The **QR-decomposition** of an $n \times k$ matrix **A**, $k \leq n$, is an $n \times n$ unitary matrix **Q** and an $n \times k$ upper triangular matrix **R** for which

$$A = QR$$

In Matlab

[Q,R]=qr(A);

Note. The QR-decomposition is unique up to a change of signs of the columns of \mathbf{Q} :

$$A = (QD)(\bar{D}R)$$

with $|\mathbf{D}| = \mathbf{I}$

The **QR-decomposition** of an $n \times k$ matrix **A**, $k \leq n$, is an $n \times n$ unitary matrix **Q** and an $n \times k$ upper triangular matrix **R** for which

A = QR

If **A** is $n \times k$ with column rank ℓ and $\ell \leq k \leq n$, then the **'ecomical'** QR-decomposition is an $n \times \ell$ orthonormal matrix **Q** and an $\ell \times k$ upper triangular matrix *R* for which

$$\mathbf{A} = \mathbf{Q}R$$

In Matlab

[Q,R]=qr(A,'0');

The **QR-decomposition** of an $n \times k$ matrix **A**, $k \leq n$, is an $n \times n$ unitary matrix **Q** and an $n \times k$ upper triangular matrix **R** for which

A = QR

If **A** is $n \times k$ with column rank ℓ and $\ell \leq k \leq n$, then the **'ecomical'** QR-decomposition is an $n \times \ell$ orthonormal matrix **Q** and an $\ell \times k$ upper triangular matrix *R* for which

$\mathbf{A} = \mathbf{Q}R$

Note. The columns of \mathbf{Q} form an orthonormal basis of the space spanned by the columns of \mathbf{A} : the QR-decomp. represents the results of the Gram-Schmidt process.

The **QR-decomposition** of an $n \times k$ matrix **A**, $k \leq n$, is an $n \times n$ unitary matrix **Q** and an $n \times k$ upper triangular matrix **R** for which

$\mathbf{A} = \mathbf{Q}\mathbf{R}$

Theorem. The QR-decomposition can be stably computed with Householder reflections.

The **QR-decomposition** of an $n \times k$ matrix **A**, $k \leq n$, is an $n \times n$ unitary matrix **Q** and an $n \times k$ upper triangular matrix **R** for which

A = QR

Theorem. The QR-decomposition can be stably computed with Householder reflections:

Let $\widetilde{\mathbf{R}}$ be the computed \mathbf{R} and $\mathbf{Q} = (\mathbf{H}_{v_k} \cdot \ldots \cdot \mathbf{H}_{v_1})^*$ with \mathbf{H}_{v_j} the Householder reflection as actually used in step j. Then $\mathbf{A} + \Delta_A = \mathbf{Q}\widetilde{\mathbf{R}}$ for some Δ_A with $\|\Delta_A\|_{\mathsf{F}} \le nk\mathbf{u}\|\mathbf{A}\|_{\mathsf{F}}$.

Note. The claim is **not** that \mathbf{Q} is close to the \mathbf{Q} that we would have been obtained in exact arithmetic, but that \mathbf{Q} is unitary (product of Householder reflections).

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Theorem. If $ST = T\Lambda$ is the eigenvalue decomposition of S, i.e., T is non-singular and Λ is diagonal, then $A(UT) = (UT)\Lambda$ is the eigenvalue decomposition of A.

In particular, $\Lambda(\mathbf{A}) = \Lambda(\mathbf{S}) = \operatorname{diag}(\mathbf{S})$ and $\mathcal{C}_2(\mathbf{T}) = \mathcal{C}_2(\mathbf{UT})$.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

The columns $\mathbf{u}_j \equiv \mathbf{U}\mathbf{e}_j$ of **U** are called **Schur vectors**.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Observation. Many techniques, where the eigenvalue decomposition of **A** is exploited, can be based on the Schur decomposition as well. For practical computations, the Schur decomposition is preferable, since it is stable: $C_2(\mathbf{U}) = 1$, while $C_2(\mathbf{UT})$ can be huge.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The first column $\mathbf{u}_1 \equiv \mathbf{U}\mathbf{e}_1$ of \mathbf{U} is an eigenvector of \mathbf{A} with eigenvalue $\lambda_1 \equiv \mathbf{e}_1^* \mathbf{S} \mathbf{e}_1$.

