
Utrecht, 15 november 2017

Fast iterative solvers

Gerard Sleijpen
Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

1

Solving Ax = b, an overview

A+A∗ is strongly indefinite

A has large imaginary eigenvalues

a good preconditioner is available

the preconditioner is flexible

⇓ yes

A > 0 ⇒
yes

CG

⇓ no

ill cond. ⇒
yes

SYMMLQ

⇓ no

MINRES

A∗ = A ⇒
no

Good precond. ⇒
yes

flex. precond.
yes
⇒ GCR

⇓ no

GMRES
⇓ no

⇓

⇓

str indef
no
⇒ large im eig ⇒

no

Bi-CGSTAB

⇓ yes

BiCGstab(ℓ)

⇓ yes

large im eig

⇓ yes

IDRstab

⇐
no

IDR
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Ax = b

with A n× n non-singular.

Today’s topic. Iterative methods for general systems

using short recurrences
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Program Lecture 8

• CG

• Bi-CG

• Bi-Lanczos

• Hybrid Bi-CG

• Bi-CGSTAB, BiCGstab(ℓ)

• IDR
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[Hestenes Stiefel ’52]

A∗ = A > 0, Conjugate Gradient

x = 0, r = b, u = 0, ρ = 1

While ‖ r ‖ > tol do

σ = −ρ, ρ = r∗r, β = ρ/σ

u ← r− β u, c = Au

σ = u∗c, α = ρ/σ

r ← r− αc

x ← x+ αu

end while
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Construction CG.

There are four alternative derivations of CG.

• GCR  (use A∗ = A)  CR  

use A−1 inner product + efficient implementation.

• Lanczos + T = LU + efficient implementation.

[Exercise 7.3]• Orthogonalize residuals.

• Nonlinear CG to solve x = argminx̃
1
2‖b−Ax̃‖2

A−1

• . . .
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Conjugate Gradients, A∗ = A, K∗ = K

uk = K−1rk − βk uk−1

rk+1 = rk − αkAuk

Theorem. • rk, Kuk ∈ Kk+1(AK−1, r0)

• r0, . . . , rk−1 is a Krylov basis of Kk(AK−1, r0)

• If rk, Auk ⊥ K−1rk−1, then rk, Auk ⊥ K−1Kk(AK−1, r0)
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Conjugate Gradients, A∗ = A, K∗ = K

uk = K−1rk − βk uk−1

rk+1 = rk − αkAuk

Theorem. • rk, Kuk ∈ Kk+1(AK−1, r0)

• r0, . . . , rk−1 is a Krylov basis of Kk(AK−1, r0)

• If rk, Auk ⊥ K−1rk−1, then rk, Auk ⊥ K−1Kk(AK−1, r0)

Proof.

Auk = AK−1 rk − βk Auk−1 ⊥ K−1rk−1 by construction βk

Auk = AK−1 rk − βk Auk−1 ⊥ K−1Kk−1(AK−1, r0) by induction:

AK−1rk ⊥ K−1Kk−1(AK−1, r0) ⇔ rk ⊥ K−1AK−1Kk−1(AK−1, r0)

⇐ rk ⊥ K−1Kk(AK−1, r0)
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A∗ = A & K∗ = K: Preconditioned CG

x = 0, r = b, u = 0, ρ = 1

While ‖ r ‖ > tol do

Solve Kc = r for c

σ = −ρ, ρ = c∗r, β = ρ/σ

u ← c− β u, c = Au

σ ← u∗c, α = ρ/σ

r ← r− αc

x ← x+ αu

end while
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Properties CG

Pros

• Low costs per step: 1 MV, 2 DOT, 3 AXPY

to increase dimension Krylov subspace by one.

• Low storage: 5 large vectors (incl. b).

• Minimal res. method if A, K pos. def.: ‖rk‖A−1
is min.

• Orthogonal residual method if A∗ = A, K∗ = K:

rk ⊥ K−1Kk(AK−1; r0).

• No additional knowledge on properties of A is needed.

• Robust: CG always converges if A, K pos. def..

