note. It is easy to construct sophisticated examples with

CE extremely large (as 10100). Actually, even for small
λ+
λ−

,

convergence can be arbitrarily slow.
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Convergence

With the same r0: ‖rGMRES
k ‖2 = ‖rGCR

k ‖2 ≤ ‖rpolk ‖2
‘Basic convergence conditions’ are:

1) the eigenvalues of A cluster away from 0, and

2) the eigenvector basis is not very ill conditioned.

A modification of the above examples shows that any mo-

notonic convergence curve is possible with unitary matrices

and also with any eigenvalue distribution:

Proposition. For ρ0 ≥ ρ1 ≥ . . . ≥ ρn−1 ≥ ρn = 0,

with x0 = 0 and A is n× n, consider the statement

(∗) for a b and Ax = b, we have ‖rGMRES
k ‖2 = ρk all k.

Then a) (∗) holds for some unitary matrix A, and

b) given λ1, . . . , λn in C, (∗) holds
for some matrix A with eigenvalues λ1, . . . , λn.

16



Eigenvalues and Arnoldi’s decomposition

Ax = λx.

Find a normalized xk ∈ Kk(A, r0) such that

rk = λ(k)xk −Axk with λ(k) ≡ x∗kAxk

is small in some sense and λ(k) ‘almost’ has the desired

properties

Arnoldi’s decomposition: AVk = Vk+1Hk.

rk = Vk+1(λ
(k)~yk −Hk ~yk), λ(k) = ~y ∗kHk ~yk.

Note

‖rk‖2 = ‖λ(k)~yk −Hk ~yk‖2

The computation of ‖rk‖2 and λ(k) is in k-space!
17

[Arnoldi ’52]

Arnoldi’s method

Proposition. With xk ≡ Vk ~yk and rk ≡ ϑkxk −Axk,

~yk solves Hk ~yk = ϑk~yk ⇔ rk ⊥ Kk(A,b)

Select kmax and tol

Set ρ0 = 1, V1 = [b/‖b‖2], H0 = [ ]

for k = 1, . . . , kmax do

Break if ρk < tol

[Vk+1, Hk] = ArnStep(A,Vk, Hk−1)

Solve Hk ~yk = ϑk ~yk for k eigenpairs (ϑ
(i)
k , ~y

(i)
k ).

Select a pair, say, (ϑk, ~yk), ~yk ← ~yk/‖~yk‖2
ρk = |hk+1,k| |e∗k~yk|

end for

x = Vk ~yk, λ = ϑk.
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(Harmonic) Ritz values and

(GMRES) FOM residuals

Consider the linear system Ax = r. Take v1 = r0/‖r0‖2.

On the next transparencies a one-one relation is given bet-

ween Ritz values and FOM residuals and between harmo-

nic Ritz values and GMRES residuals. This relation provi-

des theoretical insight: it allows to relate convergence of

(harmonic) Ritz values towards eigenvalues to convergence

of FOM (GMRES). More details on consequences for the

convergence will be discussed next lecture.
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Ritz values and FOM residuals

Consider the linear system Ax = r. Take v1 = r0/‖r0‖2.

If rk is the FOM residual,

then rk = pk(A)r0 for some polynomial pk of degree k:

pk is the so-called kth residual FOM polynomial.

Theorem. For a ϑ ∈ C we have that

ϑ is a Ritz value ⇔ pk(ϑ) = 0.

Proof. If pk(ϑ) = 0,
then pk(λ) = (λ− ϑ)q(λ) for some polynomial q of degree < k.

rk = (A− ϑ I)q(A)r0 = (A− ϑ I)uk ⊥ Vk

where uk ≡ q(A)r0 ∈ span(Vk). Hence, (ϑ,u) is a Ritz pair.

A counting argument completes the proof (there are k Ritz values and
pk has k zeros).

20



Convergence

The space Kk(A,b) = span(Vk) contains all vectors that

can be computed with k − 1 steps of (shifted) power me-

thod, and also the vectors computed with a k − 1-degree

polynomial filter.

⇒ faster convergence than any polynomial filter method.

A shifted power method, with appropriate shift, is effective

in computing eigenpairs with ‘extremal’, ‘isolated’ eigen-

values. Arnoldi (without shift) is even more successful in

detecting such eigenpairs.

Achieving better convergence also depends on how the ap-

proximate eigenpairs are extracted from the search sub-

spaces span(Vk).

Using Ritz-Galerkin, for extremal eigenvalues

(selecting extremal Ritz values)

Arnoldi:shifted power ∼ GMRES:Richardson
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Gram–Schmidt orthogonalisation

[v,~h] = Orth(V,w), then v ⊥ V, ‖v‖2 = 1, w = [V,v]~h

Classical Gram–Schmidt

~h = V∗w, v = w−V~h

ν = ‖v‖2, ~h ← (~hT, ν)T, v ← v/ν

Loss of stability.

• Sensitive to perturbations on V.
• DOTs and AXPYs introduce roundig errors.
• Scaling by ν amplifies rounding errors if

tan(∠(span(V),w) = ν/‖~h‖2≪ 1.