Proof. S is upper triangular: $Se_1 = \lambda_1 e_1$.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The last column $\mathbf{u}_n \equiv \mathbf{U} \mathbf{e}_n$ of \mathbf{U} is an eigenvector of \mathbf{A}^* with eigenvalue $\overline{\lambda}_n$, where $\lambda_n \equiv \mathbf{e}_n^* \mathbf{S} \mathbf{e}_n$.

Proof. S^{*} is lower triangular: $S^*e_n = \overline{\lambda}_n e_n$.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The second column \mathbf{u}_2 of \mathbf{U} is an eigenvector of $\mathbf{A}' \equiv (\mathbf{I} - \mathbf{u}_1 \mathbf{u}_1^*) \mathbf{A} (\mathbf{I} - \mathbf{u}_1 \mathbf{u}_1^*)$ with eigenvalue $\lambda_2 \equiv \mathbf{e}_2^* \mathbf{S} \mathbf{e}_2$.

Proof. S is upper triangular: $\mathbf{Se}_2 = \alpha \mathbf{e}_1 + \lambda_1 \mathbf{e}_2$ for $\alpha = \mathbf{S}_{1,2}$. Hence, $\mathbf{USU}^*\mathbf{u}_2 = \alpha \mathbf{u}_1 + \lambda_1 \mathbf{u}_2$.

The Schur decomposition or of an $n \times n$ matrix **A** is an $n \times n$ unitary matrix **U** and an $n \times u$ upper triangular matrix **S** such that

 $A = USU^*$ or, equivalently, AU = US

In Matlab

[U,S]=schur(A);

Note. The second column \mathbf{u}_2 of \mathbf{U} is an eigenvector of $\mathbf{A}' \equiv (\mathbf{I} - \mathbf{u}_1 \mathbf{u}_1^*) \mathbf{A} (\mathbf{I} - \mathbf{u}_1 \mathbf{u}_1^*)$ with eigenvalue $\lambda_2 \equiv \mathbf{e}_2^* \mathbf{S} \mathbf{e}_2$.

In \mathbf{A}' , the eigenvector \mathbf{u}_1 is **deflated** from \mathbf{A} .

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Theorem. With a proper shift strategy:

$$oldsymbol{U}_k o oldsymbol{U}, ~~oldsymbol{U}$$
 is unitary $oldsymbol{S}_k o oldsymbol{S}, ~~oldsymbol{S}$ is upper triangular, $~~oldsymbol{AU} = oldsymbol{US}$:

The QR-algorithm converges to the Schur decomposition.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$.

Proof.

$$\mathbf{S}_0 \mathbf{Q}_1 = (\mathbf{S}_0 - \sigma_1 \mathbf{I} + \sigma_1 \mathbf{I}) \mathbf{Q}_1 = (\mathbf{Q}_1 \mathbf{R}_1 + \sigma_1 \mathbf{I}) \mathbf{Q}_1$$

= $\mathbf{Q}_1 (\mathbf{R}_1 \mathbf{Q}_1 + \sigma_1 \mathbf{I}) = \mathbf{Q}_1 \mathbf{S}_1$

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. Proof. $\mathbf{S}_{k-1} \mathbf{Q}_k = \mathbf{Q}_k \mathbf{S}_k$ $\mathbf{AU}_k = \mathbf{S}_0 \mathbf{Q}_1 \mathbf{Q}_2 \dots \mathbf{Q}_k = \mathbf{Q}_1 \mathbf{S}_1 \mathbf{Q}_2 \dots \mathbf{Q}_k = \mathbf{U}_k \mathbf{S}_k$

