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AX=Db

with A n X n non-singular.

Today’s topic. Iterative methods for general systems
using short recurrences
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Solving Ax = b, an overview

A=A = |Good precond. | = flex. precond.\y:>es GCR
hres oo bro

e pre U GMRES
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X SYMMLQ [strindef] = [large im eig| = Bi-CGSTAB
1 no Jves

MINRES BiCGstab(¥)

a good preconditioner is available
the preconditioner is flexible
A + A is strongly indefinite
A has large imaginary eigenvalues
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Program Lecture 8

e CG

e Bi-CG

e Bi-Lanczos

e Hybrid Bi-CG

e Bi-CGSTAB, BiCGstab(¥)
e IDR
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A" = A > 0, Conjugate Gradient

X=0,r=b, u=0, p=1
While || r| > tol do
o=-p, p=rr, B=plo
u<+ r—pgu, c=Au
oc=u*c, a=p/o
r<+ r—ac
X +— X+ au

end while

Conjugate Gradients, A* = A

U, = =Bl
Fe41 =T — ap Aug

Theorem. e 1y, ug ICk+1(A ,rg)
e rp,...,I,_1 is a Krylov basis of K (A
o If ry, Aug L r._1, then rg, Aug, L

,10)
(A

,10)

o
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Construction CG.
There are four alternative derivations of CG.

e GCR ~ (use A*x=A) ~» CR ~

use ALl inner product <+ efficient implementation.

Lanczos 4+ T =LU 44 efficient implementation.

e Orthogonalize residuals.

. _ o1 %
Nonlinear CG to solve x = argming 5[|b — AX||§‘_1

Conjugate Gradients, A* = A, K*=K

up =Kl — Brug_g
Fe41 =T — ap Aug

Theorem. e r;, Ku, ele+1(AK—1,r0)
e rg,...,r,_1 is a Krylov basis of K;,(AK™ 1 rg)
o If ry, Au, L K~ 1r,_4, then ry, Au, L K1 (AK™ 1 rp)

Proof.

Au,=AK lr,— 8, Au,_ 1 L K tr,_4 by construction g
Au,=AK 'r, — 8, Au,_; L KK 1(AK™1 1) by induction:
AK 'y L KT G 1 (AKT 1, 1g) & LKTTAKTIG 1 (AK T 1)

< 1, L KKL(AK ™ 1)

(<))

[ec]



A= A & K* = K: Preconditioned CG

X=0,r=b, u=0, p=1
While ||r| > tol do

Solve KC =r for C
o=-p, p=c'r, B=plo
U<+ c—pgu, c=Au
o+ u*c, a=p/o
F<r—acC

X +— X+ au

end while

For general square non-singular A
e Apply CG to normal equations (A*Ax = A*b) ~ CGNE

e Apply CG to AA*y = b (then x = A*y)
~ @Graig’'s method

Disadvantage. Search in KC,(A*A,...):

e If A = A* then convergence is determined by AZ%: con-
dition number squared, . ...
e Expansion K, requires 2 MVs (i.e., many costly steps).

Theorem. For general square non-singular A, there is
no Krylov solver that finds the best solution in de Krylov
subspace K (A,rg) using short recurrences.

Alternative. Construct residuals in a sequence of shrin-

king spaces (orthogonal to a sequence of growing spaces):
adapt the construction of CG.

(o)

Properties CG

Pros

Low costs per step: 1 MV, 2 DOT, 3 AXPY
to increase dimension Krylov subspace by one.
Low storage: 5 large vectors (incl. b).
Minimal res. method if A, K pos. def.: ||rk||A,1 is min.
Orthogonal residual method if A* = A, K* = K:

r, L K 1K, (AK 1 rg).
No additional knowledge on properties of A is needed.
Robust: CG always converges if A, K pos. def..

Cons

o

May break down if A* = A % 0.

Does not work if A #= A*.

CG is sensitive to evaluation errors if A* = A # 0.

Often loss of a) super-linear conv., and b) accuracy.