Cons

• May break down if A∗ = A 6> 0.

• Does not work if A 6= A∗.

◦ CG is sensitive to evaluation errors if A∗ = A 6> 0.
Often loss of a) super-linear conv., and b) accuracy.
For two reasons:

1) Loss of orthogonality in the Lanczos recursion
2) As in FOM, bumps and peaks in CG conv. hist.

10

For general square non-singular A

• Apply CG to normal equations (A∗Ax = A∗b)  CGNE

• Apply CG to AA∗y = b (then x = A∗y)

 Graig’s method

Disadvantage. Search in Kk(A
∗A, . . .):

• If A = A∗ then convergence is determined by A2: con-

dition number squared, . . . .

• Expansion Kk requires 2 MVs (i.e., many costly steps).
[Faber Manteufel 90]

Theorem. For general square non-singular A, there is

no Krylov solver that finds the best solution in de Krylov

subspace Kk(A, r0) using short recurrences.

Alternative. Construct residuals in a sequence of shrin-

king spaces (orthogonal to a sequence of growing spaces):
adapt the construction of CG.
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Bi-Conjugate Gradients

uk = rk − βk uk−1

rk+1 = rk − αkAuk

Theorem. We have rk, uk ∈ Kk+1(A, r0).

Suppose r̃0, . . . , r̃k−1 is a Krylov basis of Kk(A
∗, r̃0).

If rk, Auk ⊥ r̃k−1, then rk, Auk ⊥ Kk(A
∗, r̃0).

Proof.

rk = rk−1 − αk−1Auk−1 ⊥ r̃k−1 by construction αk−1

rk = rk−1 − αk−1Auk−1 ⊥ Kk−1(A
∗, r̃0) by induction

Auk = Ark − βk Auk−1 ⊥ r̃k−1 by construction βk−1

Auk = Ark − βk Auk−1 ⊥ Kk−1(A
∗, r̃0) by induction:

Ark ⊥ Kk−1(A
∗, r̃0) ⇐ rk ⊥ Kk(A

∗, r̃0) ⊃ A∗Kk−1(A
∗, r̃0)
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Bi-Conjugate Gradients

uk = rk − βk uk−1

rk+1 = rk − αkAuk

rk, uk ∈ Kk+1(A, r0), rk, Auk ⊥ r̃k−1

With ρk ≡ (rk, r̃k) & σk ≡ (Auk, r̃k)

and, since r̃k + ϑ̄kA
∗ r̃k−1 ∈ Kk(A

∗, r̃0) for some ϑk,
·̄ is the complex conjugate

we have that αk =
(rk, r̃k)

(Auk, r̃k)
=

ρk
σk

and βk =
(Ark, r̃k−1)

(Auk−1, r̃k−1)
=

(rk,A
∗r̃k−1)

σk−1
=

−ρk
ϑk σk−1 13

Bi-Conjugate Gradients

uk = rk − βk uk−1

rk+1 = rk − αkAuk

rk, uk ∈ Kk+1(A, r0), rk, Auk ⊥ r̃k−1

With ρk ≡ (rk, q̄k(A
∗)r̃0) & σk ≡ (Auk, q̄k(A

∗)r̃0)

and, since qk(ζ) + ϑk ζ qk−1(ζ) ∈ Pk−1 for some ϑk,

we have that αk =
ρk
σk

& βk =
−ρk

ϑk σk−1
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[Fletcher 76]

Bi-CG

x = 0, r = b. Choose r̃

u = 0, ρ = 1 c̃ = 0

While ‖ r ‖ > tol do

σ = −ρ, ρ = (r, r̃), β = ρ/σ

u ← r− β u, c = Au, c̃ ← A∗r̃− β̄ c̃

σ = (c, r̃), α = ρ/σ

r ← r− αc, r̃ ← r̃− ᾱ c̃

x ← x+ αu

end while
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Selecting the initial shadow residual r̃0.

• Often recommended: r̃0 = r0.

• Practical experience: select r̃0 randomly (unless A∗ = A).

