QR-decomposition

The QR-decomposition of an n x k£ matrix A, k£ < n, is
an n X n unitary matrix Q and an n X k upper triangular
matrix R for which

A=QR
In Matlab
[Q,R]=qr(A);

Note. The QR-decomposition is unique up to a change
of signs of the columns of Q:

A = (QD)(DR)
with |ID| =1



QR-decomposition

The QR-decomposition of an n x k£ matrix A, k£ < n, is
an n X n unitary matrix Q and an n X k upper triangular
matrix R for which

A=QR

If A is nx k with column rank ¢ and ¢ < k < n, then
the ‘ecomical’ QR-decomposition is an n X £ orthonormal
matrix Q and an ¢ x k upper triangular matrix R for which

A=QR
In Matlab
[Q,R]l=qr(A,’0’);



QR-decomposition

The QR-decomposition of an n x k£ matrix A, k£ < n, is
an n X n unitary matrix Q and an n X k upper triangular
matrix R for which

A=QR

If A is nx k with column rank ¢ and ¢ < k < n, then
the ‘ecomical’ QR-decomposition is an n X £ orthonormal
matrix Q and an ¢ x k upper triangular matrix R for which

A=QR

Note. The columns of Q form an orthonormal basis of
the space spanned by the columns of A: the QR-decomp.
represents the results of the Gram-Schmidt process.



QR-decomposition

The QR-decomposition of an n x k£ matrix A, k£ < n, is
an n X n unitary matrix Q and an n X k upper triangular
matrix R for which

A=QR

Theorem. The QR-decomposition can be stably compu-
ted with Householder reflections.



QR-decomposition

The QR-decomposition of an n x k£ matrix A, k£ < n, is
an n X n unitary matrix Q and an n X k upper triangular
matrix R for which

A=QR

Theorem. The QR-decomposition can be stably compu-
ted with Householder reflections:

Let R be the computed R and Q = (Hy,-...-Hy;)* with Hy,
the Householder reflection as actually used in step 5. Then
A+ Ajy=QR forsome A,y with ||A4|lr < nkul|A|lF.

Note. The claim is not that Q is close to the Q that we
would have been obtained in exact arithmetic, but that Q
is unitary (product of Householder reflections).



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);

Theorem. If ST = TA is the eigenvalue decomposition
of S, i.e., T is non-singular and A is diagonal, then
AUT) = (UT)A is the eigenvalue decomposition of A.

In particular, A(A) = A(S) = diag(S) and C>(T) = C>(UT).



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);

The columns u; = Uej of U are called Schur vectors.



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);

Observation. Many techniques, where the eigenvalue
decomposition of A is exploited, can be based on the
Schur decomposition as well. For practical computations,
the Schur decomposition is preferable, since it is stable:
C>(U) = 1, while C>(UT) can be huge.



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab

[U,S]=schur(A);

Note. The first column u; = Uey of U is an eigenvector
of A with eigenvalue \; = ejSe;.

Proof. S is upper triangular: Se; = \je;.



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab

[U,S]=schur(A);

Note. The last column u,, = Ue,, of U is an eigenvector
of A* with eigenvalue )\, where \, = e Se,,.

Proof. S* is lower triangular: S*e, = \n€en.



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);

Note. The second column u, of U is an eigenvector of
A’ = (I—-ujuj)A(I— uyui) with eigenvalue Xy = e%Ses.

Proof. S is upper triangular: Se, = ae1 + A\1€> for a =
5172. Hence, USU*UQ = aUq + A{Uo.



Schur decomposition

The Schur decomposition or of an n x n matrix A is
an n X n unitary matrix U and
an n X uw upper triangular matrix S

such that

A = USU* or, equivalently, AU = US
In Matlab
[U,S]=schur(A);

Note. The second column u, of U is an eigenvector of
A’ = (I—-ujuj)A(I— uyui) with eigenvalue Xy = e%Ses.