For two reasons:
1) Loss of orthogonality in the Lanczos recursion 10
2) As in FOM, bumps and peaks in CG conv. hist.

Bi-Conjugate Gradients

e
Fe41 =T — ap Aug

Theorem. We have rg, u, € Kk+1(A, ro).

Suppose rq,...,l,_1 is a Krylov basis of K, (A* rg).
If rg, Auk 1 Fk—la then I, Auk 1 Kk(A*,Fo)

Proof.

e ="rp1—ap 1 AUz 1 LI
r,=rp1— o1 Au_ L K_1(A",ro)

Auy,=Ar;,— B, AUp1 LT
Au,=Ar,— B Aug_1 L Kp1(A,To)

Ar, L K_1(A",¥o) <

by construction aj_1
by induction

by construction 8;_1
by induction:

re L Kp(AFo) D A'Ky—1 (A", Fo)



Bi-Conjugate Gradients

U, =1, — Brup_1

rk_,_l =TI, — OzkAUk

With pp=(r,re) & o = (Auy,Ty)

and, since F, + 9, A1 € K (A%, ¥g) for some ¥,

(refw) Pk

we have that Q= ————~+- = —
(Aug,r,) oy
Ar., r_ r., Ar,_ —
. g o= Arfi-1) _ (A1) . —pk 13
(Auy_1,F;_1) Ok—1 U of—1 42
Bi-CG
Xx=0, r=b. Choose F
u=0, p=1 ¢ =

While |[r|| > tol do
o=-p, p=(r,r), B=p/o
u<+ r—pgu, c=Au,
oc=(c,r), a=plo
Fr <~ r—a«acC,
X +— X+ au

end while

Bi-Conjugate Gradients

U, =r, — BrUp_1
rk_,_l =TI, — OzkAUk

With pr = (Fp, @p(ADF0) & o = (Aug, g, (A")rg)
and, since () + 91 Cq_1(C) € Pr_1 for some 9,

we have that ap="% & g =Pk

o Vpop_1

Selecting the initial shadow residual rg.

e Often recommended: rg = rg.

e Practical experience: select rg randomly (unless A* = A).

Exercise. Bi-CG and CG coincide

if A is Hermitian and rg = rq.

Exercise. Derive a version of BI-CG that includes a pre-
conditioner K.

Show that Bi-CG and CG coincide

if A and K are Hermitian and rg = K—lro.



Properties BiI-CG

Pros

Usually selects good approximations from
the search subspaces (Krylov subspaces).
Low costs per step: 2 DOT, 5 AXPY.
Low storage: 7 large vectors.

No knowledge on properties of A is needed.

Cons

(e]

[¢]

Non-optimal Krylov subspace method.
Not robust: Bi-CG may break down.
Bi-CG is sensitive to evaluation errors

(often loss of super-linear convergence).
Convergence depends on shadow residual rg.
2 MV needed to expand search subspace by 1 vector.
1 MV is by A*.

Bi-Lanczos

Select a ro, and a ro
vi=ro/|[foll, Vo=0, Wi=TFo/|[fo||, Wo=0
Y% =0, 6 =1, =0, bo=1
For k=1,2,... do
o = W;;Vk,
V=Av, W= AW,
B = Vr—10k/ k-1, Br = Th—101/0k—1
V V= BpVi_1, W W — Buwy_y
ap :WZV/&;C, ap = Qg
V — V—a,Vy, W — W — ay Wy
Select a v # 0 and a 4. # 0
Vit+1 = v/’ka Wit = \XI/%,
M= [M1, Vi ], W = [W_1, wW; ]
end while

Bi-Lanczos

Find coefficients oy, B, &y and B, such that (bi-orthogonalize)
VeVk41 = AVg — Vi — BpVi—1 1w, Wy
VkWgt1 = A'Wp — Wy, — BpW_1 L Vg, Vg1
Select appropriate scaling coefficients ~; and ;.
Then
AVk = Vk:-l-lﬂk: with ﬂk Hessenberg
AW, = Wk+1E¢ with Hj, Hessenberg
and Wi V41 = Dy diagonal

Exercise. Tj, = W}AV, = D,H,, = H,, D}, is tridiagonal.