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, Proof. $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_{k-1}(\mathbf{S}_{k-1} - \sigma_k \mathbf{I}) = \mathbf{U}_{k-1}\mathbf{Q}_k \mathbf{R}_k$

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{A}\mathbf{U}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Proof. $\mathbf{U}_{k-1}^*(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I}) = \mathbf{R}_k^*\mathbf{U}_k^*$

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{A}\mathbf{U}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Corollary. With $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_1$ and $\tau_k \equiv \mathbf{e}_1^* \mathbf{R}_k \mathbf{e}_1$, we have $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{x}_{k-1} = \tau_k \mathbf{x}_k$ (the shifted power method).

Proof. \mathbf{R}_k upper triangular $\Rightarrow \mathbf{R}_k \mathbf{e}_1 = \tau_k \mathbf{e}_1$.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \overline{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Corollary. With $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_1$ and $\tau_k \equiv \mathbf{e}_1^* \mathbf{R}_k \mathbf{e}_1$, we have $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{x}_{k-1} = \tau_k \mathbf{x}_k$ (the shifted power method). With $p(\lambda) \equiv (\lambda - \sigma_k) \cdot \ldots \cdot (\lambda - \sigma_1)$, $\mathbf{x}_k = \tau p(\mathbf{A})\mathbf{x}_0$ for some $\tau \in \mathbb{C}$.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Corollary. With $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_1$ and $\tau_k \equiv \mathbf{e}_1^* \mathbf{R}_k \mathbf{e}_1$, we have $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{x}_{k-1} = \tau_k \mathbf{x}_k$ (the shifted power method). Note that $\lambda^{(k)} \equiv \mathbf{x}_k^* \mathbf{A} \mathbf{x}_k = \mathbf{e}_1^* \mathbf{U}_k^* \mathbf{A} \mathbf{U}_k \mathbf{e}_1 = \mathbf{e}_1 \mathbf{S}_k \mathbf{e}_1$.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{A}\mathbf{U}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \overline{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Suppose **v** is the dominant eigenvector for $\mathbf{A} - \sigma \mathbf{I}$.

With $\sigma_k = \sigma$ and $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_1$, for $k \to \infty$, we have that

 $\angle(\mathbf{x}_k, \mathbf{v}) \to 0$, $\lambda^{(k)} \equiv \mathbf{e}_1^* \mathbf{S}_k \mathbf{e}_1 \to \lambda$, $\mathbf{S}_k \mathbf{e}_1 - \lambda^{(k)} \mathbf{e}_1 \to 0$, where λ is the eigenvalue of **A** associated **v**.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Corollary. With $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$ and $\tau_k \equiv \mathbf{e}_n^* \mathbf{R}_k \mathbf{e}_n$, we have $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{x}_k = \bar{\tau}_k \mathbf{x}_{k-1}$ (Shift & Invert).

Proof. \mathbf{R}_k^* lower triangular $\Rightarrow \mathbf{R}_k^* \mathbf{e}_n = \bar{\tau}_k \mathbf{e}_n$.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{AU}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Corollary. With $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$ and $\tau_k \equiv \mathbf{e}_n^* \mathbf{R}_k \mathbf{e}_n$, we have $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{x}_k = \bar{\tau}_k \mathbf{x}_{k-1}$ (Shift & Invert). Note that $\lambda^{(k)} \equiv \mathbf{x}_k^* \mathbf{A} \mathbf{x}_k = \mathbf{e}_n^* \mathbf{U}_k^* \mathbf{A} \mathbf{U}_k \mathbf{e}_n = \mathbf{e}_n \mathbf{S}_k \mathbf{e}_n$.