In A’, the eigenvector uq is deflated from A.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Theorem. With a proper shift strategy:
U, — U, U is unitary
S, — S, S isupper triangular, AU = US:

The QR-algorithm converges to the Schur decomposition.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for
Lemma. a) Ug unitary, b) AU, = U.S,.
Proof.
SoQ1 = (So—001l+011)Q1 = (Q1R1 +011)Q1

Q1(R1Q1 +01I) = Q1S4



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for
Lemma. a) Ug unitary, b) AU, = U.S,.
Proof. S._1Qr = QLS

AU, =S;Q1Q>5...Q;, = Q1S1Q5... Q) = U,S,



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A —o DU 1 = URy,

Proof. (A — o )Ug_1 = Ui 1(Sg_1 — opl) = U1 QiR



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}
Proof. U; (A" —oil) = RjU;



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}

Corollary. With x; = Uge; and 7, = eJRge;,
we have (A —oil)X;._1 = 7. X;. (the shifted power method).

Proof. R upper triangular = Rpe; = €.




QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.

c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}
Corollary. With x; = Uge; and 7, = eJRge;,

we have (A —oil)X;._1 = 7. X;. (the shifted power method).

With p(AD) =X —o0g) - ...- (A —o01),
X;. = 7p(A)Xg for some 7 € C.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}

Corollary. With x; = Uge; and 7, = eJRge;,
we have (A —oil)X;._1 = 7. X;. (the shifted power method).

Note that A(¥) = xtAx;, = eiU;AU,e; = e;S,e;.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}
Suppose Vv is the dominant eigenvector for A — ol.
With o, = o and x, = U,eq, for £k — oo, we have that

/(X v) — 0, AR =eise; — ), Spe; —AFe; — 0,
where X\ is the eigenvalue of A associated v.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}

Corollary. With x;, = U.e, and 7, = e R.e;,
we have (A" —o D)X, =7 X1  (Shift & Invert).

Proof. Rj lower triangular = Rjen, = T;€n.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}

Corollary. With x;, = U.e, and 7, = e R.e;,
we have (A" —o D)X, =7 X1  (Shift & Invert).

Note that A(¥) = x*Ax;, = e:U AU, = €,S,en.



QR-algorithm

Select Ug unitary. Compute Sg = UjAUg

for k=1,2,,... do
1) Select a shift oy
2) Compute Q; unitary and R; upper triangular
such that S;p_1 — 0,1 = QrLRy
3) Compute Sk = Rka + ol
4) U, =U;._1Q;

end for

Lemma. a) Ug unitary, b) AU, = U.S,.
c) (A—oDUp_1 = URy, d) (A" -5, DU, =U;, 1R}
Suppose v is the dominant eigenvector for (A" — 51)—1.
With o, = o and x, = U.e,, for £k — oo, we have that

Z(x,v) — 0, MK =ersS,e, — )\, Ste,—AKe, -0,
where \ is the eigenvalue of A* associated v.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power
method (for A*).

Rayleigh Quotient Iteration is Shift and Invert with shifts
equal to the the Rayleigh quotients, o) = X;_{A"™X}_1.

Theorem. The asymptotic convergence of RQI is quadratic.

In this case, with x;,_1 =U,_1€,, o0 =¢€;S._1€n.

With “The asymptotic convergence of this method is qua-
dratic”, we mean: the method produces sequences (Xg)
that converge provided Xg is close enough to some (limit)
eigenvector, and for k large, the error reduces quadratically.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power
method (for A*).

Rayleigh Quotient Iteration is Shift and Invert with shifts
equal to the the Rayleigh quotients, o) = X;_{A"™X}_1.

Theorem. The asymptotic convergence of RQI is quadratic.
In this case, with x;,_1 =U,_1€,, o0 =¢€;S._1€n.

RQI need converge, as the following example shows

01
1 0O
RQI produces the sequence (X;) = (e1,€5,€1,€5,...).
Note that x; Ax; = 0.

