
QR-decomposition

The QR-decomposition of an n × k matrix A, k ≤ n, is

an n × n unitary matrix Q and an n × k upper triangular

matrix R for which

A = QR

In Matlab

[Q,R]=qr(A);

Note. The QR-decomposition is unique up to a change

of signs of the columns of Q:

A = (QD)(D̄R)

with |D| = I



QR-decomposition

The QR-decomposition of an n × k matrix A, k ≤ n, is

an n × n unitary matrix Q and an n × k upper triangular

matrix R for which

A = QR

If A is n × k with column rank ` and ` ≤ k ≤ n, then

the ‘ecomical’ QR-decomposition is an n× ` orthonormal

matrix Q and an `× k upper triangular matrix R for which

A = QR

In Matlab

[Q,R]=qr(A,’0’);



QR-decomposition

The QR-decomposition of an n × k matrix A, k ≤ n, is

an n × n unitary matrix Q and an n × k upper triangular

matrix R for which

A = QR

If A is n × k with column rank ` and ` ≤ k ≤ n, then

the ‘ecomical’ QR-decomposition is an n× ` orthonormal

matrix Q and an `× k upper triangular matrix R for which

A = QR

Note. The columns of Q form an orthonormal basis of

the space spanned by the columns of A: the QR-decomp.

represents the results of the Gram-Schmidt process.



QR-decomposition

The QR-decomposition of an n × k matrix A, k ≤ n, is

an n × n unitary matrix Q and an n × k upper triangular

matrix R for which

A = QR

Theorem. The QR-decomposition can be stably compu-

ted with Householder reflections.



QR-decomposition

The QR-decomposition of an n × k matrix A, k ≤ n, is

an n × n unitary matrix Q and an n × k upper triangular

matrix R for which

A = QR

Theorem. The QR-decomposition can be stably compu-

ted with Householder reflections:

Let R̃ be the computed R and Q = (Hvk ·. . .·Hv1)
∗ with Hvj

the Householder reflection as actually used in step j. Then

A + ∆A = QR̃ for some ∆A with ‖∆A‖F ≤ nku‖A‖F.

Note. The claim is not that Q is close to the Q that we

would have been obtained in exact arithmetic, but that Q

is unitary (product of Householder reflections).



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Theorem. If ST = TΛ is the eigenvalue decomposition

of S, i.e., T is non-singular and Λ is diagonal, then

A(UT) = (UT)Λ is the eigenvalue decomposition of A.

In particular, Λ(A) = Λ(S) = diag(S) and C2(T) = C2(UT).



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

The columns uj ≡ Uej of U are called Schur vectors.



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Observation. Many techniques, where the eigenvalue

decomposition of A is exploited, can be based on the

Schur decomposition as well. For practical computations,

the Schur decomposition is preferable, since it is stable:

C2(U) = 1, while C2(UT) can be huge.



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The first column u1 ≡ Ue1 of U is an eigenvector

of A with eigenvalue λ1 ≡ e∗1Se1.

Proof. S is upper triangular: Se1 = λ1e1.



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The last column un ≡ Uen of U is an eigenvector

of A∗ with eigenvalue λn, where λn ≡ e∗nSen.

Proof. S∗ is lower triangular: S∗en = λnen.



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The second column u2 of U is an eigenvector of

A′ ≡ (I− u1u
∗
1)A(I− u1u

∗
1) with eigenvalue λ2 ≡ e∗2Se2.

Proof. S is upper triangular: Se2 = αe1 + λ1e2 for α =

S1,2. Hence, USU∗u2 = αu1 + λ1u2.



Schur decomposition

The Schur decomposition or of an n× n matrix A is

an n× n unitary matrix U and

an n× u upper triangular matrix S

such that

A = USU∗ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The second column u2 of U is an eigenvector of

A′ ≡ (I− u1u
∗
1)A(I− u1u

∗
1) with eigenvalue λ2 ≡ e∗2Se2.

In A′, the eigenvector u1 is deflated from A.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Theorem. With a proper shift strategy:
Uk → U, U is unitary
Sk → S, S is upper triangular, AU = US:

The QR-algorithm converges to the Schur decomposition.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

Proof.

S0Q1 = (S0 − σ1I + σ1I)Q1 = (Q1R1 + σ1I)Q1

= Q1(R1Q1 + σ1I) = Q1S1



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

Proof. Sk−1Qk = QkSk

AUk = S0Q1Q2 . . .Qk = Q1S1Q2 . . .Qk = UkSk



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk,

Proof. (A− σkI)Uk−1 = Uk−1(Sk−1 − σkI) = Uk−1QkRk



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Proof. U∗k−1(A
∗ − σ̄kI) = R∗kU

∗
k



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Corollary. With xk ≡ Uke1 and τk ≡ e∗1Rke1,
we have (A−σkI)xk−1 = τk xk (the shifted power method).