Exercise. Bi-CG and CG coincide

if A is Hermitian and r̃0 = r0.

Exercise. Derive a version of Bi-CG that includes a pre-

conditioner K.

Show that Bi-CG and CG coincide

if A and K are Hermitian and r̃0 = K−1r0.

Exercise 8.9 gives an alternative derivation of Bi-CG.
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Properties Bi-CG

Pros

• Usually selects good approximations from

the search subspaces (Krylov subspaces).

• Low costs per step: 2 DOT, 5 AXPY.

• Low storage: 7 large vectors.

• No knowledge on properties of A is needed.

Cons

◦ Non-optimal Krylov subspace method.

• Not robust: Bi-CG may break down.

• Bi-CG is sensitive to evaluation errors

(often loss of super-linear convergence).

◦ Convergence depends on shadow residual r̃0.

• 2 MV needed to expand search subspace by 1 vector.

• 1 MV is by A∗ .
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Bi-Lanczos

Find coefficients αk, βk, α̃k and β̃k such that (bi-orthogonalize)

γkvk+1 = Avk − αkvk − βkvk−1 − . . . ⊥ wk,wk−1, . . .

γ̃kwk+1 = A∗wk − α̃kwk − β̃kwk−1 − . . . ⊥ vk,vk−1, . . .

Select appropriate scaling coefficients γk and γ̃k.

Then

AVk = Vk+1Hk with Hk Hessenberg

A∗Wk = Wk+1H̃k with H̃k Hessenberg

and W∗
k+1Vk+1 = Dk+1 diagonal

Exercise. Tk ≡W∗
kAVk = DkHk = H̃k

∗
Dk is tridiagonal.

Exploit H̃k = DkH
∗
kD
∗
k and tridiagonal structure:

 Bi-Lanczos. See Exercise 8.7 for details. 18

[Lanczos ’50]

Bi-Lanczos

Select a r0, and a r̃0

v1=r0/‖r0‖, v0=0, w1= r̃0/‖r̃0‖, w0=0

γ0 = 0, δ0 = 1, γ̃0 = 0, δ̃0 = 1

For k = 1,2, . . . do

δk = w∗kvk,

ṽ = Avk, w̃ = A∗wk

βk = γ̃k−1δk/δk−1, β̃k = γk−1δk/δk−1

ṽ ← ṽ− βkvk−1, w̃ ← w̃− β̃kwk−1

αk = w∗kṽ/δk, α̃k = αk

ṽ ← ṽ− αk vk, w̃ ← w̃− α̃k wk

Select a γk 6= 0 and a γ̃k 6= 0

vk+1 = ṽ/γk, wk+1 = w̃/γ̃k,

Vk = [Vk−1,vk ], Wk = [Wk−1,wk ]
end while
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Arnoldi: AVk = Vk+1Hk.

If A∗ = A, then Tk ≡ Hk tridiagonal  Lanczos

Lanczos + T = LU + efficient implementation

 CG

Bi-Lanczos + T = LU + efficient implementation

 Bi-CG

20



Bi-CG may break down

0) Lucky breakdown if rk = 0.

1) Pivot breakdown or LU-breakdown,

i.e., LU-decomposition may not exist.

Corresponds to σ = 0 in Bi-CG

Remedy.

◦ Composite step Bi-CG (skip once forming Tk = LkUk)

◦ Form T = QR as in MINRES (from the beginning):

simple Quasi Minimal Residuals

2) Bi-Lanczos may break down,

i.e., a diagonal element of Dk may be zero.

Corresponds to ρ = 0 in Bi-CG

Remedy. ◦ Look ahead

General remedy. ◦ Restart ◦ Look ahead in QMR
21

Note. CG may suffer from pivot breakdown

when applied to a Hermitian, non definite matrix

(A∗ = A with positive as well as negative eigenvalues):

MINRES and SYMMLQ cure this breakdown.

Note. Exact breakdowns are rare.