Example. With A = and Xg = e;.

Observation.
The shifts o, =€;S;,._1€e, may lead to stagnation.



Selecting shifts
The QR-agorithm incorporates the Shift and Invert power

method (for A*).

The Wilkinson shift is the absolute smallest eigenvalue
of the 2 x 2 right lower block of S;.



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power
method (for A*).

The Wilkinson shift is the absolute smallest eigenvalue
of the 2 x 2 right lower block of S;.

Theorem.
For o, take the Wilkinson shift and take x;. = U.e,,.
Then, for some eigenpair (v,\) of A*, we have that

Z(x,v) — 0, MK =ersS,e, — )\, Ste,—AKe, — 0.

The convergence is quadratic (and cubic if A is Hermitian).



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power
method (for A*).

The Wilkinson shift is the absolute smallest eigenvalue
of the 2 x 2 right lower block of S;.

Theorem.
For o, take the Wilkinson shift and take x;. = U.e,,.
Then, for some eigenpair (v,\) of A*, we have that

Z(x,v) — 0, MK =ersS,e, — )\, Ste,—AKe, — 0.

The convergence is quadratic (and cubic if A is Hermitian).

The QR-algorithm: if ||exS, — A(Fe*||5 < ¢, then
e accept U, e, as an eigenvector of A*

e deflate: delete the last row and column of S,
and continu (the search for an eigenpair of the lower
dimensional matrix).



Selecting shifts

The QR-agorithm incorporates the Shift and Invert power
method (for A*).

The Wilkinson shift is the absolute smallest eigenvalue
of the 2 x 2 right lower block of S;.

Theorem.
For o, take the Wilkinson shift and take x;. = U.e,,.
Then, for some eigenpair (v,\) of A*, we have that

Z(x,v) — 0, MK =ersS,e, — )\, Ste,—AKe, — 0.

The convergence is quadratic (and cubic if A is Hermitian).

The QR-algorithm: if ||exS, — A(Fe*||5 < ¢, then
e accept U, e, as the nth Schur vector of A

e deflate: delete the last row and column of S,
and continu (the search for an eigenpair of the lower
dimensional matrix).



Deflation

Consider the kth step of the QR-algorithm.

Note that

(I—upuy)U, = Ur(I—epey)
Hence

I-up ) A(I—upu)U, = U (I—epe’)S.(I—ene)).

Deflating the nth Schur vector from A can easily be per-
formed in the QR-algorithm: simply delete the last row
and last column of the *“active” matrix S, (assumming
that U,e, is the nth Schur vector to required accuracy).



QR-algorithm

Select U unitary. S = U*AU,
m =size(A,1), N=[1:m], I=1I,.

repeat until m =1
1) Select the Wilskinson shift o
2) [Q,R]=qr(S—-ol)
3) S — RQ + ol
4) U(:;,N) — U(;,N)Q
5) if [S(m,m —1)| < e|S(m,m)|
Wt Deflate
m—m-—1, N—|[1:m], I—1I,
S «— S(N,N)
end if
end repeat

Theorem. U, — U, U is unitary
S, — S, S is upper triangular, AU = US.



Observations.
e T he QR-algorithm quickly converges towards to the ei-
genvalue as ‘targeted’ by the Wilkinson shift (on average
8 steps of the QR algorithm seems to be required for ac-
curate detection of the first eigenvalue).
e \While converging to a ‘target’ eigenvalue, other eigen-
values are also approximated. Therefore, the next eigen-
values are detected more quickly (from the 5th eigenvalue
on, 2 steps appear to be sufficient).
e All eigenvalues are being computed (according to mul-
tiplicity). Computation of all eigenvalues (actually of the
Schur decomposition of A) requires approximately

2n steps of the QR-algorithm.
e [ he order in which the eigenvalues are being computed
can not be controled.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix Ug (product of Hou-
seholder reflections) such that

SO = UB AUO

IS upper Hessenberg.
Start QR-alg. Bring A to upper Hessenberg form
(i.e., S =S, U= Up). Computation requires 3n3 flop.