Select
$$\mathbf{U}_0$$
 unitary. Compute $\mathbf{S}_0 = \mathbf{U}_0^* \mathbf{A} \mathbf{U}_0$
for $k = 1, 2, ...$ do
1) Select a shift σ_k
2) Compute \mathbf{Q}_k unitary and \mathbf{R}_k upper triangular
such that $\mathbf{S}_{k-1} - \sigma_k \mathbf{I} = \mathbf{Q}_k \mathbf{R}_k$
3) Compute $\mathbf{S}_k = \mathbf{R}_k \mathbf{Q}_k + \sigma_k \mathbf{I}$
4) $\mathbf{U}_k = \mathbf{U}_{k-1} \mathbf{Q}_k$
end for

Lemma. a) \mathbf{U}_k unitary, b) $\mathbf{A}\mathbf{U}_k = \mathbf{U}_k \mathbf{S}_k$. c) $(\mathbf{A} - \sigma_k \mathbf{I})\mathbf{U}_{k-1} = \mathbf{U}_k \mathbf{R}_k$, d) $(\mathbf{A}^* - \bar{\sigma}_k \mathbf{I})\mathbf{U}_k = \mathbf{U}_{k-1}\mathbf{R}_k^*$. Suppose **v** is the dominant eigenvector for $(\mathbf{A}^* - \bar{\sigma}\mathbf{I})^{-1}$.

With $\sigma_k = \sigma$ and $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$, for $k \to \infty$, we have that

 $\angle(\mathbf{x}_k, \mathbf{v}) \to 0$, $\lambda^{(k)} \equiv \mathbf{e}_n^* \mathbf{S}_k \mathbf{e}_n \to \lambda$, $\mathbf{S}_k^* \mathbf{e}_n - \overline{\lambda}^{(k)} \mathbf{e}_n \to 0$, where $\overline{\lambda}$ is the eigenvalue of \mathbf{A}^* associated \mathbf{v} .

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

Rayleigh Quotient Iteration is Shift and Invert with shifts equal to the the Rayleigh quotients, $\bar{\sigma}_k = \mathbf{x}_{k-1}^* \mathbf{A}^* \mathbf{x}_{k-1}$. **Theorem**. The asymptotic convergence of RQI is quadratic. In this case, with $\mathbf{x}_{k-1} = \mathbf{U}_{k-1}\mathbf{e}_n$, $\sigma_k = \mathbf{e}_n^* \mathbf{S}_{k-1}\mathbf{e}_n$.

With "The asymptotic convergence of this method is quadratic", we mean: the method produces sequences (\mathbf{x}_k) that converge provided \mathbf{x}_0 is close enough to some (limit) eigenvector, and for k large, the error reduces quadratically.

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

Rayleigh Quotient Iteration is Shift and Invert with shifts equal to the the Rayleigh quotients, $\bar{\sigma}_k = \mathbf{x}_{k-1}^* \mathbf{A}^* \mathbf{x}_{k-1}$. **Theorem**. The asymptotic convergence of RQI is quadratic. In this case, with $\mathbf{x}_{k-1} = \mathbf{U}_{k-1}\mathbf{e}_n$, $\sigma_k = \mathbf{e}_n^* \mathbf{S}_{k-1}\mathbf{e}_n$. RQI need converge, as the following example shows

Example. With $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{x}_0 = \mathbf{e}_1$. RQI produces the sequence $(\mathbf{x}_k) = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_2, \ldots)$. Note that $\mathbf{x}_k^* \mathbf{A} \mathbf{x}_k = 0$.

Observation.

The shifts $\sigma_k = \mathbf{e}_n^* \mathbf{S}_{k-1} \mathbf{e}_n$ may lead to stagnation.

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

The Wilkinson shift is the absolute smallest eigenvalue of the 2×2 right lower block of S_k .

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

The Wilkinson shift is the absolute smallest eigenvalue of the 2×2 right lower block of S_k .

Theorem.