Proof. Rk upper triangular ⇒ Rke1 = τke1.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Corollary. With xk ≡ Uke1 and τk ≡ e∗1Rke1,
we have (A−σkI)xk−1 = τk xk (the shifted power method).

With p(λ) ≡ (λ− σk) · . . . · (λ− σ1),

xk = τp(A)x0 for some τ ∈ C.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Corollary. With xk ≡ Uke1 and τk ≡ e∗1Rke1,
we have (A−σkI)xk−1 = τk xk (the shifted power method).

Note that λ(k) ≡ x∗kAxk = e∗1U∗kAUke1 = e1Ske1.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Suppose v is the dominant eigenvector for A− σI.
With σk = σ and xk ≡ Uke1, for k →∞, we have that

∠(xk,v)→ 0, λ(k) ≡ e∗1Ske1 → λ, Ske1 − λ(k)e1 → 0,

where λ is the eigenvalue of A associated v.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Corollary. With xk ≡ Uken and τk ≡ e∗nRken,
we have (A∗ − σ̄kI)xk = τ̄k xk−1 (Shift & Invert).

Proof. R∗k lower triangular ⇒ R∗ken = τ̄ken.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Corollary. With xk ≡ Uken and τk ≡ e∗nRken,
we have (A∗ − σ̄kI)xk = τ̄k xk−1 (Shift & Invert).

Note that λ(k) ≡ x∗kAxk = e∗nU∗kAUken = enSken.



QR-algorithm

Select U0 unitary. Compute S0 = U∗0AU0

for k = 1,2, , . . . do

1) Select a shift σk
2) Compute Qk unitary and Rk upper triangular

such that Sk−1 − σk I = QkRk
3) Compute Sk = RkQk + σkI
4) Uk = Uk−1Qk

end for

Lemma. a) Uk unitary, b) AUk = UkSk.

c) (A− σkI)Uk−1 = UkRk, d) (A∗ − σ̄kI)Uk = Uk−1R
∗
k.

Suppose v is the dominant eigenvector for (A∗ − σ̄I)−1.
With σk = σ and xk ≡ Uken, for k →∞, we have that

∠(xk,v)→ 0, λ(k) ≡ e∗nSken → λ, S∗ken − λ̄(k)en → 0,

where λ̄ is the eigenvalue of A∗ associated v.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

Rayleigh Quotient Iteration is Shift and Invert with shifts

equal to the the Rayleigh quotients, σ̄k = x∗k−1A
∗xk−1.

Theorem. The asymptotic convergence of RQI is quadratic.

In this case, with xk−1 = Uk−1en, σk = e∗nSk−1en.

With “The asymptotic convergence of this method is qua-

dratic”, we mean: the method produces sequences (xk)

that converge provided x0 is close enough to some (limit)

eigenvector, and for k large, the error reduces quadratically.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

Rayleigh Quotient Iteration is Shift and Invert with shifts

equal to the the Rayleigh quotients, σ̄k = x∗k−1A
∗xk−1.

Theorem. The asymptotic convergence of RQI is quadratic.

In this case, with xk−1 = Uk−1en, σk = e∗nSk−1en.

RQI need converge, as the following example shows

Example. With A =

[
0 1
1 0

]
and x0 = e1.

RQI produces the sequence (xk) = (e1,e2,e1,e2, . . .).
Note that x∗kAxk = 0.

Observation.
The shifts σk = e∗nSk−1en may lead to stagnation.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

The Wilkinson shift is the absolute smallest eigenvalue

of the 2× 2 right lower block of Sk.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

The Wilkinson shift is the absolute smallest eigenvalue

of the 2× 2 right lower block of Sk.

Theorem.
For σk take the Wilkinson shift and take xk ≡ Uken.
Then, for some eigenpair (v, λ̄) of A∗, we have that

∠(xk,v)→ 0, λ(k) ≡ e∗nSken → λ, S∗ken − λ̄(k)en → 0.

The convergence is quadratic (and cubic if A is Hermitian).



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

The Wilkinson shift is the absolute smallest eigenvalue

of the 2× 2 right lower block of Sk.

Theorem.
For σk take the Wilkinson shift and take xk ≡ Uken.
Then, for some eigenpair (v, λ̄) of A∗, we have that

∠(xk,v)→ 0, λ(k) ≡ e∗nSken → λ, S∗ken − λ̄(k)en → 0.

The convergence is quadratic (and cubic if A is Hermitian).