However, near breakdowns lead to irregular convergence

and instabilities. This leads to

◦ loss of speed of convergence
◦ loss of accuracy
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[Sonneveld ’89]

Transpose-free Bi-CG

ρk = (rk, q̄k(A
∗) r̃0) = (qk(A)rk, r̃0),

σk = (Auk, q̄k(A
∗) r̃0) = (Aqk(A)uk, r̃0)

Qk ≡ qk(A)

(Bi-CG)

{
ρk, Qkuk=Qkrk − βkQkuk−1,

σk, Qkrk+1=Qkrk − αkAQkuk,

(Pol) Compute qk+1 of degree k +1 s.t. qk+1(0) = 1.

Compute Qk+1uk, Qk+1rk+1

Example. qk+1(ζ) = (1− ωkζ)qk(ζ) (ζ ∈ C) .
{

ωk, Qk+1uk=Qkuk − ωkAQkuk,

Qk+1rk+1=Qkrk+1 − ωkAQkrk+1, 23

Transpose-free Bi-CG; Practice

Work with u′k ≡Qku
BiCG
k and r′k ≡Qkr

BiCG
k+1

Write uk−1 and rk, instead of Qku
BiCG
k−1 and Qkr

BiCG
k , resp.

ρk = (rk, r̃0), σk = (Au′k, r̃0)

(Bi-CG)

{
ρk = (rk, r̃0), u′k= rk − βkuk−1,

σk = (Au′k, r̃0), r′k= rk − αkAu′k, x′k = xk + αku
′
k

(Pol) Compute updating coefficients for qk+1.

Compute uk, rk+1, xk+1

Example.
{

ωk, uk+1=u′k − ωkAu′k,

rk+1= r′k − ωkAr′k, xk+1 = x′k + ωkr
′
k

24



Example. qk+1(ζ) = (1− ωkζ)qk(ζ) (ζ ∈ C) .

How to choose ωk?

Bi-CGSTABilized. With sk ≡ Ar′k,

ωk ≡ argminω‖r
′
k − ωAr′k‖2 =

s∗kr
′
k

s∗ksk

as in Local Minimal Residual method,

or, equivalently, as in GCR(1).
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[van der Vorst 92]

BiCGSTAB

x = 0, r = b. Choose r̃

u = 0, ω = σ = 1.

While ‖ r ‖ > tol do

σ ← −ωσ, ρ = (r, r̃), β = ρ/σ

u ← r− β u, c = Au

σ = (c, r̃), α = ρ/σ

r ← r− αc,

x ← x+ αu

s = Ar, ω = (r, s)/(s, s)

u ← u− ω c

x ← x+ ω r

r ← r− ω s

end while

26

Hybrid Bi-CG or product type Bi-CG

rk ≡ qk(A)rBi-CG
k = qk(A) pBiCG

k (A) r0

pBiCG
k is the kth “Bi-CG residual polynomial”

How to select qk??

qk for efficient steps & fast convergence.

Fast convergence by

• reducing the residual

• stabilizing the Bi-CG part

• other when used as linear solver for the Jacobian system in a
Newton scheme for non-linear equations,
by reducing the number of Newton steps
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Hybrid Bi-CG

Examples.

CGS Bi-CG × Bi-CG Sonneveld [1989]

Bi-CGSTAB GCR(1) × Bi-CG van der Vorst [1992]

GPBi-CG 2-truncated GCR × Bi-CG Zhang [1997]

BiCGstab(ℓ) GCR(ℓ) × Bi-CG Sl. Fokkema [1993]

For more details on hybrid Bi-CG,

see Exercise 8.11 and Exercise 8.12.

For a derivation of GPBi-CG, see Exercise 8.13.
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Properties hybrid Bi-CG

Pros

• Converges often twice as fast as Bi-CG w.r.t. # MVs:

each MV expands the search subspace

Bi-CG: xk − x0 ∈ Kk(A; r0) à 2k MV.

Hybrid Bi-CG: xk − x0 ∈ K2k(A; r0) à 2k MV.

• Work/MV and storage similar to Bi-CG.

• Transpose free.