For σ_k take the Wilkinson shift and take $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$. Then, for some eigenpair $(\mathbf{v}, \overline{\lambda})$ of \mathbf{A}^* , we have that

$$\angle (\mathbf{x}_k, \mathbf{v}) \rightarrow 0, \ \lambda^{(k)} \equiv \mathbf{e}_n^* \mathbf{S}_k \mathbf{e}_n \rightarrow \lambda, \ \mathbf{S}_k^* \mathbf{e}_n - \overline{\lambda}^{(k)} \mathbf{e}_n \rightarrow 0.$$

The convergence is quadratic (and cubic if **A** is Hermitian).

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

The Wilkinson shift is the absolute smallest eigenvalue of the 2×2 right lower block of S_k .

Theorem.

For σ_k take the Wilkinson shift and take $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$. Then, for some eigenpair $(\mathbf{v}, \overline{\lambda})$ of \mathbf{A}^* , we have that

$$\angle (\mathbf{x}_k, \mathbf{v}) \to 0, \ \lambda^{(k)} \equiv \mathbf{e}_n^* \mathbf{S}_k \mathbf{e}_n \to \lambda, \ \mathbf{S}_k^* \mathbf{e}_n - \overline{\lambda}^{(k)} \mathbf{e}_n \to 0.$$

The convergence is quadratic (and cubic if **A** is Hermitian).

The QR-algorithm: if $\|\mathbf{e}_n^*\mathbf{S}_k - \lambda^{(k)}\mathbf{e}_n^*\|_2 \leq \epsilon$, then

- accept $\mathbf{U}_k \mathbf{e}_n$ as an eigenvector of \mathbf{A}^*
- deflate: delete the last row and column of S_k and continu (the search for an eigenpair of the lower dimensional matrix).

The QR-agorithm incorporates the Shift and Invert power method (for \mathbf{A}^*).

The Wilkinson shift is the absolute smallest eigenvalue of the 2×2 right lower block of S_k .

Theorem.

For σ_k take the Wilkinson shift and take $\mathbf{x}_k \equiv \mathbf{U}_k \mathbf{e}_n$. Then, for some eigenpair $(\mathbf{v}, \overline{\lambda})$ of \mathbf{A}^* , we have that

$$\angle (\mathbf{x}_k, \mathbf{v}) \to 0, \ \lambda^{(k)} \equiv \mathbf{e}_n^* \mathbf{S}_k \mathbf{e}_n \to \lambda, \ \mathbf{S}_k^* \mathbf{e}_n - \overline{\lambda}^{(k)} \mathbf{e}_n \to 0.$$

The convergence is quadratic (and cubic if **A** is Hermitian).

The QR-algorithm: if $\|\mathbf{e}_n^*\mathbf{S}_k - \lambda^{(k)}\mathbf{e}_n^*\|_2 \leq \epsilon$, then

- accept $\mathbf{U}_k \mathbf{e}_n$ as the *n*th Schur vector of \mathbf{A}
- deflate: delete the last row and column of S_k and continu (the search for an eigenpair of the lower dimensional matrix).

Deflation

Consider the kth step of the QR-algorithm.

Put $\mathbf{u}_n \equiv \mathbf{U}_k \mathbf{e}_n$. Note that

$$(\mathbf{I} - \mathbf{u}_n \, \mathbf{u}_n^*) \mathbf{U}_k = \mathbf{U}_k (\mathbf{I} - \mathbf{e}_n \mathbf{e}_n^*)$$

Hence

$$(\mathbf{I} - \mathbf{u}_n \mathbf{u}_n^*) \mathbf{A} (\mathbf{I} - \mathbf{u}_n \mathbf{u}_n^*) \mathbf{U}_k = \mathbf{U}_k (\mathbf{I} - \mathbf{e}_n \mathbf{e}_n^*) \mathbf{S}_k (\mathbf{I} - \mathbf{e}_n \mathbf{e}_n^*).$$

Deflating the *n*th Schur vector from **A** can easily be performed in the QR-algorithm: simply delete the last row and last column of the "active" matrix S_k (assumming that $U_k e_n$ is the *n*th Schur vector to required accuracy).