Exploit Hj, = DyH}:Dj and tridiagonal structure:
~+ Bi-Lanczos. 18

Bi-Lanczos 4+ T =LU + efficient implementation
~ Bi-CG



Bi-CG may break down

0) Lucky breakdown if r, = 0.

1) Pivot breakdown or LU-breakdown,
i.e., LU-decomposition may not exist.
Corresponds to o = 0 in Bi-CG
Remedy.
o Composite step Bi-CG (skip once forming T, = L,Uy;)
o Form T'= QR as in MINRES (from the beginning):
simple Quasi Minimal Residuals

2) Bi-Lanczos may break down,
i.e., a diagonal element of D, may be zero.
Corresponds to p =0 in Bi-CG

Remedy. o Look ahead

General remedy. o Restart o Look ahead in QMR

21
Transpose-free Bi-CG
pr = (i, @, (A*) o) = (qx(A)r, Fo),
o = (Auy, g (A*) Fo) = (Agp(A)ug, ro)
Qi = qx(A)
, QLU =Qrr. — B QrUp_1,
(Bi—CG){pk KUk KTk — Br QrUi—1
Oy Q41 = Qily — o AQpUy,
(Pol) Compute gj4q of degree £+ 1 s.t. ¢,41(0) = 1.
Compute Qk+1uk, Qk+1rk+1
Example.  ¢;411(¢) = (1 —wpQaqr(¢) (¢ €C)
{ W Qp41U; = Qpuy — wi, AQp Uy,
Qri1le4+1=Qrrit1 — wpr AQprr41, 23

Note. CG may suffer from pivot breakdown
when applied to a Hermitian, non definite matrix
(A* = A with positive as well as negative eigenvalues):

MINRES and SYMMLQ cure this breakdown.

Note. Exact breakdowns are rare.
However, near breakdowns lead to irregular convergence
and instabilities. This leads to

o loss of speed of convergence
o loss of accuracy

Transpose-free Bi-CQG; Practice

H - BiCG !/ — BiCG
Work with u) = Qug and r, = rik+1

Write uy_1 and ry, instead of QuuP“F and QrP'cC, resp.
pr, = (ry,fo), o = (Aup, o)

pr = (rg,Fo), UL =rp— Brug_q,
o = (AU;C,Fo), I‘?c =r, — o AU;C, X;{7 = X; + Ozkuz

(Bi-CG) {

(Pol) Compute updating coefficients for g4 1.

Compute Ug, Teg1,  Xpg1

Example.

{ Wi, uk-}-l:u;g — Wk Au;f,
— / — /
M1 =F, —wi Arl,,  Xpyq = X) + wgl), 24



Example. a+1(0Q) =1

How to choose wy?

—wpQar(Q)  (C€C)

Bi-CGSTABIlized. With s, = AI‘%,

wy, = argming||ry, — w Arg|la =

Hybrid Bi-CG or product type Bi-CG

* o/
SkVk
S;:Sk

r, = g (A)rEr<C

= q,(A) p “C(A) 1o

pP'“C is the kth “Bi-CG residual polynomial”

How to select ¢,.77

q;. for efficient steps & fast convergence.

Fast convergence by

e reducing the residual

e stabilizing the Bi-CG part

e Other when used as linear solver for the Jacobian system in a

Newton scheme for non-linear equations,
by reducing the number of Newton steps

BiCGSTAB

X=0, r=Db. Choose r
u=0, w=oc=1.

While ||r| > tol do

o+ —wo, p=(r,r), B=p/o
u<+ r—73u, c = Au
oc=(c,r), a=plo

r< r—ac,

X < X+ au

s=Ar, w=(rs)/(s,s)
U<+ u—wc

X +— X+ wr

r< r—ws

end while

Examples.