◦ Explicit computation of Bi-CG scalars.

Cons

• Non-optimal Krylov subspace method.

• Peaks in the convergence history.

• Large intermediate residuals.

◦ Breakdown possibilities.
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[Sonneveld ’89]

Conjugate Gradients Squared

rk = pBiCG
k (A) pBiCG

k (A) r0

CGS exploits recurrence relations for the Bi-CG polyno-

mials to design a very efficient algorithm.

Properties

+ Hybrid Bi-CG.

+ A very efficient algorithm:
1 DOT/MV, 3.25 AXPY/MV;
storage: 7 large vectors.

Often high peaks in its convergence history

Often large intermediate residuals

+ Seems to do well as linear solver in a Newton scheme
30

[Sonneveld 89]

Conjugate Gradients Squared

x = 0, r = b. Choose r̃.

u = w = 0, ρ = 1.

While ‖ r ‖ > tol do

σ = −ρ, ρ = (r, r̃), β = ρ/σ

w ← u− βw

v = r− β u

w ← v− βw, c = Aw

σ = (c, r̃), α = ρ/σ

u = v− αc

r ← r− αA(v+ u)

x ← x+ α (v+ u)

end while
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Properties Bi-CGSTAB

Pros

• Hybrid Bi-CG.

• Converges faster (& smoother) than CGS.

• More accurate than CGS.

• 2 DOT/MV, 3 AXPY/MV.

• Storage: 6 large vectors.

Cons Danger of

(A) Lanczos breakdown (ρk = 0),

(B) pivot breakdown (σk = 0),

(C) breakdown minimization (ωk = 0).
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Mv

’Bi-CG’
’BiCGSTAB’
’GCR(100)’

’100-truncated GCR’

−(aux)x − (auy)y = 1 on [0,1]× [0,1].

a = 1000 for 0.1 ≤ x, y ≤ 0.9 and a = 1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.
82× 82 volumes. ILU Decomp.
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F =
100

A = 10e4
A = 10e-5

A = 10e2

0 u = 1 1

u = 1

u = 0
1

u = 1

−(aux)x − (auy)y + b ux = f on [0,1]× [0,1].

definition of a = A and of f = F ; F = 0 except . . .
34
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−(aux)x − (a uy)y + bux = f on [0,1]× [0,1].

b(x, y) = 2exp(2(x2 + y2)), a changes strongly

Dirichlet BC. 129× 129 volumes. ILU Decomp.
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−(aux)x − (a uy)y + bux = f on [0,1]× [0,1].

b(x, y) = 2exp(2(x2 + y2)), a changes strongly

Dirichlet BC. 201× 201 volumes. ILU Decomp.
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Breakdown of the minimization

Exact arithmetic, ωk = 0:

No reduction of residual by

Qk+1 rk+1 = (I− ωkA )Qk r
BiCG
k+1. (⋆)

qk+1 is of degree k: Bi-CG scalars can not be computed;
breakdown of incorporated Bi-CG.

Finite precision arithmetic, ωk ≈ 0:

Poor reduction of residual by (⋆)

Bi-CG scalars are seriously affected by evaluation errors:

drop of speed of convergence.

ωk ≈ 0 to be expected if A is real and

A has eigenvalues with rel. large imaginary part: ωk is real!
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Example. qk+1(ζ) = (1− ωkζ)qk(ζ) (ζ ∈ C) .

How to choose ωk?

Bi-CGSTABilized. With sk ≡ Ar′k,

ωk ≡ argminω‖r
′
k − ωAr′k‖2 =

s∗kr
′
k

s∗ksk

as in Local Minimal Residual method,

or, equivalently, as in GCR(1).

BiCGstab(ℓ). Cycle ℓ times through the Bi-CG part

to compute Aju′, Ajr′ for j = 0, . . . , ℓ,

where now u′ ≡Qku
BiCG
k+ℓ−1 and r′ ≡Qkr

BiCG
k+ℓ for k = mℓ.