Select U unitary.
$$\mathbf{S} = \mathbf{U}^* \mathbf{A} \mathbf{U}$$
,
 $m = \operatorname{size}(\mathbf{A}, 1), N = [1 : m], \mathbf{I} = \mathbf{I}_m$.
repeat until $m = 1$
1) Select the Wilskinson shift σ
2) $[\mathbf{Q}, \mathbf{R}] = \operatorname{qr}(\mathbf{S} - \sigma \mathbf{I})$
3) $\mathbf{S} \leftarrow \mathbf{R} \mathbf{Q} + \sigma \mathbf{I}$
4) $\mathbf{U}(:, N) \leftarrow \mathbf{U}(:, N) \mathbf{Q}$
5) if $|\mathbf{S}(m, m - 1)| \leq \epsilon |\mathbf{S}(m, m)|$
 $\%$ Deflate
 $m \leftarrow m - 1, N \leftarrow [1 : m], \mathbf{I} \leftarrow \mathbf{I}_m$
 $\mathbf{S} \leftarrow \mathbf{S}(N, N)$
end if
end repeat

Theorem. $U_k \rightarrow U$, U is unitary $S_k \rightarrow S$, S is upper triangular, AU = US.

Observations.

• The QR-algorithm quickly converges towards to the eigenvalue as 'targeted' by the Wilkinson shift (on average 8 steps of the QR algorithm seems to be required for accurate detection of the first eigenvalue).

• While converging to a 'target' eigenvalue, other eigenvalues are also approximated. Therefore, the next eigenvalues are detected more quickly (from the 5th eigenvalue on, 2 steps appear to be sufficient).

• All eigenvalues are being computed (according to multiplicity). Computation of all eigenvalues (actually of the Schur decomposition of **A**) requires approximately

2n steps of the QR-algorithm.

• The order in which the eigenvalues are being computed can not be controled.

Theorem. There is a unitary matrix U_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1}))

Here, $\begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos(\phi_1) & -\sin(\phi_1) \\ \sin(\phi_1) & \cos(\phi_1) \end{bmatrix}$. Empty matrix entries are 0.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1}))

Here, $\begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos(\phi_4) & -\sin(\phi_4) \\ \sin(\phi_4) & \cos(\phi_4) \end{bmatrix}$

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1}))

Here, $\begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos(\phi_4) & -\sin(\phi_4) \\ \sin(\phi_4) & \cos(\phi_4) \end{bmatrix}$

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1})) Then $\mathbf{R} = \mathbf{R}_{n-1}$ and $\mathbf{Q}^* = \mathbf{G}_{n-1} \cdot ... \cdot \mathbf{G}_1$.

Note. Q need not be formed explicitly: it suffices to store the sequences of cosines and sines.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1})) Then $\mathbf{R} = \mathbf{R}_{n-1}$ and $\mathbf{Q}^* = \mathbf{G}_{n-1} \cdot ... \cdot \mathbf{G}_1$, and $\widetilde{\mathbf{S}} = \mathbf{R}\mathbf{G}_1 \cdot ... \cdot \mathbf{G}_{n-1}$.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Theorem. If **S** is an upper Hessenberg matrix and $\mathbf{S} = \mathbf{QR}$ is the QR-decomposition, then

- Q is Hessenberg
- $\tilde{\mathbf{S}} \equiv \mathbf{R}\mathbf{Q}$ and $\tilde{\mathbf{S}} + \sigma \mathbf{I}$ are upper Hessenberg.

Q can be obtained as the product of n-1 Givens rotations: with $\mathbf{R}_0 \equiv \mathbf{S}$, $\mathbf{R}_j = \mathbf{G}_j \mathbf{R}_{j-1}$ (j = 1, ..., n-1), where \mathbf{G}_j rotates in the (j, j+1) plane (i.e., in span (e_j, e_{j+1})) Then $\mathbf{R} = \mathbf{R}_{n-1}$ and $\mathbf{Q}^* = \mathbf{G}_{n-1} \cdot ... \cdot \mathbf{G}_1$ and $\tilde{\mathbf{S}} = \mathbf{R}\mathbf{G}_1 \cdot ... \cdot \mathbf{G}_{n-1}$.