Note. Costs of computing ‖~h‖2 are negligible
(wrt costs computing ‖v‖2).
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Gram–Schmidt orthogonalisation

[v,~h] = Orth(V,w), then v ⊥ V, ‖v‖2 = 1, w = [V,v]~h

Modified Gram–Schmidt

v = w

for j = 1, . . . , k do

hj = v∗jv, v ← v− vj hj

end for

ν = ‖v‖2, ~h = (h1, h2, . . . , hk, ν)
T, v ← v/ν

Loss of stability.

• Sensitive to perturbations on V
• Smaller rounding errors from AXPYs.

• Scaling by ν amplifies rounding errors if ν/‖~h‖2 ≪ 1

+ More stable. Harder to parallelise. 23



Gram–Schmidt orthogonalisation

[v,~h] = Orth(V,w), then v ⊥ V, ‖v‖2 = 1, w = [V,v]~h

Repeated Gram–Schmidt with DGKS criterion

~h = V∗w, v = w−V~h

ν = ‖v‖2, µ = ‖~h‖2
while ν ≤ τµ

~g = V∗v, v ← v−V~g

ν = ‖v‖2, µ = ‖~g‖2, ~h ← ~h+ ~g

end while

~h ← (~hT, ν)T, v ← v/ν

Loss of stability.

• Not sensitive to perturbations on V
• Smaller rounding errors from AXPYs.

• Scaling by ν amplifies rounding errors if ν/‖~h‖2 ≪ 1
24

Stability of the Gram–Schmidt variants

Orthogonalisation recursively applied to the columns of an

n× k matrix W leads to computed V̂ and R̂ such that

W+∆ = V̂ R̂

for some n× k perturbation matrix ∆ with

• R̂ is k × k upper triangular,

• ‖∆‖F ≤ 4 k2 u ‖W‖F ,
• Loss of orthogonality: ‖V̂∗ V̂−Ik‖2 ≤ κ u (C2(W))ℓ

with κ, ℓ depend on orth. method:

ClassGS: κ of order
√
kn, ℓ = 2 (conjecture).

ModGS: κ of order
√
kn, ℓ = 1.

RepGS: κ may depend on 1
τk

(rarely), ℓ = 0.

Householder QR: κ = O(
√
kn), ℓ = 0. 25

Gram–Schmidt and Arnoldi

Theorem. Modified Gram–Schmidt is suffciently stable

for solving linear systems.

Proof. In Arnoldi, the n× (k +1) matrix W is

W = [v1,Av1, . . . ,Avk] and R =

[
1
0

Hk

]
.

Hence, when solving Ax = r0 with xk = Vk~yk, we have

min
‖Wz‖2
‖z‖2

≤ ‖rk‖2
‖r0‖2

(take z = (−‖r0‖2, ~yT
k )

T).

Therefore, we have the (sharp) estimate

C2(W) & ‖A‖2
‖r0‖2
‖rk‖2

.

Prop. Eigenvalue computations requires more stability.
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Arnoldi’s decomposition based methods

1) Expansion. Use recursive expansion for building a

Krylov basis Vk (involves high dimensional operations)

2) Extraction. For theoretical analysis,

consider a projected problem as:

b−AVk ~yk ⊥ Vk, b−AVk ~yk ⊥ AVk

ϑVk ~yk −AVk ~yk ⊥ Vk, or ϑVk ~yk −AVk ~yk ⊥ AVk

For practical computations,

2.a) Form a projected matrix, as Hk = V∗kAVk. (high dim)

2.b) Use the projected matrix to solve the projected pro-

blem for ~yk in k-space (only k-dimensional operations)

2.c) Assemble xk = Vk ~yk. (high dim)

Note. When recursively using Gram-Schmidt to compute

the component of Avk that is orthonormal to Vk, the pro-

jected matrix Hk comes for free.
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Krylov subspace methods

Krylov subspace methods search for approximate soluti-

ons in a krylov subspace: the search subspace is a Krylov

subspace.

Stages.

• Expansion.

Expand a Krylov basis v1, . . . ,vk recursively

• Extraction.

Extract an approximate solution from span(Vk)

• If space becomes too large

Shrinking. (Restart)

For some ℓ < k, select a Krylov basis ṽ1, . . . , ṽℓ in

the space span(Vk) such that span(Ṽℓ) contains
promising approximations. 28

Krylov subspace methods

Why searching for approximations in Krylov subspaces?

1) Convergence based on polynomial approximation theory

(better than Richardson, Power method, etc.)

2) Krylov structure can be exploited to enhance efficiency.

For instance,

• with Arnoldi’s method, the Hessenberg matrix
(projected matrix) comes for free.

• if A is Hermitian then expansion vectors can
efficiently be computed (as in CR, CG, . . . )
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Subspace methods

Why searching for approximations in general subspaces?

To allow detection of more effective expansion vectors (as

in Flexible GCR, and Flexible GMRES).
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