Theorem. If S;_, is upper Hessenberg, then S; is upper
Hessenberg. Moreover, if S is m x m, then Qg can be
obtained as a product of m — 1 Givens rotations, i.e., rota-
tions in the (j,7+ 1) plane. The steps 2 and 3 in the QR
algorithm can be performed in (together) 3m? flop.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

* * * K * c —s (% % x x  x
* * x * s c * Kx Kk K x
R, = * *x x x| = 1 * * x x| = G1Rp
* * x 1 * * x
i * k| i 1] | * k|
Here, |°€ _S] — [C?S(qbl) sin(¢1) . Empty matrix entries are 0.
|5 ¢ sin(¢1)  cos(¢1)



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

* % *x * % 1 * * *x * %
* * Kk % c —S * Kk Kk %
R> = * x x| = S c * * x x| = GoR;
* * x 1 * * x
i * k| i 1] | * k|

[c —3] [COS(¢2) —sin(¢2)
Here, < =

¢ sin(¢2)  cos(¢2)



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

*

1 * K

*
* 1 *

* % ot

= G3R>

b S D R S o
b S S R . o
o
|
»

S e I o
b S S D I o
b S D D S o

3] _ [C05(¢3) —sin(¢3)

Here, [C B :
s ¢ sin(¢3z)  cos(¢3)



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

*

* 1 1 % % ]
* *

b R . o
b R i o

= G4R3

* % o X
S . D S o
[
o o X ot
P S . D S o

3] _ [COS(¢4) —sin(¢a)

Here, [C N ,
s ¢ sin(¢a)  cos(¢a)



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

*

* 1 1 % % ]
* *

b R . o
b R i o

= G4R3

* % o %
S . D S o
[
o o X ot
P S . D S o

3] _ [COS(¢4) —sin(¢a)

Here, [C N ,
s ¢ sin(¢a)  cos(¢a)



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, R]’:GjR]’_l (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

Then R=R,_.7 and Q*=G,_1-...-Gj.

Note. Q need not be formed explicitly:
it suffices to store the sequences of cosines and sines.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with Rp =S, R,;=G;R;_; (j=1,...,n—1),

where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))
Then R=R,_.1 and Q*=G,_1-...-Gjq,

and S=RG; ...-G,_ 1.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

1 * ok c —S
1 *
(G3s R2)G; = c —s

i . I o

R S D D, P o
P S R D P o
o




Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

1 * ok c —S
1 *
G3(R; G;) = c —s

i . I o

R S D D, P o
P S R D P o
o




Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, RjZGjRj_]_ (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

1 1T~ » % % %

1 * Kk Kk Kk %

G3(R2 Gl) == c —S8 *x X %
S C * Kk %

i 1] | *  *

Chasing the bulge.



Upper Hessenberg matrices

Theorem. If S is an upper Hessenberg matrix
and S = QR is the QR-decomposition, then

e Q is Hessenberg

e S=RQ and S+ ol are upper Hessenberg.

Q can be obtained as the product of n—1 Givens rotations:
with ROES, R]’:GjR]’_l (j=1,...,n—1),
where G; rotates in the (j,j+1) plane (i.e., in span(e;,e;j41))

Then R=R,_.1 and Q*=G,_1-...-G;
and S=RG; ...-G,_ 1.
Property. S =...G;(G%(G5G3S)G1)Go.. ..

Only two sines and two cosines have to be stored.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix Ug (product of Hou-
seholder reflections) such that

SO = UB AUO

IS upper Hessenberg.
Start QR-alg. Bring A to upper Hessenberg form
(i.e., S =S, U= Up). Computation requires 3n3 flop.