The QR-algorithm: if ‖e∗nSk − λ(k)e∗n‖2 ≤ ε, then

• accept Uken as an eigenvector of A∗

• deflate: delete the last row and column of Sk
and continu (the search for an eigenpair of the lower
dimensional matrix).



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power

method (for A∗).

The Wilkinson shift is the absolute smallest eigenvalue

of the 2× 2 right lower block of Sk.

Theorem.
For σk take the Wilkinson shift and take xk ≡ Uken.
Then, for some eigenpair (v, λ̄) of A∗, we have that

∠(xk,v)→ 0, λ(k) ≡ e∗nSken → λ, S∗ken − λ̄(k)en → 0.

The convergence is quadratic (and cubic if A is Hermitian).

The QR-algorithm: if ‖e∗nSk − λ(k)e∗n‖2 ≤ ε, then

• accept Uken as the nth Schur vector of A

• deflate: delete the last row and column of Sk
and continu (the search for an eigenpair of the lower
dimensional matrix).



Deflation

Consider the kth step of the QR-algorithm.

Put un ≡ Uken.

Note that

(I− un u∗n)Uk = Uk(I− ene
∗
n)

Hence

(I− un u∗n)A(I− un u∗n)Uk = Uk(I− ene
∗
n)Sk(I− ene

∗
n).

Deflating the nth Schur vector from A can easily be per-

formed in the QR-algorithm: simply delete the last row

and last column of the “active” matrix Sk (assumming

that Uken is the nth Schur vector to required accuracy).



QR-algorithm

Select U unitary. S = U∗AU,

m = size(A,1), N = [1 : m], I = Im.

repeat until m = 1
1) Select the Wilskinson shift σ
2) [Q,R] = qr(S− σ I)
3) S ← RQ + σI
4) U(:, N) ← U(:, N)Q
5) if |S(m, m− 1)| ≤ ε|S(m, m)|

%% Deflate
m← m− 1, N ← [1 : m], I← Im
S ← S(N, N)

end if

end repeat

Theorem. Uk → U, U is unitary
Sk → S, S is upper triangular, AU = US.



Observations.

• The QR-algorithm quickly converges towards to the ei-

genvalue as ‘targeted’ by the Wilkinson shift (on average

8 steps of the QR algorithm seems to be required for ac-

curate detection of the first eigenvalue).

• While converging to a ‘target’ eigenvalue, other eigen-

values are also approximated. Therefore, the next eigen-

values are detected more quickly (from the 5th eigenvalue

on, 2 steps appear to be sufficient).

• All eigenvalues are being computed (according to mul-

tiplicity). Computation of all eigenvalues (actually of the

Schur decomposition of A) requires approximately

2n steps of the QR-algorithm.

• The order in which the eigenvalues are being computed

can not be controled.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix U0 (product of Hou-

seholder reflections) such that

S0 ≡ U∗0AU0

is upper Hessenberg.

Start QR-alg. Bring A to upper Hessenberg form

(i.e., S = S0, U = U0). Computation requires 4
3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

R1 =




? ? ? ? ?
? ? ? ?
? ? ? ?

? ? ?
? ?


 =




c −s
s c

1
1

1







? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ?

? ?


 = G1R0

Here,

[
c −s
s c

]
=

[
cos(φ1) − sin(φ1)

sin(φ1) cos(φ1)

]
. Empty matrix entries are 0.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

R2 =




? ? ? ? ?
? ? ? ?

? ? ?
? ? ?

? ?


 =




1
c −s
s c

1
1







? ? ? ? ?
? ? ? ?
? ? ? ?

? ? ?
? ?


 = G2R1

Here,

[
c −s
s c

]
=

[
cos(φ2) − sin(φ2)

sin(φ2) cos(φ2)

]



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

R3 =




? ? ? ? ?
? ? ? ?

? ? ?
? ?
? ?


 =




1
1

c −s
s c

1







? ? ? ? ?
? ? ? ?

? ? ?
? ? ?

? ?


 = G3R2

Here,

[
c −s
s c

]
=

[
cos(φ3) − sin(φ3)

sin(φ3) cos(φ3)

]



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

R4 =




? ? ? ? ?
? ? ? ?

? ? ?
? ?

?


 =




1
1

1
c −s
s c







? ? ? ? ?
? ? ? ?

? ? ?
? ?
? ?


 = G4R3

Here,

[
c −s
s c

]
=

[
cos(φ4) − sin(φ4)

sin(φ4) cos(φ4)

]



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

R4 =




? ? ? ? ?
? ? ? ?

? ? ?
? ?

?


 =




1
1

1
c −s
s c







? ? ? ? ?
? ? ? ?