CGS
Bi-CGSTAB
GPBI-CG
BiCGstab(¢)

Hybrid Bi-CG

Bi-CG x BI-CG

GCR(1) x Bi-CG
2-truncated GCR x BIi-CG
GCR(Y) x Bi-CG



Properties hybrid Bi-CG

Pros

e Converges often twice as fast as Bi-CG w.r.t. # MVs:
each MV expands the search subspace
Bi-CG: X, —Xg € Ki(A;rg) a 2k MV.
Hybrid Bi-CG: X — Xg € Kor(A;rg) a 2k MV,

Work/MV and storage similar to Bi-CG.

Transpose free.

Explicit computation of Bi-CG scalars.

[¢]

Cons

e Non-optimal Krylov subspace method.
e Peaks in the convergence history.

e Large intermediate residuals.

o Breakdown possibilities.

Conjugate Gradients Squared

X=0, r=Db. Choose T.

u=w=20, p=1.

While ||r|| > tol do
o=-p, p=(rr), B=plo
W +— u-— 35w
Vv=r—pj5u
W<+ V— 3w, Cc=Aw
oc=(c,r), a=p/o
u=v-ac
r < r—aA(v+u)

X < X+ a(v+u)

end while

Conjugate Gradients Squared

r, = piy “C(A) p“C(A) 1o

CGS exploits recurrence relations for the Bi-CG polyno-
mials to design a very efficient algorithm.

Properties
+ Hybrid Bi-CG.

+ A very efficient algorithm:
1 DOT/MV, 3.25 AXPY/MV;
storage: 7 large vectors.

— Often high peaks in its convergence history
— Often large intermediate residuals

+ Seems to do well as linear solver in a Newton scheme

Properties Bi-CGSTAB

Pros

e Hybrid Bi-CG.

e Converges faster (& smoother) than CGS.
e More accurate than CGS.

e 2DOT/MV, 3 AXPY/MV.

e Storage: 6 large vectors.

Cons Danger of
(A) Lanczos breakdown (pr, = 0),
(B) pivot breakdown (o), = 0),

(C) breakdown minimization (wp, = 0).



Log10 of residual norm
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'Bi-CG’
'BICGSTAB' ----

100)' -

"GCR(
*100-truncated GCR'

—(aug)s — (auy)y =1 on [0,1] x [0, 1].
a=1000 for 0.1 <z,y<0.9and a=1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.
82 x 82 volumes. ILU Decomp.

10g10 of residual norm

-.- Bi-CG, -- Bi-CGSTAB, - BiCGstah(2)

50

100

150
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250

300

350 400 450

number of matrix multiplications

—(aug)s — (auy)y + bu, = f on [0,1] x [0, 1].

500

b(x,y) = 2exp(2(z2 4+ y?)), a changes strongly
Dirichlet BC. 129 x 129 volumes. ILU Decomp.

1
u=1 i =1
100 |
A =10e4
A =10e-5
A =10e2
0 u=1

10g10 of residual norm

1

—(aus)e — (auy)y +bu, = f on [0,1] x [0, 1].
definition of a = A and of f = F; F = 0 except ...

-.- Bi-CG, -- Bi-CGSTAB, - BiCGstah(2)

0 100 200

300 400 500

700 800 900 1000

number of matrix multiplications

—(auz)s — (a uy)y + bu, = f on [0,1] x [0, 1].
b(x,y) = 2exp(2(z2 4+ y?)), a changes strongly
Dirichlet BC. 201 x 201 volumes. ILU Decomp.



Breakdown of the minimization

Exact arithmetic, w;, = 0:

— No reduction of residual by

Qpt17rt1 = T —wpA) QpIFEe. (%)

— qi41 is of degree k: Bi-CG scalars can not be computed;
breakdown of incorporated Bi-CG.

Finite precision arithmetic, w; ~ O:

— Poor reduction of residual by (x)

— BI-CG scalars are seriously affected by evaluation errors:
drop of speed of convergence.

wp, ~ 0 to be expected if A is real and

A has eigenvalues with rel. large imaginary part: wy, is real!