~γm ≡ argmin~γ‖r
′ − [Ar′, . . . ,Aℓr′]~γ‖2

rk+ℓ = r′ − [Ar′, . . . ,Aℓr′]~γm

qk+ℓ(ζ) = (1− [ζ, . . . , ζℓ]~γm)qk(ζ) (ζ ∈ C)

38

[Sl Fokkema 93, Sl vdV Fokkema 94]BiCGstab(ℓ) for ℓ ≥ 2

{
qk+1(A) = A qk(A) k 6= mℓ

qmℓ+ℓ(A) = φm(A) qmℓ(A) k = mℓ

where φm of exact degree ℓ, φm(0) = 1 and

φm minimizes ‖φm(A) qmℓ(A) rBiCG
mℓ+ℓ︸ ︷︷ ︸

‖2.

r′

Minimization in practice: pm(ζ) = 1−
∑ℓ

j=1 γ
(m)
j ζj

(γ
(m)
j ) ≡ argmin(γj)‖r

′ −
ℓ∑

j=1

γj A
j r′‖2,

Compute Ar′, A2 r′, . . . , Aℓ r′ explicitly.

With R ≡
[
Ar′, . . . ,Aℓ r′

]
, ~γm ≡ (γ

(m)
1 , . . . , γ

(m)
ℓ )T we have

[Normal Equations, use Choleski] (R∗R)~γm = R∗r′

39



BiCGstab(ℓ)

x = 0, r = [b ]. Choose r̃.

u = [0 ], γℓ = σ = 1.

While ‖ r ‖ > tol do

σ ← −γℓ σ

For j = 1 to ℓ do

ρ = (rj, r̃), β = ρ/σ

u ← r− β u, u ← [u,Auj ]

σ = (uj+1, r̃), α = ρ/σ

r ← r− αu2:j+1, r ← [ r,Arj ]

x ← x+ αu1

end for

R ≡ r2:ℓ+1. Solve (R∗R)~γ = R∗r1 for ~γ

u ← [u1 − (γ1u2 + . . .+ γℓuℓ+1) ]

r ← [ r1 − (γ1r2 + . . .+ γℓrℓ+1) ]

x ← x+ (γ1r1 + . . .+ γℓrℓ)

end while
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epsilon = 10^(-16); ell = 4;
x = zeros(b); rt = rand(b);
sigma = 1; omega = 1; u = zeros(b);

y = MV(x); r = b-y;

norm = r’*r; nepsilon = norm*epsilon^2; L = 2:ell+1;
while norm > nepsilon

sigma = -omega*sigma; y = r;
for j = 1:ell

rho = rt’*y; beta = rho/sigma;
u = r-beta*u;
y = MV(u(:,j)); u(:,j+1) = y;
sigma = rt’*y; alpha = rho/sigma;
r = r-alpha*u(:,2:j+1);
x = x+alpha*u(:,1);
y = MV(r(:,j)); r(:,j+1) = y;

end

G = r’*r; gamma = G(L,L)\G(L,1); omega = gamma(ell);
u = u*[1;-gamma]; r = r*[1;-gamma]; x = x+r*[gamma;0];
norm = r’*r;

end
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(52× 52× 52) volumes. No preconditioning.
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−(aux)x − (auy)y = 1 on [0,1]× [0,1].

a = 1000 for 0.1 ≤ x, y ≤ 0.9 and a = 1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.

200× 200 volumes. ILU Decomp. 42



−ǫ(uxx + uyy) + a(x, y)ux + b(x, y)uy = 0 on [0,1]× [0,1], Dirichlet BC

ǫ = 10−1, a(x, y) = 4x(x− 1)(1− 2y), b(x, y) = 4y(1− y)(1− 2x),

u(x, y) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy)
(201× 201) volumes, no preconditioning.
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uxx + uyy + uzz + 1000ux = f.

f is defined by the solution
u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).