Theorem. If S;_, is upper Hessenberg, then S; is upper
Hessenberg. Moreover, if S is m x m, then Qg can be
obtained as a product of m — 1 Givens rotations, i.e., rota-
tions in the (j,7+ 1) plane. The steps 2 and 3 in the QR
algorithm can be performed in (together) 3m? flop.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix Ug (product of Hou-
seholder reflections) such that

SO = UB AUO

IS upper Hessenberg.
Start QR-alg. Bring A to upper Hessenberg form
(i.e., S =S, U= Up). Computation requires 3n3 flop.

Theorem. If S;_, is upper Hessenberg, then S; is upper
Hessenberg. Moreover, if S is m x m, then Qg can be
obtained as a product of m — 1 Givens rotations, i.e., rota-
tions in the (j,7+ 1) plane. The steps 2 and 3 in the QR
algorithm can be performed in (together) 3m? flop.

Observation. For computing the eigenvalues only,
step 4 can be skipped.
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If the eigenvalue ); is available, then the associated eigenvector can
also be computed with Shift & Invert: solve (A — A\ I)v; = e; for v;.
Note that the LU-decomposition can cheaply be computed if A is
upper Hessenberg.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix Ug (product of Hou-
seholder reflections) such that

SO = UB AUO

IS upper Hessenberg.
Start QR-alg. Bring A to upper Hessenberg form
(i.,e., S =Sp, U= Up). Computation requires %nS flop.

Theorem. If S;_, is upper Hessenberg, then S; is upper
Hessenberg. Moreover, if S is m x m, then Qg can be
obtained as a product of m — 1 Givens rotations, i.e., rota-
tions in the (j,7+ 1) plane. The steps 2 and 3 in the QR
algorithm can be performed in (together) 3m? flop.

Observation. The QR-algorithm requires approximately
8n3 flop
to compute the Schur decomposition to full accuracy.



Initiation of the QR-algorithm

Theorem. There is a unitary matrix Ug (product of Hou-
seholder reflections) such that

SO = UB AUO

IS upper Hessenberg.
Start QR-alg. Bring A to upper Hessenberg form
(i.e., S =S, U= Up). Computation requires 3n3 flop.

Theorem. If S;_, is upper Hessenberg, then S; is upper
Hessenberg. Moreover, if S is m x m, then Qg can be
obtained as a product of m — 1 Givens rotations, i.e., rota-
tions in the (j,7+ 1) plane. The steps 2 and 3 in the QR
algorithm can be performed in (together) 3m? flop.

Observation. The QR-algorithm can not exploit any spar-
Sity structure of A.



Benefits of the QR-RQ steps.

e [ he Shift & Invert power method is implicitly incorpora-

ted for one eigenvalue.

e T he power method is implicitly incorporated for all other
eigenvalues.

e Easy deflation is allowed.

e The computations are stable (when a stable qr-decomposition
is used).

When combined with an upper Hessenberg start:

e Upper Hessenberg structure is preserved, leading to re-
altively low computational costs per step.

e Simple error controle:

the norm of the residual equals |Sy(n,n — 1)]|.

e Effective shifts can easily be computed: with an eigen-
value of the 2 x 2 right lower block of S;, quadratic con-
vergence is achieved and stagnation avoided.



Excellent performance of the QR algorithm relies on
o QR-RQ steps.

e A good shift strategy leading to fast convergence (qua-
dratic and, if A is Hermitian, cubic) to one eigenvalue.
While quickly converging to one eigenvalue, other eigen-
values are also approximated, yielding good starts for quick
eigenvalue computation.

e Deflation allows a fast search for the next eigenvalue.
Deflation is performed simply by deleting the last row and
the last column of the active matrix.

e [ he upper Hessenberg structure is preserved, allowing
relatively cheap QR steps.



Theorem. The QR-algorithm is stable: for the matrix U
and the upper triangular matrix S we have that

(A+ A4 U =US, |U*U —I||> < us
where A 4 is an n X n matrix such that

1A 4ll2 < uf|Afl2