Property. $\tilde{\mathbf{S}} = \dots \mathbf{G}_{4}^{*}(\mathbf{G}_{3}^{*}(\mathbf{G}_{2}^{*}\mathbf{G}_{1}^{*}\mathbf{S})\mathbf{G}_{1})\mathbf{G}_{2}\dots$

Only two sines and two cosines have to be stored.

Theorem. There is a unitary matrix U_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

Theorem. There is a unitary matrix U_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

Observation. For computing the eigenvalues only, step 4 can be skipped.

Theorem. There is a unitary matrix U_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

If the eigenvalue λ_j is available, then the associated eigenvector can also be computed with Shift & Invert: solve $(\mathbf{A} - \lambda_j \mathbf{I})\mathbf{v}_j = \mathbf{e}_1$ for \mathbf{v}_j . Note that the LU-decomposition can cheaply be computed if \mathbf{A} is upper Hessenberg.

Theorem. There is a unitary matrix U_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

Observation. The QR-algorithm requires approximately $8n^3$ flop to compute the Schur decomposition to full accuracy.

Theorem. There is a unitary matrix \mathbf{U}_0 (product of Householder reflections) such that

$$\mathbf{S}_0 \equiv \mathbf{U}_0^* \, \mathbf{A} \mathbf{U}_0$$

is upper Hessenberg.

Start QR-alg. Bring **A** to upper Hessenberg form (i.e., $\mathbf{S} = \mathbf{S}_0$, $\mathbf{U} = \mathbf{U}_0$). Computation requires $\frac{4}{3}n^3$ flop.

Theorem. If S_{k-1} is upper Hessenberg, then S_k is upper Hessenberg. Moreover, if S_k is $m \times m$, then Q_k can be obtained as a product of m-1 Givens rotations, i.e., rotations in the (j, j + 1) plane. The steps 2 and 3 in the QR algorithm can be performed in (together) $3m^2$ flop.

Observation. The QR-algorithm can not exploit any sparsity structure of **A**.

Benefits of the QR-RQ steps.

- The Shift & Invert power method is implicitly incorporated for one eigenvalue.
- The power method is implicitly incorporated for all other eigenvalues.
- Easy deflation is allowed.
- The computations are stable (when a stable qr-decomposition is used).

When combined with an upper Hessenberg start:

- Upper Hessenberg structure is preserved, leading to realtively low computational costs per step.
- Simple error controle:

the norm of the residual equals $|\mathbf{S}_k(n, n-1)|$.

• Effective shifts can easily be computed: with an eigenvalue of the 2×2 right lower block of \mathbf{S}_k , quadratic convergence is achieved and stagnation avoided.

Excellent performance of the QR algorithm relies on

• QR-RQ steps. (see previous transparant)

• A good **shift strategy** leading to fast convergence (quadratic and, if **A** is Hermitian, cubic) to one eigenvalue. While quickly converging to one eigenvalue, other eigenvalues are also approximated, yielding good starts for quick eigenvalue computation.

• **Deflation** allows a fast search for the next eigenvalue. Deflation is performed simply by deleting the last row and the last column of the active matrix.

• The **upper Hessenberg** structure is preserved, allowing relatively cheap QR steps.

Theorem. The QR-algorithm is stable: for the matrix \mathbf{U} and the upper triangular matrix \mathbf{S} we have that

 $(\mathbf{A} + \Delta_A)\mathbf{U} = \mathbf{U}\mathbf{S}, \qquad \|\mathbf{U}^*\mathbf{U} - \mathbf{I}\|_2 \le \mathbf{u}s$

where Δ_A is an $n\times n$ matrix such that

 $\|\Delta_A\|_2 \le \mathbf{u} \|\mathbf{A}\|_2$