(10× 10× 10) volumes. No preconditioning .
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ρk = (rk, r̃0), ρ⋆k = ρk(1 + ǫ)

Accurate Bi-CG coefficients

|ǫ| ≤ n ξ
‖ rk ‖2 ‖ r̃0‖2
|(rk, r̃0)|

=
n ξ

ρ̂k
where ρ̂k ≡

|(rk, r̃0)|

‖ rk‖2 ‖ r̃0‖2
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Why using pol. factors of degree ≥ 2?

Hybrid Bi-CG, that is faster than Bi-CGSTAB

1 sweep BiCGstab(ℓ) versus ℓ steps Bi-CGSTAB:

• Reduction with MR-polynomial of degree ℓ
is better than ℓ× MR-pol. of degr. 1.

• MR-polynomial of degree ℓ contributes
only once to an increase of ρ̂k

Why not?
◦ Efficiency:

1.75+ 0.25 · ℓ DOT/MV, 2.5+ 0.5 · ℓ AXPY/MV

Storage: 2ℓ+5 large vector.

◦ Loss of accuracy:∣∣‖rk‖ − ‖b−Axk‖
∣∣ ≤ . . .+ c ξ max

(
|γi|

∥∥ |A| |Ai−1 r̂|
∥∥)

◦ break-downs are possible
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Hybrid Bi-CG

Notation. If pk is a polynomial of exact degree k,

r̃0 n-vector, let

S(pk,A, r̃0) ≡ {pk(A)v | v ⊥ Kk(A
∗, r̃0)}

Theorem. Hybrid Bi-CG find residuals rk ∈ S(pk,A, r̃0).

Example.

Bi-CGSTAB: pk(λ) = (1− ωkλ) pk−1(λ)

where, in every step,

ωk = minargω‖r− ωAr‖2, where r = pk−1(A)v, v = rBi-CG
k
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Hybrid Bi-CG

Notation. If pk is a polynomial of exact degree k,

r̃0 n-vector, let

S(pk,A, r̃0) ≡ {pk(A)v | v ⊥ Kk(A
∗, r̃0)}

Theorem. Hybrid Bi-CG find residuals rk ∈ S(pk,A, r̃0).

Example.

BiCGstab(ℓ): pk(λ) = (1− ωkλ) pk−1(λ)

where, every ℓth step

~γ = minarg~γ‖r− [Ar, . . . ,Aℓr]~γ‖2, where r = pk−ℓ(A)rBi-CG
k .

(1− γ1λ− . . .− γℓλ
ℓ) = (1− ωkλ) · . . . · (1− ωk−ℓλ)
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Induced Dimension Reduction

Definition. If pk is a polynomial of exact degree k,

R̃ ≡ R̃0 = [ r̃1, . . . , r̃s ] an n× s matrix, then

S(pk,A, R̃) ≡
{
pk(A)v | v ⊥ Kk(A

∗, R̃)
}
,

is the pk-Sonneveld subspace. Here

Kk(A
∗, R̃) ≡





k−1∑

j=0

(A∗)j R̃~γj | ~γj ∈ C
s



 .

Theorem. IDR find residuals rk ∈ S(pk,A, R̃).

Example.

Bi-CGSTAB: pk(λ) = (1− ωkλ) pk−1(λ)

where, in every step,

ωk = minargω‖r− ωAr‖2, where r = pk−1(A)v, v = rBi-CG
k
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[van Gijzen Sonneveld 07]

IDR

Select an x0.

Select n× s matrices U and R̃.

Compute C ≡ AU.

x = x0, r− b−Ax, j = s, i = 1

while ‖r‖ > tol do

Solve R̃
∗
C~γ = R̃

∗
r for ~γ

v = r−C~γ, s = Av

j++, if j > s, ω = s∗v/s∗s, j = 0

Uei ← U~γ + ωv, x = x+Uei
r0 = r, r = v− ωs, Cei = r0 − r

i++, if i > s, i = 1

end while
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Select n× ℓ matricex U and R̃

Experiments suggest R̃ = qr(rand(n, ℓ),0)

U and C can be constructed from ℓ steps of GCR.

We will discuss IDR in more detail in Lecture 11.

See also Exercise 11.1–Exercise 11.5.

51