? ? ?
? ?
? ?


 = G4R3

Here,

[
c −s
s c

]
=

[
cos(φ4) − sin(φ4)

sin(φ4) cos(φ4)

]



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

Then R = Rn−1 and Q∗ = Gn−1 · . . . ·G1.

Note. Q need not be formed explicitly:
it suffices to store the sequences of cosines and sines.
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Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

(G3(R2)G1) =




1
1

c −s
s c

1







? ? ? ? ?
? ? ? ?

? ? ?
? ? ?

? ?







c −s
s c

1
1

1






Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.
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Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:
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Chasing the bulge.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix

and S = QR is the QR-decomposition, then

• Q is Hessenberg

• S̃ ≡ RQ and S̃ + σI are upper Hessenberg.

Q can be obtained as the product of n−1 Givens rotations:

with R0 ≡ S, Rj = Gj Rj−1 (j = 1, . . . , n− 1),

where Gj rotates in the (j, j+1) plane (i.e., in span(ej, ej+1))

Then R = Rn−1 and Q∗ = Gn−1 · . . . ·G1

and S̃ = RG1 · . . . ·Gn−1.

Property. S̃ = . . .G∗4(G∗3(G∗2G∗1S)G1)G2 . . .

Only two sines and two cosines have to be stored.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix U0 (product of Hou-

seholder reflections) such that

S0 ≡ U∗0AU0

is upper Hessenberg.

Start QR-alg. Bring A to upper Hessenberg form

(i.e., S = S0, U = U0). Computation requires 4
3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.
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is upper Hessenberg.
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3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.

Observation. For computing the eigenvalues only,
step 4 can be skipped.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix U0 (product of Hou-

seholder reflections) such that

S0 ≡ U∗0AU0

is upper Hessenberg.

Start QR-alg. Bring A to upper Hessenberg form

(i.e., S = S0, U = U0). Computation requires 4
3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.

If the eigenvalue λj is available, then the associated eigenvector can
also be computed with Shift & Invert: solve (A − λjI)vj = e1 for vj.
Note that the LU-decomposition can cheaply be computed if A is
upper Hessenberg.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix U0 (product of Hou-

seholder reflections) such that

S0 ≡ U∗0AU0

is upper Hessenberg.

Start QR-alg. Bring A to upper Hessenberg form

(i.e., S = S0, U = U0). Computation requires 4
3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.

Observation. The QR-algorithm requires approximately
8n3 flop

to compute the Schur decomposition to full accuracy.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix U0 (product of Hou-

seholder reflections) such that

S0 ≡ U∗0AU0

is upper Hessenberg.

Start QR-alg. Bring A to upper Hessenberg form

(i.e., S = S0, U = U0). Computation requires 4
3n3 flop.

Theorem. If Sk−1 is upper Hessenberg, then Sk is upper

Hessenberg. Moreover, if Sk is m × m, then Qk can be

obtained as a product of m−1 Givens rotations, i.e., rota-

tions in the (j, j + 1) plane. The steps 2 and 3 in the QR

algorithm can be performed in (together) 3m2 flop.

Observation. The QR-algorithm can not exploit any spar-

sity structure of A.



Benefits of the QR-RQ steps.

• The Shift & Invert power method is implicitly incorpora-

ted for one eigenvalue.

• The power method is implicitly incorporated for all other

eigenvalues.

• Easy deflation is allowed.

• The computations are stable (when a stable qr-decomposition

is used).

When combined with an upper Hessenberg start:

• Upper Hessenberg structure is preserved, leading to re-

altively low computational costs per step.

• Simple error controle:

the norm of the residual equals |Sk(n, n− 1)|.
• Effective shifts can easily be computed: with an eigen-

value of the 2 × 2 right lower block of Sk, quadratic con-

vergence is achieved and stagnation avoided.



Excellent performance of the QR algorithm relies on

• QR-RQ steps. (see previous transparant)

• A good shift strategy leading to fast convergence (qua-

dratic and, if A is Hermitian, cubic) to one eigenvalue.

While quickly converging to one eigenvalue, other eigen-

values are also approximated, yielding good starts for quick

eigenvalue computation.

• Deflation allows a fast search for the next eigenvalue.

Deflation is performed simply by deleting the last row and

the last column of the active matrix.

• The upper Hessenberg structure is preserved, allowing

relatively cheap QR steps.



Theorem. The QR-algorithm is stable: for the matrix U

and the upper triangular matrix S we have that

(A + ∆A)U = US, ‖U∗U− I‖2 ≤ us

where ∆A is an n× n matrix such that

‖∆A‖2 ≤ u‖A‖2