Moo =t — [AF, .., AV ]9,

Grre(Q) = (1 = [¢, ., m)ae(Q) (¢ €C)

Example. ¢41(0) = (1 - wiQaq(() (€ C)
How to choose wy?

Bi-CGSTABIlized. With s, = Ar?ﬂ,
Siry.
S}:Sk

wy, = argming||r}, — w Arg|la =

BiCGstab(¢). Cycle ¢ times through the Bi-CG part
to compute AU/, AIr for j=0,...,¢,

/— BiCG I — BiCG —
where now u’' = Qk:ukl-i-E—l and r :rikl-l-é for k= mdt.

Ym = argminz|[r' — [AF, ... Ao

BiCGstab(¥) for £>2

{ au+1(A) = Aq(A) k # mt
Imi4-0(A) = dm(A) ge(A)  kE=ml
where ¢, of exact degree ¢, ¢»»(0) =1 and

¢m  minimizes  |[¢m(A) gne(A) g2
—_—

r/

Minimization in practice: pn(¢) =1 - Z§=1 7](.”‘) <
(m) SN
(") = argming ¥’ - ‘21 v A P2,
]:

Compute Ar, A2y, ..., AlY explicitly.

With R = [Ar’,...,Afr’} , Ym = (7§m),...,7§m))T we have
[Normal Equations, use Choleski] (R*R)%, = R*r



10g10 of residual norm

BiCGstab(¥)

x=0, r=[b]. Choose F.
u=[0], w=o0=1.
While |[r| > tol do
o —Yo
For j=1 to £ do
p=(r;,r), pB=plo
u<+ r—pu, u< [uAu]
o= (Uj41,1), a=plo

r < r—auyr1, ¢+« [r Ar]
X +— X+ au;
end for

R=r2¢41. Solve (R*R)y = R*r; for ¥
u < [ur—(muz2+ ...+ 1) ]
r« [ri—(mr2+...+vre1)]
X — X+ (mri+ ...+ yre)
end while

40
-.- Bi-CG, -- Bi-CGSTAB, - BiCGstab(2)
2 ‘ : .
0 100 200 300 200 500 600
number of matrix multiplications
Uzz + Uyy + Uzz + 1000u, = f.
f s.t. u(z,y, 2) = exp(zyz) sin(rz) sin(wy) sin(wz).
(52 x 52 x 52) volumes. No preconditioning.
41

epsilon = 107(-16); ell = 4;
x = zeros(b); rt = rand(b);
sigma = 1; omega = 1; u = zeros(b);

y = MV(x); r = b-y;

norm = r’*r; nepsilon = norm*epsilon”2; L = 2:ell+l;
while norm > nepsilon
sigma = -omega*sigma; y = r;
for j = 1:ell
rho = rt’*y; beta = rho/sigma;
u = r-betaxu;
y = MV(u(:,3));  u(:,j+1) =y;
sigma = rt’*y; alpha = rho/sigma;
r = r-alpha*u(:,2:j+1);
x = x+alpha*u(:,1);
y = MV (x(:,3)); r(:,j+1) = y;

end

G = r’sr; gamma = G(L,L)\G(L,1); omega = gamma(ell);
u = ux[1;-gammal; r = r*[1;-gammal; x = x+r*[gamma;0];
norm = r’*r;

end

-. BiCGStah2, : Bi-CGSTAB, -- BiCGstab(2), - BiCGstab(4)

10g10 of residual norm

0 100 200 300 400 500 600

number of matrix multiplications

—(aug)s — (auy)y =1 on [0,1] x [0, 1].
a=1000 for 0.1 <z,y<0.9 and a =1 elsewhere.

Dirichlet BC on y = 0, Neumann BC on other parts of Boundary.
200 x 200 volumes. ILU Decomp. 42



—e(uga + uyy) + alz, y)us + b(z, y)u, = 0 on [0, 1] x [0, 1], Dirichlet BC
e=10"1,

a(z,y) = 4z(r — 1)(1-2y), blz,y) =4y(l—y)(1 —2z),

u(z,y) = sin(wz) + sin(137z) 4 sin(wy) 4 sin(13wy)
(201 x 201) volumes, no preconditioning.

-10r-

-12r

-1af

-16
0

50 100 150 200 250 300
Uze + Uyy + u.. + 1000w, = f.

f is defined by the solution
u(z,y, z) = exp(zyz) sin(rzx) sin(wy) sin(wz).
(10 x 10 x 10) volumes. No preconditioning .

Why using pol. factors of degree > 27

Hybrid Bi-CG, that is faster than Bi-CGSTAB

1 sweep BiCGstab(¥) versus ¢ steps Bi-CGSTAB:

e Reduction with MR-polynomial of degree ¢
is better than /x MR-pol. of degr. 1.

e MR-polynomial of degree ¢ contributes
only once to an increase of p

Why not?
o Efficiency:
1.75+4+0.25-¢ DOT/MV, 2540.5-¢4 AXPY/MV
Storage: 2¢ + 5 large vector.

o Loss of accuracy:

[Irell = 1o — Axill] < ... 4 c€ max (|l

43
Accurate BI-CG coefficients
r r ra N r.. T
el §n€|| kllzﬂ oll2 T S (11,
|(rg, Fo)l Pk rill2 [ Foll2
2
0
I
25
1
4k
!
1
_G—\‘
|
-8+ 1!
;
a1
a2k
\\ //\4\ (\ . A . \\
14+ vkt WP . ’/,“
H i ! ‘l\rl /\// \'\ !‘/‘ v”v‘ ‘m ;?/;A»/ «':JLHJA;{ ‘ \\/\"\u;\\.\.‘/ﬁ‘\'
-16+ ; v iy 4 [~ v 475
18 50 100 150 200 250 300

o break-downs are possible

Al1A7 )



Hybrid Bi-CG

Notation. If p; is a polynomial of exact degree k,

rg n-vector, let

S(pk, A, ¥o) = {p(A)V | v L Kp(A",ro)}

Theorem. Hybrid Bi-CG find residuals r, € S(pg, A, ¥o).

Example.
Bi-CGSTAB: (X)) = (1 — wipA) pp_1 ()
where, in every step,

wg, = minarg,||r — wAr||2, where r = p;._1(A)v, v = rEI-CG

Induced Dimension Reduction

Definition. If p; is a polynomial of exact degree k,

R=Rg=[F,...,Fs] an n x s matrix, then
S(pe: A R) = {pp(A)V | v L K1 (A", R)},

is the p,-Sonneveld subspace. Here

Kp(A*R) = { S (AR, |7 € CS} .
j=0

Theorem. IDR find residuals r;, € S(pi, A, R).

Example.

Bi-CGSTAB: p.(A\) = (1 —wpA) pr_1(N)

where, in every step,

wy, = minarg,|[r — wAr||2, where r = p;,_1(A)v, v = r<6

Hybrid Bi-CG

Notation. If p; is a polynomial of exact degree k,

rg n-vector, let

S(pk, A, ¥o) = {pr(A)V | v L Kp(A",ro)}

Theorem. Hybrid Bi-CG find residuals r, € S(pg, A, ¥o).

Example.
BiCGstab(¥): (X)) = (1 — wiA) pp_1(N)
where, every fth step

¥ = minargy|lr — [Ar, ... , A'r]9||2, where r = pr—o(A)IE-CC.

(=A== A = (1 —wpA) - (1 —wi_pN)
48
IDR
Select an Xg.
Select n X s matrices U and R.
Compute C = AU.
X=Xg, r—-b—-—AX, j=s, 1t =1
while [|r|| > tol do
Solve ﬁ*C'?:ARJ*r for v
v=r—-Cy, s=Av
j++, if j>s, w=s"V/s*s, j =0
Ue; + Uy + wv, X =x+ Ug;
ro=r, r=v—ws, Ce,=rg—r
i+, if t>s, 1 =1
end while
50



Select n X ¢ matricex U and R
Experiments suggest R = gr(rand(n,¢),0)
U and C can be constructed from ¢ steps of GCR.



